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The aim of this study was to design a diagnostic model to
identify patients with Cheyne—Siokes respiration (CSR-CG3A)
based on indices of oximeiric spectral analysis. A retrospective
analysts of oximetric recordings of 213 sleep studies conducted
over a oneyear period at a Veterans Affairs medical facility was
performed. A probabilistic neural network (PNN) was devel
oped from salient features of the oximetric spectral analysis,
desaturation cuents and the delta index. A flvefold cross-
validation was used to assess the accuracy of the mewral
network in identifying CSR-CSA. When compared to overnight
polysomnography, the PNN achieved a sensitivity of 100%
(95% confidence interval [CI] 85%-100%) and
specificity of 99% (95 % 97 % — 100%) with a corresponding
area under the curve of 99% (95% CI 99% —100%). When
combined with avernight pulse oximeiry, PNN oﬁm an
accurate and easily applicable tool to detect CSR-CSA.

Introduction

Sleep disordered breathing (SDB) is estimated to occur
in about 60% of patients suffering from congestive
heart failure (CHF) [1]. Cheyne—Stokes respiration
{CSR-CSA) is by far the most common form of SDB
encountered with an estimated prevalence of 40%
foliowed by obstructive sleep apnea (OSA) with an
estimated prevalence of 11% [1,2]. CSR-CSA is
characterized by rhythmic rises and falls in tidal volume
and breathing frequency that lead to oxygen desatura-
tion, increased arousal, poor sleep quality and altered
sleep architecture. These features result in complaints
of daytime somnolence, fatigue and insomnia.

The pathophysiology of GSR-CSA. is not completely
understood, but it has become more evident that the
effect of altered breathing patterns extends beyond the
deterioration in psychocognitive function. The in-
crease in urinary and plasma norepinephrine levels in
patdents with congestive cardiac failure {CHF) and CSR-
CSA compared ito those with CHF alone has been
implicated in an accelerated loss of cardiac function,
and an increased risk of death and cardiac transplanta-
ton [3,4]. Nasal continuous positive airway pressure
{nCPAP) has been advocated as an effective non-
pharmacological treatment for patients with congestive
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heart failure and CSR-CSA. Recent studies have shown
that nCPAP can abolish CSR-CSA, improve respiratory
muscle strength [5], increase left ventricular ejection
fraction [3], and may increase transplantfree survival

{6].

In the absence of an accurate screening test, home
pulse oximetry has been proposed as an alternative tool
for detection of CSR-CSA [7]. These model studies
however have lumped the variation of oxygen satura-
tion into a single measure without regard to the
frequencies at which this variability occurs. In recent
years, there has been a growing interest in spectral
analysis as a tool for non-invasive assessment of
biological functon [8, 9]. Although CSR-CSA has never
been defined rigorously [10], its crescendo~decres-
cendo pattern of breathing suggests that the major
variation is in the form of a regular sinusoidal wave.

Neural networks have been proposed as a powerful
alternative to conventonal statistical methods because
of their inherent property of seeking information
embedded in relations among variables believed to be
independent. They have been used successtully in
medical applications [11,12] and have been shawn to
outperform physician and to equal or exceed tradi-
tonal statisdcal modelling in the predicion of cur
comes [13]. We conducted this investigation to test the
hypothesis that a trained probabilistic neural network
could accurately classify Cheyne-5tokes respiration
from data derived from oximetric spectral analysis.

Methods

Fatients

We conducted an analysis of the oximetry recordings of
213 sleep studies, conducted at our sleep centre between
February 1999 and January 2000, referved for evaluation
of sleep related breathing disorder. Twenty-three
patients had evidence of CSR-CSA, 132 had OSA and
58 had no evidence of sleep related breathing disorder.
The study was approved by the Health Sciences
Jnstitutional Review Board of the University at Buffalo.

LY leep studies

The sleep smdies were conducted at the Veterans
Affairs Medical Center of Western New York. Contin-
uous elecroencephalogram, electrooculogram, electro-
cardiogram, submental and  anterior tibial
electromyogram were recorded on a 16-channel poly-
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graph using standard technique, and digitized on a
computerized system (Ac uitron®; Mallinckrodt, St
Louis, MO, and Alice 3®; Respironics, Pittsburgh,
PA). Airflow was measured qualitatively by an oral—
pasal thermistor (EPM Systemns, Midlothian, VA).
Measurement of arterial oxygen saturation was per-
formed with a pulse oximeter, Nonin 8500M™ (Nonin
Medical Inc. Plymouth, Minnesota), with the probe
placed on the patient’s finger. Thoracoabdominal
movements were recorded using piezoelectric belts.

Sleep stages were scored in 30s epochs using the
Rechischaffen and Kales sleep scoring criteria [14].
Each epoch was analysed for the number of apneas,
hypopneas, arousals, oxygen desaturaton and distur-
bances in cardiac rate and rhythm. Apnea was defined
as the absence of airflow for more than 10s. An
obstructive apnea was defined as the absence of airflow
in the presence of rib cage or abdominal excursions.
Central apneas were defined by the cessaton of airflow
for 10s accompanied by an absence of chest wall
movement. Hypopnea was defined 2s a visible reduction
in the airflow lasting more than 10s associated with
cither a 3% decrease in arterial oxygen saturation or an
electroencephalographic arousal, or both. Hypopnea
was labelled obstructive if paradoxical thoracoabdom-
inal excursions, if the airflow decreased out of propor-
tion to the reduction in the thoracoabdominal
excursions, or snoring occurred. The apnea—hypopnea
index (AL was defined as the number of apneas and
hypopneas per hour of sleep. The presence of CSR-CSA
was defined as a central apnea—hypopnea index of
>10h7! of sleep in which greater than 85% of events
are central, in combination with the characteristic
pattern of crescendo --decrescendo pattern of hyperp-
nea alternating with central apnea. Alternatively,
obstructive sleep apnea was defined as all others with
AHI > 5h~! including those with mixed apneas.
Arousals were defined according to the ASDA position
paper [15]. All sleep studies were reported by one of
two board certiied sleep physicians. Both sleep
physicians who were blinded from cach other's opinion
reviewed the sleep smdies of all patdents with CHF to
determine the level of agreement in identifying patients
with CSRCSA by polysomnography. Interobserver
agreement was assessed by the kappa value. The few

discrepancics were resolved by consensus.

Frequency domain analysis

We used the lowest value of the oxygen saturation by
pulse oximetry over 4s intervals for spectral analysis.
The sampling rate of the pulse oximetry was 70 Hz with
a moving average of 3s. The data were stored as the
average over a 1 s interval. After the data was decimated
into 4s intervals, it was processed to remove any
artefacts by eliminating all changes of oxygen saturaton
between consecutive sampling intervals of greater than
4% per second, and any oxygen saturation lese than
20%. The data was then divided into segments of
20.84 min long without discontinuities due to artefacts.
The length of the segment was selected so that it would
contain 10 cycles of the slowest frequency at which CSR-
CSA has been recorded (i.e. 0.008 Hz or cycles of 126 5).
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Each segment was detrended to reduce the effects of
nonlinearities.

A power spectral density, which represents the distribu-
tion of power as a function of frequency, was ealculated
by the maximum entropy method on each segment
[16]. The Bayesian information criterion was chosen to
select the model order {17].

The power spectrum was calculated at 100 equidistant
frequencies on a logarithmic scale ranging from 0.0008
to 0.04Hz. At each frequency, the mean power was
caleulated from the average of the power of all
segments at that particular frequency. The salient
features of the CSR-GSA power spectrum that were
selected for further analysis were the frequency and the
magnitude of the power attained at the highest local
maximura (f;, 7;), and the frequency and the magni-
tude of the power attained at the next highest local
maximum (fz, mp). The randomness of the variability in
oxygen saturation was estimated from the entropy,
which was quantified using equation (1):

Entropy = — > (m(f) ¢ log {m{(/)}] . (1)

Y. denotes the summation of the magnitudes of the
spectrum and m(f) represents the magnitude at a
particular frequency, f, expressed as a fraction of the
total magnitudes.

Time domain analysis

Oxygen desaturation events for 2%, 3% and 4% were
calculated from overnight oximetry. The definition of a
desaturaiion event was based on the work of Taha ¢ al.
[18]. Every data point was examined sequentially to
determine if criteria were met to define an event. The
criteria for an event were a decrease of at least the set
amount (2%, 3% or 4%) in oxygen saturation from the
initial data value for at least 10s, and at a rate that is
greater than 0.1% s~!. In addition, the oxygen satura-
tion must return within 60s to within 1% of the initial
value, or increase from its nadir by 1.5 times or more of
the set amount of the dip. Once the criteria were meg, a
new search for an event was initiated at the next data
point after the event.

Artificinl nevral network

Artificial neural networks (ANN) are computation
systems that mimic the analytic approach of biological
systems by using a large number of interconnected
artificial neurons {19]. Just as humans apply knowledge
gained from past experience to new problems or
sitiations, a neural network takes previously solved
examples to build a system of ‘neurons’ that makes new
decisions, classifications and forecasts. Neural networks
look for patterns in training sets of data, learn these
patterns, and develop the ahility to correctly classify new
patterns or to make forecasts and predictions. Neural
networks excel at problem diagnosis, decision-making,
prediction and other cdassifying problems where patiern
recognition is important and precise comfprutational answers
are not required,
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For the puwrpose of this study, we have used a
probabilistic neural network (PNN). These networks
are a type of supervised network known for their ability
to train quickly on sparse datasets and separate data
into a specified number of output categories. The PNN
is a threedayer network: an input layer, a hidden layer
and an output layer. The input layer included the
salient features of the spectral analysis. These features
comprised of the frequency and the magnitude
attmined at the highest local maximum; the frequency
and the magnitude of the power attained at the next
highest local maximum; and the randomness of the
variability in oxygen samration. Other input variables
included the desaturation events for 2%, 3% and 4%
and the delwa index [20].

The number of hidden units was derived from the total
number of patterns minus the evaluation set. The
output layer provided a classification of the input
patterns into three groups: CSR-CSA, OSA, or no sleep
related breathing disorder.

Because of the preponderance of patients with obstruc-
tive sleep apnea, patients with CSR-GSA were weighted
by a factor of 5. A fivefold cross-validation was used for
evaluation [21]. The data were divided randomly into
five mutually exclusive subsets. Four of the subsets were
pooled and used for training; the remaining subset was
used as an evaluation set during training. The entire
process was repeated four additional times by rotating
the subset that was used as the evaluadon set during
training. For each model a kappa value was obtained to
assess reproducibility. The neural network closest to the
median was selected for further analysis.

Statistical analysis

A receiver operator characteristic (ROC) curve was
generated to assess the accuracy of the neural network.
The c-index, which is equivalent to the area under the
ROC curve, was used to estimate the diagnostic
accuracy of the model. The ciindex and it standard
error were calculated by the bootstrap method [22].
Kappa statistics were calculated from software available
in the public domain [23].

Results

Patient characteristics

A teview of medical records revealed that all 23 cases
with CSR-CSA had evidence of systolic dysfunction with
a mean left ventricular ejection fraction of 25.0 & 8.4,
and were considered for heart transplantation. All were
receiving optimal oral therapy and were clinically stable
at the time of the sleep study.

Of the 132 patdents with polysomnographic evidence of
OSA, 39 (30%) had severc OSA with AHI > 30h~1, 35
(27%) had moderate OSA with AHI ranging between
15 and 30h~%, and 58 (43%) had mild OSA with AHI
between >5 and <15h~!. There was excellent agree-
ment between the two physicians in interpreting the

overnight polysomnography with a kappa of
0.84 £ 0.14SE. There were only four discrepancies all
of which were resolved by consensus meetings.

Frequency analysis

The power spectrum for CSR-CSA patients is character-
ized by a sharp spectral peak with a large primary local
maximum displayed at low frequency (<0.02Hz)
(figure 1). In contrast, the power spectrum m OSA
consists of multiple, broadband speciral peaks that are
lower in magnitude, with the highest local maximum
located at a frequency >0.02 Hz. In normal subjects, no
apparent peak was detected (figure 2).

PNN performance

The predictive accuracy of the PNN in detecting CSR-
CSA achieved a sensitivity of 100% (95% CIL 85% to
100%) and a specificity of 9% (95% CI: 97% to 100%)
(figure 3). The neural network was able to identify
accurately all cases who had CSR-CSA. In total, there
were three misclassifications (table 1). One patient with
O5A was predicted o have GSR-GSA, and two with OSA
were mislabelled as having no sleep related disordered
breathing. The patient with OSA misclassified to have
CSR-CSA had an AHI of 38 while the two patients
reported as having no sleep related disordered breath-
ing had an AHI of 6 and 9, respectively.

Discussion

The present study has shown the udlity of an artificial
neural network as a screening tool for detecting CSR-
CSA. The overall accuracy of the neural network in
classifying sleep disordered breathing stemmed from
delineating the various relationships among the muld-
tude of input parameters selected. In this case, the
spectral indices of patients with CSR-CSA displayed
features with distinctive discriminative attmbutes com-
pared to other sleep disordered hreathing. While the
power spcctra of normal subjects was shown to have no
apparent peak, and of OSA patients 10 have broad-band
peaks, the patents with congestdve heart failure often
had a unique distribution of spectral peaks conforming
to a long-period oscillatdon in oxygen saturation. The
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1. Power spectrum of pulse oximetry in a patient with Cheyne—
Stokes resperation.
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3. Recetver operator characteristic curve of the diagnostic
accuracy of the neural network.

Table 1. Classification of neural network output.

Nao sleep

CSR-GSA OS5A disorder
Actual 23 152 59
Predicted 24 129 6l
True positives 23 129 59
Falsc positives 1 0 2
True negatves 190 82 153
False negadves 0 3 0

disparity in the recordings of oximetry berween CSR-
CSA and OS8A has its origin in the distinct pathophy-
siological basis of both discases. Javaheri and others
[24] have shown that those patients with congestive
cardiac failure who had periodic breathing and central
sleep apnea had an increased ventilatory response to
carbon dioxide, and that the relation between the
ventilatory response to carbon dioxide and the number
of episodes of apnea is positively correlated. The
increased central sensitivity to CO; contributes to a fall
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in arterial bleed carbon dioxide gas tension (F,COg)
below the sleeping apneic threshold, resulting in a
prolonged apnea. The associated hypoxemia increases
the ventlatory response to hypercapnia leading to an
exaggerated decrease of the P.COz below the apneic
threshold, and subsequently to repeated periodic
breathing. The cyclic nature of the breathing pattern
translates into a unique spectral peak in the oximetry
data that tends to fall between 0.01 and 0.02Hz. In
comparison, the oscillatory breathing pattern observed
in OSA is rather mixed due to a combination of
periodic and aperiodic patterns of pharyngeal occlu-
sion.

This study is the first, to our knowledge, to develop a
diagnostic model based on the frequency analysis of
pulse oximetry to identify patienis with CSR-CSA. There
have been previous studies using spectral analysis of
heart rate varability in steep disordered breathing
[25,26]; none were developed for the purpose of
identifying patients with CSR-CSA. A recent study of 104
subjects with CHF by Staniforth ef al [7] has exarnined
the desaturation index recorded in nocturnal oximetry
(nuinber of events of oxygen desaturation >4% from
baseline per hour of sleep) compared to normal
controls. With a threshold of 15 dips per hour, the
model yielded a specificity of 81% and a sensitivity of
87% for detecting CSR-CSA. However, the overall
accuracy of the model was not provided. Those authors
made no attempt to determine if pulse oximeuy could
be used to distinguish hetween CSR-CSA and OSA.

The potential application of an artifictal neural network
for early detecdon of CSR-CSA in patients with lefi
ventricular dysfunction carries an important implica-
tion to the overall management of patients with
congestive heart failure. The presence of CSR-CSA
has been implicated in increased mortality up to 56%
over a 3yr period compared to 11% in those patients
without CSR-CSA despite similar cardiac functional
status and left ventricular function [4]. Since nasal
CPAP therapy was found to have beneficial acute and
chronic cardiovascular effects, early implementation
might well be ganslated into improved cardiac func-
ton, reduced hospitalizaton and potentially reduced
mortality, and increased transplant-free survival [6].

There are potendal limitatons in our smdy. In the
absence of oesophageal pressure, the distinction
between central and obstructive respiratory events has
not always been possible. However, this method is not
without drawbacks. It is invasive, often uncomfortable,
and may not be tolerated. Furthermore, there is
evidence that an oesophageal catheter may modify
the pharyngeal airway dynamics [27], and impair the
quality of sleep [28]. Secondly, assessment of CSR-CSA
was performed only during a single night of polysom-
nography recording, and we did not repeat the test to
establish that it persisted after the inital study. Hanly
and Zubern-Ehokhar [4] has reported previously the
persistence of CSR-CSA upon repeat either of poly-
somnography or through questionnaire obtained from
bed partncrs of GSR-CSA patients. Thirdly, the model
involves considerable mathematical analysis but with
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the availability of modern software is si

and can he accomplished mpidly.,lt;ledlzl;g;‘f;:bilmgf:
use of overnight pulse oximetry is less prccisey;.han
polysomnogrej\pl_ly since it dues not measure airflow or
aro.usafl, bur it is simple, affordable and can be d
easily in the patient’s home., e

In summary, the currens stud i

_ _ y offers potentall
F:;l:urate and casily applicable tool topdetect Ife::z
: Wre patients with CSR-CSA at a relatively low cost.
future studies are needed to further validate the mode]
in the diagnosis of CSR-C'SA mode
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