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Background: Nosocomial outbreaks of tuberculosis (TB) have been attributed to unrecognized
pulmonary TB. Accurate assessment in identifying index cases of active TB is essential in
preventing transmission of the disease.
Objectives: To develop an artificial neural network using clinical and radiographic information to
predict active pulmonary TB at the time of presentation at a health-care facility that is superior
to physicians’ opinion.
Design: Nonconcurrent prospective study.
Setting: University-affiliated hospital.
Participants: A derivation group of 563 isolation episodes and a validation group of 119 isolation
episodes.
Interventions: A general regression neural network (GRNN) was used to develop the predictive
model.
Measurements: Predictive accuracy of the neural network compared with clinicians’ assessment.
Results: Predictive accuracy was assessed by the c-index, which is equivalent to the area under the
receiver operating characteristic curve. The GRNN significantly outperformed the physicians’
prediction, with calculated c-indices (6 SEM) of 0.947 6 0.028 and 0.61 6 0.045, respectively
(p < 0.001). When the GRNN was applied to the validation group, the corresponding c-indices
were 0.923 6 0.056 and 0.716 6 0.095, respectively.
Conclusion: An artificial neural network can identify patients with active pulmonary TB more
accurately than physicians’ clinical assessment. (CHEST 1999; 116:968–973)
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Abbreviations: CD4 5 cluster of differentiation 4; CI 5 confidence interval; GRNN 5 general regression neural
network; TB 5 tuberculosis

T he most important aspect of a tuberculosis (TB)
infection control program is to identify patients

who may have contagious active TB, to isolate them
while they are contagious, and to treat them effec-
tively. The process of recognizing those persons with
active TB is, however, fraught with difficulty. As a
result, numerous outbreaks of Mycobacterium tuber-
culosis have been reported in several types of facili-
ties. At least 21 episodes of nosocomial transmission
of M tuberculosis have been documented in the

United States medical literature.1 Among the factors
that have been associated with missed or delayed
diagnosis are failure to consider the diagnosis, non-
classical or atypical radiographic presentation, de-
layed recognition of drug resistance, lapses in TB
isolation practices, and lack of adequate respiratory
protection.2–5

Prediction models to identify patients with active
TB have been lacking. The reason for this lies in the
complexity of the clinical and radiographic presenta-
tion, the relatively small patient samples, and the use
of modeling techniques that are poorly suited for the
task. Recently, El-Solh et al6 introduced a classifica-
tion tree to assist physicians in their decision regard-
ing whether respiratory isolation for suspicion of
active pulmonary TB is needed. The model achieved
a high degree of sensitivity at the expense of low
specificity.

Previous investigators have used an artificial intel-
ligence paradigm, referred to as a neural network, to
provide a prediction outcome for complex clinical
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problems. Neural networks are computation systems
that process information in parallel, using large
numbers of simple units, and that excel in tasks
involving pattern recognition. These intrinsic prop-
erties of the neural networks have been translated
into a higher performance accuracy in outcome
prediction compared with expert opinion or conven-
tional statistical methods.7,8 Therefore, we hypothe-
sized that the ability to identify patients correctly
with active pulmonary TB could be improved by
using computer analyses involving neural networks.
To test this hypothesis, we have applied an artificial
neural network (available at: http://bgrant.med.buf-
falo.edu/activetb/) to the analysis of data from pa-
tients who are considered to be at high risk for active
pulmonary TB and compared the network output to
physicians’ prediction.

Materials and Methods

Study Setting

The study was conducted at the Erie County Medical Center,
a 479-bed tertiary-care teaching facility affiliated with the State
University of New York at Buffalo. During the study period from
August 1992 to June 1997, the hospital was the major referral
center for TB in Erie County and provided all inpatient medical
care for inmates from county and state correctional facilities in
the area. Because of the shortcomings in the diagnosis of TB and
resulting delay in considering the diagnosis, an automatic isola-
tion policy was instituted by the Infection Control Service in
August of 1992 for all patients from whom an acid-fast smear and
culture were requested. Isolation was discontinued only after
documentation of three negative results of acid-fast bacilli smears
that were obtained on 3 separate days or a negative result of an
acid-fast bacilli smear derived from BAL.

Study Population

Between August 1992 and June 1997, 704 patients were
isolated for suspicion of active pulmonary TB. Twenty-two
patients were excluded from the study: 17 were discharged
before three respiratory specimens were collected, and 5 refused
diagnostic bronchoscopy. Five hundred sixty-three consecutive
patients were used to design the neural network and were
referred to as the derivation set. The remaining 119 patients
formed the validation set.

The decision to isolate patients for suspicion of active TB was
made by emergency department physicians, medical residents’ or
infectious disease fellows after consultation with the attending
physician based on symptoms, history of TB exposure, HIV
status, positive results of tuberculin skin tests, and radiographic
findings. Information regarding demographics (age, gender, date,
and duration of isolation), social status (risk factors for HIV
purified protein derivative status), and clinical symptoms (fever,
night sweats, chest pain, and productive cough for . 2 weeks)
was collected from each patient at the time of presentation at the
health-care facility. Weight loss was defined as a fall of . 10% of
ideal body weight within the previous 6 months. The physicians’
prediction regarding whether the patient had active pulmonary
TB was also recorded. Data concerning the results of acid-fast

bacilli smears and cultures were recorded once the data were
available. For those patients who are known to be HIV seropos-
itive, the cluster of differentiation 4 (CD4) counts were entered
into the database only if they were obtained within the previous
3 months of patient isolation. HIV-seronegative patients were
presumed to have CD4 counts . 200 cells/mL.

Radiographic Analysis

Chest roentgenograms were divided into two zones: the upper
zones delineated by the area above the right and the left fifth ribs
posteriorly, and the lower zones below the right and left fifth ribs
posteriorly. Upper zone disease was defined as absent only if
there were no radiographic abnormalities involving the area
above the fifth rib posteriorly. The pattern and distribution of the
parenchymal infiltrates (interstitial, nodular, or miliary) or cavi-
ties were recorded. The presence and location of adenopathy and
pleural effusion were also noted. Interpretation of the chest
radiographs was performed by a pulmonologist and a radiologist
who were blinded to the microbiology results of sputum stains or
cultures.

Bacteriology

The auramine-rhodamine9 fluorescent stain was used to detect
acid-fast organisms on respiratory specimens. Radiometric broth
medium (BACTEC; Becton Dickinson Diagnostic Instruments
Systems; Sparks, MD) was used for inoculation of acid-fast bacilli
cultures. M tuberculosis isolates were confirmed with nucleic
acid probes (Gene-Probe; San Diego, CA).

Development of the Artificial Neural Network

A general regression neural network (GRNN) was used in the
development of the predictive model.10 The advantage of the
GRNN lies in the fact that whereas conventional nonlinear
regression techniques involve a priori specification of the struc-
ture of the regression equations to yield a best fit for the data
presented, the GRNN circumvents these restrictions by adjusting
the surface dimension in which the regression surface resides
without constraining it to a specific form. Generalization is
optimized by modifying the smoothing factor, d, which deter-
mines how tightly the network matches its predictions to the data
in the training patterns.

The structure of the GRNN used in this model consists of
three layers: an input layer, a hidden layer, and an output layer.
Input parameters were chosen based on data collected in a
previous study.6 The input patterns are formed by 21 distinct
parameters (Table 1). These parameters are divided into three
groups: demographic variables, constitutional symptoms, and
radiographic findings. Intervening layers of processors, called
hidden units, detect higher-order features in the input layer,
analyze the signal, and relay the output to other neurons to make
a correct response. The number of neurons in the hidden layer is
determined by the number of patterns in the training set as
GRNNs require one neuron per pattern processed. The output of
the GRNN provides an estimate of the likelihood of active
pulmonary TB.

A 10-fold cross-validation approach was used for evaluation.11

The entire data set of the derivation group was divided with a
random number generator into 10 subsets. Nine of the 10 subsets
were pooled and used for training. The data from the 10th subset
were used as an evaluation set during training. The entire process
was repeated nine additional times by rotating the subset that was
used as the evaluation set during training. The mean square error
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was computed for each of the 10 neural networks on the entire
derivation data set. The mean square errors were averaged, and
the artificial neural network that had a mean square error closest
to the average was selected.

To normalize the inputs, all independent variables were scaled
to a value over a range between 0 and 1. Missing values were
substituted with the class mean.

Performance Evaluation: The predictive model derived from
the artificial neural network was tested on an entirely different
set of patients (validation cohort) who were not included in the
derivation set. The validation cohort comprised all patients who
were isolated between January 1996 and June 1997.

Predictive Properties of the Artificial Neural Network: A
receiver operating characteristic curve12 was generated for the
artificial neural network. The receiver operating characteristic
curve represents a graphic display of the true-positives (sensitiv-
ity) plotted against the false-positives (1-specificity) for various
thresholds that are used to define active pulmonary TB. The
c-index was used to estimate diagnostic accuracy by a method
described in detail elsewhere.13 The c-index is equivalent to the
area under the receiver operating characteristic curve. In brief, it
is calculated by determining the probability of diagnosing active
TB correctly in every possible pair of patients: one who has active
TB, the other who does not. A bootstrap method was used to
calculate directly this measure of accuracy by generating 1,000
data sets from our database by random sampling with replace-
ment. Comparisons between the c-indices were assessed based
on the confidence intervals (CIs). Commercially available soft-
ware was used for designing the artificial neural networks
(Neuroshell 2; Ward Systems; Frederick, MD) and for CI
analyses (CIA; British Medical Journal; London, UK). Statistical
significance was accepted at the 5% level.

Results

The characteristics of the population under study
are shown in Table 2. A total of 10 neural networks
were trained. The models were designed to produce
output values ranging from 0 (no active pulmonary
TB) to 1 (active pulmonary TB). The average mean
squared error for all 10 neural networks was 0.009.
The neural network with the closest mean square
error to the average was used for further analysis.
The chosen network achieved a sensitivity of 100%
(95% CI, 91 to 100%) and a specificity of 72% (95%
CI, 65 to 77%). The physicians correctly diagnosed
active pulmonary TB in 22 of 47 patients for a
sensitivity of 47% (95% CI, 32 to 62%) and a
specificity of 75% (95% CI, 71 to 79%). The corre-
sponding c-indices (6 SEM) for the artificial neural

Table 1—Input Variables Used to Train the Artificial
Neural Networks*

Demographic variables
Age
CD4 counts
Diabetes mellitus
HIV
PPD

Constitutional symptoms
Chest pain
Weight loss
Cough
Night sweats
Fever
Shortness of breath

Radiographic findings
Upper lobe infiltrate
Lower lobe infiltrate
Upper lobe cavity
Lower lobe cavity
Adenopathy
Unilateral pleural effusion
Bilateral pleural effusion
Pleural thickening
Miliary pattern
Normal

*PPD 5 purified protein derivative.

Table 2—Patients Characteristics*

Characteristics

Derivation Group, n 5 563 Validation Group, n 5 119

MTB (1)
n 5 47

MTB (2)
n 5 516

MTB (1)
n 5 11

MTB (2)
n 5 108

HIV (1)† 24/47 (51) 302/506 (59) 5/11 (45) 61/96 (64)
PPD (1)‡ 25/37 (68) 46/398 (12) 7/9 (77) 9/80 (11)
Inmate 28 (60) 179 (35) 3 (27) 47 (44)
DM 9 (19) 8 (2) 1 (9) 0
Cough 38 (81) 397 (77) 10 (91) 79 (73)
Fever 33 (70) 304 (59) 7 (64) 61 (56)
Weight loss 30 (64) 140 (27) 6 (55) 24 (22)
Night sweats 26 (55) 141 (27) 8 (73) 23 (21)
Upper lobe infiltrate 31 (66) 83 (16) 5 (45) 28 (26)
Upper lobe cavity 12 (26) 15 (3) 2 (18) 0
Unilateral pleural effusion 4 (9) 39 (8) 2 (18) 6 (6)
Miliary pattern 2 (4) 0 1 (9) 0

*MTB 5 M tuberculosis; DM 5 diabetes mellitus. See Table 1 for other abbreviations. Values given as No. (%), unless otherwise indicated.
†Values given as No. of patients/total No. of patients tested (%).
‡Values given as No. of patients/total No. of patients responding (%).
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network and the physicians were 0.947 6 0.028 and
0.61 6 0.045, respectively (p , 0.001).

The performance of the neural network was tested
prospectively on a new set of 119 patients isolated for
suspicion of active TB. The network identified all 11
patients with active pulmonary TB for a sensitivity of
100% (95% CI, 72 to 100%) and a specificity of 69%
(95% CI, 61 to 78%). In comparison, the physicians
correctly diagnosed active pulmonary TB in 7 of 11
patients, yielding a sensitivity of 64% (95% CI, 31 to
89%) and a specificity of 79% (95% CI, 72 to 87%).
Table 3 depicts a comparison of the diagnostic
performance of the neural networks and that of the
physicians. The diagnostic accuracy of the model,
when applied to the validation set as reflected by the
c-index, was 0.923 6 0.056 compared with
0.716 6 0.09 for the physicians’ prediction
(p , 0.05; Fig 1).

Discussion

This study is, to our knowledge, the first to use a
neural network for the diagnosis of active pulmonary
TB. The recommendation issued by the Centers for
Disease Control and Prevention to control the
spread of TB calls for direct isolation of any patient
suspected of having or known to have infectious
TB.14 Standard criteria for early identification of
patients with infectious TB have not been well
established. The task was rendered difficult by the
HIV epidemic in the late 1980s, which has created a
new profile for patients with active TB that has none
of the typical features recognized in classic cases of
active pulmonary TB.4

Predictive models have not fared much better, and
their lack of sensitivity is evidence of the complexity
of the problem. A review of the literature revealed
only a handful of studies that have attempted to
tackle this problem. In a study assessing the useful-
ness of routine admission chest radiography for the
detection of pulmonary TB, the authors concluded

that chest roentgenograms are still useful in suggest-
ing the diagnosis, particularly in geographic areas
with high prevalence for TB.15 Nonetheless, failure
to suspect TB occurred in 64 of 177 cases of
culture-proven TB. Seventeen cases had atypical
presentation, and in 29 patients, TB was not diag-
nosed because of the failure to consider TB despite
the presence of upper lobe disease or miliary pat-
tern. In a similar study, Cohen et al16 evaluated the
clinical symptoms and radiographic configuration in
101 patients who were isolated for suspicion of active
TB. The absence of a typical chest radiograph along
with the presence of cough, sputum production, and
weight loss for , 2 weeks were strong negative
predictors of active TB. The authors acknowledged,
however, that the population under study was rela-
tively small in number and did not include HIV
patients with normal radiographic presentation, as
has been described in 6 to 18% of HIV-infected
patients with pulmonary TB.17,18 Recently, El-Solh
et al6 developed a classification and regression tree
to predict active pulmonary TB at the time of
admission to a health-care facility. The predictor
variables were upper zone disease on chest roent-
genogram, fever, weight loss, and CD4 count. The
tree was validated in a separate cohort of patients
yielding a sensitivity and a specificity of 100% and
48.1%, respectively. The high precision achieved in
that population was supposedly less than perfect
when tested in a different setting.19

The advantage of the neural networks lies in their
ability to process nonlinear relationships. Because of
the clinical complexity and pathologic heterogeneity
of TB, correct identification of patients with active
disease is unlikely to depend on the presence or

Table 3—Comparison of the Clinician and Artificial
Neural Network Performance on the Validation Group

(n 5 119)*

Groups

Sensitivity Specificity c-Index

% (95% CI) % (95% CI) % (95% CI)

Derivation
Physicians 47 (32–62) 75 (71–79) 61.0 (56.4–65.8)
ANN 100 (91–100) 72 (65–77) 94.7 (91.0–98.2)

Validation
Physicians 64 (31–89) 79 (72–87) 71.6 (64.5–78.9)
ANN 100 (72–100) 69 (61–78) 92.3 (85.8–99.1)

*ANN 5 artificial neural network.

Figure 1. Comparison of the receiver operating characteristic
curves for the artificial neural network (ANN) and clinicians’
performance as applied to the validation set.

CHEST / 116 / 4 / OCTOBER, 1999 971



absence of a single defining feature. Hence, it is not
surprising that standard linear statistical methodolo-
gies are relatively inadequate solutions for this type
of problem. In addition, previous studies have shown
that clinicians are not aware of the complex interac-
tion among variables that a neural network can
exploit. Two separate studies have compared the
accuracy of neural networks with that of clinicians to
predict disease or outcome.7,20 In the first study,
emergency department physicians and medical resi-
dents were asked to identify myocardial infarction in
patients presenting at an emergency department
based on clinical and ECG findings. Eight of 36
cases of myocardial infarction were missed by phy-
sicians, compared with only 1 case missed by using
the neural network, yielding sensitivities of 77.7%
(95% CI, 77 to 82.9%) and 97.2% (95% CI, 97.2 to
97.5%), respectively. In another scenario, the overall
accuracy of physicians to predict outcome for colo-
rectal cancer ranged from 75 (95% CI, 66 to 84%) to
79% (95% CI, 71 to 87%), compared with 90% (95%
CI, 84 to 96%) for the neural network. The superior
prediction capability of neural networks over physi-
cian assessment was observed also in this study,
which implies that the complexity of biological sys-
tems may be beyond the analytic capabilities of
physicians.

An essential component of the present study is the
ability of the neural network to generalize to new
population samples. This feature is, however, af-
fected by many factors, such as the number of
neurons in the hidden units, the type of connections
in the network, and the extent to which the network
has been trained. The results obtained from the
validation set indicate that the network described
herein may generalize well to new patient data.

Another advantage of the neural network is its
ability to handle missing values. In logistic regres-
sion, missing values are usually omitted from further
analysis.6,21 In our study, the highest percentage of
missing data occurred in recalling the result of the
purified protein derivative skin test (23%) and CD4
counts (6%). The neural networks incorporated
these cases after substituting the missing value with
the class mean.

There are several potential limitations to the study.
Neural networks have the ability to approximate
predictive output to any desirable degree of accuracy
when provided with enough running time. This
could result in overfitting, particularly when there is
an attempt to increase the processing power of the
network by adding a large number of hidden neu-
rons. In this case, the network will end up learning
not only the training set but also the noise in the
data, which leads to poor generalization. It is encour-
aging that the accuracy of prediction observed in the

validation set points to the fact that the network
architecture is based on robust features rather than
memorizing the idiosyncrasies embedded in the data
set.

It is important to emphasize that these results may
not be applicable to populations in locations where the
epidemiology of TB differs substantially from the area
where the study was conducted. Until the model is
tested on a different population set, the study can be
viewed only as the first attempt in the use of connec-
tionist models in the diagnosis of pulmonary TB. In
addition, only the diagnosis of active pulmonary TB was
studied. Application of the model to extrapulmonary or
extrathoracic TB is not recommended. A good case
could be made for the extension of this technology for
other aspects of TB should this technique prove to be
accurate and reproducible, as the data imply.

Our study has several implications regarding the
clinical application of artificial neural networks as a
diagnostic tool for active TB. The use of the neural
network could provide physicians and health-care
workers with a simple and fast tool with which to
assess the risk of active TB in any patient presenting
at a health-care facility. The estimated probability
would enable physicians to initiate isolation without
delay, thus reducing the risk of TB exposure to
health-care workers.
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