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PAbstract

Background: Mathematical formulas have been less than adequate in assessing the optimal continuous positive airway pressure
(CPAP) level in patients with obstructive sleep apnea (OSA). The objectives of the study were (1) to develop an artificial neural net-
work (ANN) using demographic and anthropometric information to predict optimal CPAP level based on an overnight titration
study and (2) to compare the predicted pressures derived from the ANN to the pressures computed from a previously described
regression equation.
Methods: A general regression neural network was used to develop the predictive model. The derivation cohort included 311 con-
secutive patients who underwent CPAP titration at a University-affiliated Sleep Center. The model was validated subsequently on 98
participants from a private sleep laboratory.
Results: The correlation coefficients between the optimal pressure determined by the titration study and the predicted pressure by
the ANN were 0.86 (95% confidence interval [CI] 0.83–0.88; p < 0.001) for the derivation cohort and 0.85 (95% CI 0.78–0.9;
p < 0.001) for the validation cohort, respectively. Whereas there was no significant difference between the optimal pressure obtained
during overnight polysomnography and the predicted pressure estimated by the ANN (p = 0.4), the estimated pressure derived from
the regression equation underestimated the optimal pressure in both the derivation and the validation group, respectively.
Conclusion: The optimal CPAP level predicted by the ANN provides a more accurate assessment of the pressure derived from the
historic regression equation.
� 2006 Published by Elsevier B.V.
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1. Introduction

Obstructive sleep apnea (OSA) is a relatively com-
mon problem with potentially serious health conse-
quences [1]. It has been linked to increased risk of
mortality and morbidity due to cardiovascular and neu-
rophysiologic disorders [2]. Nasal continuous positive
airway pressure (CPAP) is considered a well established
and effective therapy for this disorder [3]. Compliance
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with treatment leads invariably to enhanced vigilance,
improved quality of life, and reduced traffic accidents
[4].

In order to derive the most effective pressure, CPAP
titration is performed in the sleep laboratory during
which the pressure is gradually increased until apneas
and hypopneas are abolished in all sleep stages and in
all body positions. The technique is, however, time-con-
suming and labor-intensive. Furthermore, the duration
of the study may not be sufficient to attain this goal
because of patient’s poor ability to sleep in this environ-
ment or due to difficulty attaining an appropriate
ective continuous positive airway pressure in sleep ..., Sleep
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pressure. A predictive algorithm based on demographic,
anthropometric, and polysomnographic data was devel-
oped to facilitate the selection of a starting pressure dur-
ing the overnight titration study [5], but the performance
of this model was inconsistent when validated by other
centers [6,7]. One of the potential reasons for the lack
of reproducibility is the complex relationship of behav-
ioral processes with nonlinear attributes. In areas of
complex interactions, the artificial neural network
(ANN) has been found to be a more appropriate alter-
native to linear, parametric statistical tools due to its
inherent property of seeking information embedded in
relationships among variables thought to be
independent.

Neural networks are computation systems that pro-
cess information in parallel, using large numbers of
simple units, and that excel in tasks involving pattern
recognition. These intrinsic properties of the neural
networks have been translated into a higher perfor-
mance accuracy in outcome prediction compared to
expert opinion or conventional statistical methods
[8,9]. Hence, we hypothesized that the ability to esti-
mate the optimal pressure (Popt) can be improved
by using computer analyses involving neural networks.
To test this hypothesis, we first applied an ANN to
the analysis of data from patients with documented
OSA and validated it prospectively on a separate
cohort. Second, we compared the predictive accuracy
of ANN to the previously published predictive model
of CPAP titration.

2. Materials and methods

2.1. Study population

The study protocol was approved by the Institutional
Review Board of the University at Buffalo. The Ethics
Committee agreed to waive the need for informed con-
sent. The derivation cohort included consecutive
patients who underwent CPAP titration for documented
OSA by polysomnography between January 2005 and
August 2005 at the University-affiliated Sleep Center.
The validation cohort represented patients with OSA
who underwent a titration study between September
2005 and November of 2005 at a private sleep laborato-
ry (Sleep Disorders Center of Western New York).
Demographic information (age, gender) and anthropo-
morphic measurements (neck circumference (NC),
height, weight, and body mass index (BMI)) were
obtained from the computerized data records which also
included the initial apnea-hypopnea index (AHI) on the
diagnostic study and the set of pressures used during
CPAP titration. The estimated optimal pressure derived
from the regression equation (RE) [5] (Ppred(RE) =
(0.16 · NC) + (0.13 · BMI) + (0.04 · AHI) � 5.12) was
also calculated.
Please cite this article in press as: El Solh AA et al., Predicting eff
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2.2. Sleep studies and CPAP titration

All participants underwent standard overnight poly-
somnography with recordings of electroencephalogram
(EEG), electrooculogram (EOG), submental and bilat-
eral leg electromyograms (EMGs), and electrocardio-
gram (ECG). Airflow was measured qualitatively by
an oral-nasal thermistor and respiratory effort by thora-
coabdominal piezoelectric belts (Piezo Crystals, EPM
Systems, Midlothian, VA). Measurement of arterial
oxyhemoglobin saturation was performed with a pulse
oximeter (ASC: Nellcor N-200, Nellcor Puritan Bennett,
St. Louis, MO). All signals were collected and digitized
on a computerized polysomnography system (ASC:
Rembrandt, Aerosep Corporation, Buffalo, NY at Uni-
versity affiliated Sleep Center and Alice 3 system,
Healthdyne Technologies, Marietta, GA at the Sleep
Disorders Center of Western New York). Sleep stages
were recorded in 30-s epochs using the Rechtschaffen
and Kales sleep scoring criteria [10]. Each epoch was
analyzed for the number of apneas, hypopneas, arous-
als, and oxygen desaturations. Apnea was defined as
the absence of airflow for more than 10 s. Hypopnea
was defined as a visible reduction in airflow lasting at
least 10 s associated with either a 4% decrease in arterial
oxyhemoglobin saturation or an EEG arousal. An
arousal was defined according to the criteria proposed
by the Atlas Task Force [11].

CPAP titration was conducted on a subsequent night
in the sleep laboratory. Patients were initiated at a pres-
sure of 4 cm H2O. The pressure was gradually increased
by 1 cm H2O every 20 min until the level at which apnea,
hypopnea, snoring, and recurrent oxyhemoglobin desat-
urations, but not arousals, were eliminated. The optimal
pressure was defined as the lowest pressure at which the
patient had an AHI < 5. Patients who failed to achieve a
Popt during CPAP titration were not included in the
analysis. In both centers, the definitions and CPAP titra-
tion protocol were identical.

2.3. Design of the artificial neural network

A general regression neural network (GRNN) was
used in the development of the predictive model [12]
using commercially available software (Neuroshell 2,
Ward Systems, Frederick, MD). The advantage of the
GRNN lies in the fact that whereas conventional nonlin-
ear regression techniques involve a priori specification of
the structure of the regression equations to yield a best
fit for the data presented, the GRNN circumvents these
restrictions by adjusting the surface dimension in which
the regression surface resides without constraining it to
a specific form. Generalization is optimized by modify-
ing the smoothing factor which determines how tightly
the network matches its predictions to the data in the
training patterns.
ective continuous positive airway pressure in sleep ..., Sleep
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Table 1
Characteristics of the study population

Derivation
cohort
(n = 311)

Validation
cohort
(n = 98)

P-value

Age (years) 49.6 ± 12.4 51.4 ± 12.3 0.2
Gender (M/F) 184/127 50/48 0.2
Neck circumference (cm) 16.7 ± 1.9 17.1 ± 1.9 0.1
BMI (kg/m2) 35 (34–37) 37 (34–41) 0.1a

Epworth score 10 (9–10) 12 (10–14) 0.07a

Total sleep time (min) 352 ± 63 361 ± 67 0.3
AHI (h�1) 33 (28–38) 39 (29–47) 0.5a

AHI 5 to <15/h, n (%) 52 (17%) 17 (17%) 1.0
AHI 15 to <30/h, n (%) 91 (29%) 22 (22%)
AHI P 30/h, n (%) 168 (54%) 59 (61%)

a Mann–Whitney test.

able 2
omparison of the pressures obtained by polysomnography, neural
etwork, and regression analysis (median, IQ)

Popt Ppred (ANN) Ppred (RE)

erivation cohort 8.0 (7.0–12.0) 8.3 (7.6–11.1) 3.8 (2.5–5.5)*,�

alidation cohort 8.0 (6.0–12.0) 8.9 (7.5–11.9) 4.5 (2.8–6.0)*,�

* p < 0.01 compared to Popt (Dunn’s test).
p < 0.01 compared to Ppred (ANN) (Dunn’s test).
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A three-layer structure was used in the development
of the neural network: an input layer, a hidden layer,
and an output layer. The input variables selected for
the ANN were based on similar parameters used in
the regression equation published by Miljeteig and col-
leagues [5]. Intervening layers of processors, called hid-
den units, detect higher-order features in the input
layer, analyze the signal, and relay the output to other
neurons to make a correct response. The number of neu-
rons in the hidden layer is determined by the number of
patterns in the training set as GRNNs require one neu-
ron per pattern processed. The output layer of the
GRNN provides an estimate of the optimal pressure
for the CPAP device to reduce or abolish apneic events.

A fivefold cross-validation approach was used for
evaluation [13]. The entire data set of the derivation
group was divided with a random number generator
into five subsets. Four of the five subsets were pooled
and used for training. The data from the fifth subset
were used as an evaluation set during training. The
entire process was repeated four additional times by
rotating the subset that was used as the evaluation set
during training. The mean square error was computed
for each of the five neural networks on the entire deriva-
tion data set. The mean square errors were averaged,
and the ANN that had a mean square error closest to
the average was selected.

2.4. Statistical analysis

Data are summarized as mean ± standard deviation
(SD) for normally distributed variables or medi-
an ± 95% CI otherwise. For continuous variables, differ-
ence in mean values was assessed using Student’s t-test
or the Mann–Whitney U-test. Categorical values were
compared using the v2 or the Fisher exact test when
appropriate. Comparisons between Popt, Ppred(ANN),
and Ppred(RE) were made using one-way analysis of
variance. A post-hoc test (Dunn’s test) was used on all
pairwise comparisons. A Spearman correlation was per-
formed to assess the relationship between the actual
optimal pressure and the predicted pressures (ANN
and RE). Model comparisons were assessed based on
the confidence intervals. Agreement between measure-
ments was assessed also by the method of Bland and
Altman [14]. Statistical significance was set at p < 0.05
(two-tail).

3. Results

A total of 343 patients were identified for inclusion
in the derivation cohort. Twenty-nine patients were
excluded because of failure to achieve a pressure setting
where AHI 6 5 events/h, and two did not complete the
titration study. As for the validation group, an optimal
pressure was not attained in seven of the 105 patients.
Please cite this article in press as: El Solh AA et al., Predicting eff
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Table 1 displays the characteristics of the study popula-
tion. There were no significant differences in age, gender
ratio, neck circumference, BMI, or total sleep time
between the derivation and the validation cohort. The
distribution of the severity of sleep apnea was also com-
parable between the two groups.

Five variables were selected to form the input layer:
age, gender, BMI, neck circumference, and baseline
AHI. The mean square error of the ANN selected was
3.8. The predicted optimal pressures by the neural net-
work for the derivation and the validation cohort are
presented in Table 2. Overall, there was no significant
difference between the optimal pressure obtained during
an overnight polysomnography and the predicted pres-
sure estimated by the ANN (p = 0.4). However, the esti-
mated pressure derived from the regression equation
underestimated the optimal pressure in both the deriva-
tion and the validation group, respectively. The histo-
grams of the differences between Popt and
Ppred(ANN) and Popt and Ppred(RE) for the deriva-
tion group and validation group are shown in Figs.
1(A) and (B) and Figs. 2(A) and (B), respectively. The
correlation coefficient between Popt and Ppred(ANN)
in the derivation cohort was 0.86 (95% confidence inter-
val [CI] 0.83–0.88; p < 0.001) compared to 0.62 (95% CI
0.54–0.68; p < 0.001) for the correlation coefficient
between Popt and Ppred(RE). In the validation cohort,
the correlation coefficients between Popt and Ppre-
d(ANN) and between Popt and Ppred(RE) were 0.85
(95% CI 0.78–0.9; p < 0.001) and 0.6 (95% CI 0.53–
T
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n
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Fig. 1. Histograms of the differences between optimal pressures and predicted pressures by the artificial neural network (A) and by the regression
equation (B) in the derivation cohort. ANN = artificial neural network; RE = regression equation.
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0.76; p < 0.001), respectively. In both the derivation and
the validation cohorts, the performance of ANN was
superior to the logistic regression model (p < 0.001 and
p < 0.001, respectively).

Fig. 3 shows the level of agreement between the Popt
and Ppred(ANN) using the Bland and Altman analysis
for the entire cohort. The plot reveals that the majority
of the estimated pressures by the neural network fall
within 95% confidence interval from the calculated
paired pressure mean.

4. Discussion

The optimal prescription for CPAP therapy in
patients with OSA is that which most effectively
prevents the adverse consequences of OSA while causing
the least discomfort and the lowest risk of complications.
Please cite this article in press as: El Solh AA et al., Predicting eff
Med (2006), doi:10.1016/j.sleep.2006.09.005
A central element of the CPAP prescription is the pres-
sure level which is typically derived from a titration
study. Various solutions have been proposed as alterna-
tives to conventional titration: ‘‘partial-night’’ trials [15],
automatic titration with auto-CPAP devices [16], and
pressure prediction using mathematical formulas [5,17].
The present study is the first to present a validated
ANN to predict effective CPAP that relies on a combina-
tion of anthropomorphic and clinical data, the majority
of which have been found to be significantly correlated
with optimal CPAP [5].

The findings of the study point to high performance
accuracy of the ANN when compared with overnight
polysomnography. When applied to CPAP titration,
the pressure established by the neural network fell
within 3 cm of H2O above or below the optimal pressure
set by polysomnography for 92% of the patients. In
ective continuous positive airway pressure in sleep ..., Sleep
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Fig. 2. Histograms of the differences between optimal pressures and predicted pressures by the artificial neural network (A) and by the regression
equation (B) in the validation cohort. ANN = artificial neural network; RE = regression equation.
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was poor, as only 40% of patients had their estimated
pressure fall within 3 cm of H2O of the optimal pressure
determined by overnight sleep study. These results
coincide with the observations of previously published
validation studies from other sleep centers [6,7]. Overall,
the regression equation tended to underestimate the
optimal pressure in both the derivation and the
validation cohort. We attribute the deterioration in the
predictive ability of the regression equation to the phe-
nomenon of ‘‘model drift’’ [18]. The model drift could
stem from either a modified definition of apneas/hypop-
neas, an improved sensitivity of diagnostic tools, or
change in the disease pattern. It has been argued also
that the discrepancy in optimum pressure prediction
by the regression equation may be attributed to a differ-
ence in the population under study. Considering that the
derivation of the regression equation was performed in a
mostly male population, a preponderance of female
participants might have skewed the CPAP prediction,
Please cite this article in press as: El Solh AA et al., Predicting eff
Med (2006), doi:10.1016/j.sleep.2006.09.005
as women tend to have a lower severity of sleep apnea
and smaller neck circumference [19,20]. While the gen-
der distribution of our population was equivalent in
both cohorts, the neural network included a gender
adjustment to account for inherent differences in sleep
characteristics.

It is intrinsic to any predictive model that the ANN-
predicted optimal pressure may overestimate the effec-
tive CPAP. In such an event, the CPAP level can then
be decreased by 1 cm H2O during the CPAP titration
every 20 min until the level at which apnea, hypopnea,
snoring, or recurrent oxyhemoglobin desaturations
would recur. However, we have to acknowledge that
the effectiveness of such a strategy can only be assessed
during a prospective study.

The exclusion of patients with unsuccessful titration
in our study might explain the higher level of accuracy
of the neural network compared to the regression equa-
tion. Analysis of those patients who were excluded did
not, however, reveal a common pattern or characteristic.
ective continuous positive airway pressure in sleep ..., Sleep
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Fig. 3. Bland and Altman for optimal pressures vs. predicted pressures by the artificial neural network for the entire study population.
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However, the high level of CPAP titration failure report-
ed in other series of 16–40% [6,21] despite the use of the
regression equation suggests the underperformance of
the predictive model and underlines the need for a more
accurate and cost-effective algorithm. A prospective
implementation of the neural network will be required
to assess the impact of this technology on the rate of
CPAP titration failure.

A major departure from previous studies is the cutoff
we have used to define titration success. We have select-
ed an AHI < 5/h compared to AHI 6 10/h used in other
studies. Despite the fact that an AHI 6 10/h was consid-
ered as the criterion for defining OSA in screening stud-
ies [22,23] or for successful titration when relying on
mathematical formulas [5,21], we stipulated that the
likelihood of achieving a clinically significant optimal
pressure is increased when an AHI of <5/h was targeted,
thus requiring a smaller number of pressure increments
during a titration study.

There are several potential limitations to the study.
First, neural networks have the ability to approximate
predictive output to any desirable degree of accuracy
when provided with enough running time. This could
result in overfitting, particularly when there is an
attempt to increase the processing power of the network
by adding a large number of hidden neurons. In this
case, the network will end up learning not only the train-
ing set but also the noise in the data, which leads to poor
generalization. The accuracy of prediction observed in
the validation set points, however, tends to argue
against this possibility and reinforces the fact that the
network architecture is based on robust features rather
than memorizing the idiosyncrasies embedded in the
Please cite this article in press as: El Solh AA et al., Predicting eff
Med (2006), doi:10.1016/j.sleep.2006.09.005
T
E
Ddata set. We should mention that the validation study

was conducted on a set where the optimal pressure
was determined by a regular titration study first. This
step is important for two reasons: to assess the repro-
ducibility of the model in a setting other than the one
used to develop the predictive model, and to remove
the potential for bias that could occur from being aware
of the ANN output beforehand (blinding effect). Once
this step is deemed successful, the ANN would then be
used to examine its effect on CPAP titration. Second,
the accuracy of the network is subject to advances in
technology, improvement in sensitivity of diagnostic
equipment (i.e., use of nasal pressure to detect airflow),
and changes in disease definition. Similar to any prog-
nostic model, periodic recalibration of the neural net-
work is thus required to maintain accuracy. Third, a
frequently cited limitation in the literature is the fact
that little is known about the pathways used by the
ANN to predict outcome [24]. These pathways are com-
plex and do not convey an understanding of the struc-
ture of reasoning. Unlike the logistic regression
equation, the relationships between variables are not
explicit. The superior predictive ability of the ANN,
however, would offset this limitation. With the wide
availability of computers and modern software in med-
ical practice, the neural network algorithm can be pub-
lished on a website allowing easily accessibility for daily
use.

In summary, the proposed ANN outperformed the
traditional regression equation in predicting optimal
CPAP. While it is not intended to be a substitute for
overnight polysomnography, the high level of agreement
between ANN and overnight polysomnography indi-
ective continuous positive airway pressure in sleep ..., Sleep
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