Validity of Neural Network in Sleep Apnea
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Summary. Clinical assessment of obstructive sieep apnea (OSA) is poor. Ovemight polysomnography (OPG) is the
standard reference test, but it is expensive and time-consuming. We developed an artificial neural network (ANN) using
anthropomorphic measurements and clinical information to predict the apnea-hypopnea index (AHI). All patients com-
pleted a questionnaire about sieep symptoms, sleep behavior, and demographic information prior to undergoing OPG.
Neck circumference, height, and weight were obtained on presentation to the sleep center. Twelve variables were used
as inputs. The output was an estimate of the AHI. The network was trained with 2 back-propagation algorithm on 189
patients and validated prospectively on 80 additional patients. Data from the derivation group was used to calculate the
95% confidence interval of the estimated AHI. Predictive accuracy at different AHI thresholds was assessed by the c-
index, which is equivalent to the area under the receiver operator characteristic curve. The c-index for predicting OSA in
the validation set was 0.96 + 0.0191 SE, 0.951 + 0.0203 SE, and 0.935 + 0.0274 SE, using thresholds of >10, >15, and
>20/hour respectively. The actual AHI of the 80 patients in the validation data set fell within the 85% confidence limits of
the values predicted by the ANN. This study suggests that ANN may be useful as a predictive tool for OSA.
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OBSTRUCTIVE SLEEP APNEA (OSA) has been recog-
nized increasingly as an important public health problem
with potentially serious cardiovascular and psychomotor
morbidity and possibly excessive mortality.}2 The
Increased awareness of the risks associated with OSA in
recent vears has led to a rise in the number of referrals to
specialists and sleep laboratories. In the absence of an
accurate and validated screening test, the gold standard for
the diagnosis of OSA remains the overnight polysomno-
graph. Ovemnight polysomnography is an expensive, labor-
Intensive, and time-consuming procedure. As a result,
there has been considerable interest in developing a practi-
cal and less work-intensive screening test to allow physi-
cians to estimate, with a certain probability, whether
patients have sleep apnea.3-?
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Questionnaire-based prediction models*$ have identi-
fied a number of physical features and clinical traits indica-
tive of high risk for OSA. Several studies!! have devel-
oped regression models using these variables to produce
sleep apnea prediction rules that can be applied to individ-
uals with features suspicious for OSA. These rules, how-
ever, lack specificity, and offer only a dichotomous output
based on a predetermined cutoff value of apnea/hypopnea
index (AHI). The cutoff values chosen are arbitrary, and
vary from one study to another. Moreover, the statistical
methods utilized in the derivation of these models may not
take full advantage of the complex relation of behavioral
processes with nonlinear attributes. In areas of complex
interactions, the artificial neural network (ANN) has been
found to be a more appropriate alternative to linear, para-
metric statistical methods due to its inherent property of
seeking information embedded in relations among vari-
ables thought to be independent.

Implementation of neural networks to medical special-
ties has been found to be extremely helpful in assisting
physicians in clinical diagnosis.!>!3 In particular instances,
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the networks have outperformed physicians in predicting
clinical outcome.™ In this study, we have attempted to
develop and validate a neural network using anthropomor-
phic measurements and clinical information obtained from
patient's questionnaire to predict AHI.

METHODS
Study Population

All patients referred to the Sleep Center at Buffalo
General Hospital between November 1995 and August
1996 were identified retrospectively from the registration
records and represented the derivation cohort. The majori-
tv of patients were referred by internists (54%), internal
medicine subspecialists (36%), or ear, nose, and throat sur-
geons (7%) for suspicion of steep apnea. Two hundred
ninety three sleep studies were performed during this peri-
od. Patients were excluded from the study if they had been
previously treated for sleep apnea, if they were referred for
a specific sleep disorder other than sleep apnea, or if they
failed to complete the sleep study. A questionnaire related
to sleep svmptoms and motor functions was filled out by all
patients prior to undergoing overnight polysomnography.
Demographic information (age, gender) and anthropomor-
phic measurements (neck circumference, height, and
weight) were obtained on presentation to the Sleep Center.

Questionnaire

A questionnaire was administered to each patient
addressing a range of clinical variables thought to con-
tribute or to raise suspicion of sleep apnea. Nineteen ques-
tions were subjected to detailed analysis. The questions
had a six-item Likert response with the following options:
never (or strongly disagree), rarely (or disagree), some-
times (or somewhat agree), frequently (somewhat agree),
always (strongly agree), and not sure (or not applicable).
The presence of hypertension and the amount of alcohol
ingestion were determined by patient’s self-report.

Sleep Studies

Overnight polysomnography was conducted on all
patients enrolled in the study at the Sleep Center of the
Buffalo General Hospital. Continuous electroencephalo-
gram, electrooculogram, electrocardiogram, and submental
electromyogram were recorded on a 16-channel polygraph,
and digitized on a computerized system (Aequitron
Medical, Minneapolis, Minn). Airflow was measured by
the sum of oral and nasal thermistor signals (Graphic
Control, Buffalo, NY). Arterial oxyhemoglobin saturation
was measured with a pulse oximeter with the probe placed
on the patient’s finger (Biox IIA or 3700, Ohmeda,
Louisville, Colo). Abdominal wall and ribcage motions
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were recorded with an inductive plethysmograph
(Respitrace Corporation, Ardsley, NY). A 3-minute period
of quiet breathing was observed at the beginning of the
study to establish a reference for airflow amplitude.

Sleep stages were scored in 30-second epochs using the
Rechtschaffen and Kales sleep scoring criteria.! Each
epoch was analyzed for the number of apneas, hvpopneas,
arousals, oxyhemoglobin desaturation, and disturbances in
cardiac rate and rhythm. Apnea was defined as a reduction
in airflow of >80% at the nose and the mouth for at least 10
seconds. Hypopnea was defined as a 50% reduction in
oronasal airflow associated with either a 4% or greater
decrease in oxygen saturation, or an arousal. Arousal was
defined according to the recent ASDA position paper.!6
The record was scored manually by a polysomography
technician and reviewed by a physician certified in sleep
medicine. The number of apneas and hypopneas per hour
of total sleep time was derived, and reported as the apnea-
hypopnea index (AHI). A positive sleep study for sleep
apnea was defined as a AHI >10/hour, and other thresholds
were also considered (>15 or >20/hour) to determine the
effect of altering the definition on the diagnostic accuracy
of the predictive models.

Analytical Methods

Descriptive statistics for continuous variables were
expressed as mean = 1 SD. Difference in mean values was
assessed using Student’s r test. All tests were two-tailed.
and statistical significance was set at a p value of less than
0.05. Commercially availabie software were used for the
multiple linear regression and regression tree (S-Plus,
Statsci, Seattle, Wash), artificial neural networks
(Neuroshell 2, Ward Systems, Frederick, Md), and for con-
fidence interval analyses (CIA, British Medical Journal,
London, UK). A logarithmic transformation of AHI was
used for both the ANN and the multiple linear regression in
order to achieve a normal distribution of residuals.

Artificial Neural Networks.—The variables used as
inputs for the ANN were selected from the list of items
obtained from the patient’s questionnaire and anthropo-
morphic measurements. We used the classification and
regression tree to choose those variables more likely to
influence the predictive properties of the ANN. Because
logistic regression models sometimes perform better than a
decision tree,!” a logistic regression was also performed to
identify predictor variables. The continuous variables were
transformed on a linear scale to a value over a range
between -1 and 1. The responses to the Likert scale were
processed as ordinal data, and were spaced equally at inter-
vals of 0.5 over this range. The response to the hvperten-
sion question was entered as a dichotomous value, -1 for
absent, and 1 for present. Missing values and responses
marked as “not applicable™ were substituted with the class
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mean.

The ANN described in this studv was based on three
layers: an input layer with 12 nodes. an output laver with a
linear function. and a hidden laver. The hidden laver con-
sisted of a direct connection between the input and the out-
put layers, and two groups of 21 nodes with differing acti-
vation functions.'® The activation function describes the
nature of the linkage between the input laver and the hid-
den layer. A Gaussian function was used for one group and
a hyperbolic function (tanh) for the other. Connections and
outputs from the two groups in the hidden laver were linked
to the output laver by linear functions. Each link was
assigned a coefficient or weights that was updated during
the learning process. The weights are assigned initially at
random between -0.6 and +0.6.

The ANN is exposed to a training set during which the
net is presented with a set of input and output patterns.
During the training phase, the inputs are fed into the net-
work and the corresponding outcome is computed. The dif-
ference berween the actual and desired outcome is propa-
gated backward. Adjustments to the connection weights are
made to minimize the error between the output predicted by
the ANN and the measured AHI. During training, the ANN
Is tested at regular intervals to determine the prediction
error on a subset of data (evaluation data set) that is not
included in the training process. As training proceeds, the
prediction error on the evaluation data set decreases initial-
ly but then increases when overtraining occurs. The ANN
that produced the smallest error is retained for further anal-
VSIS,

A tenfold cross-validation approach was used for eval-
uation.!” The entire data set of 189 patients was divided
with a random number generator into ten subsets. Nine out
of the ten subsets was pooled and used for training. The
data from the tenth subset was used as an evaluation set
during training. The entire process was repeated nine addi-
tional times by rotating the subset used as the evaluation set
during training. The mean square error was computed for
each of the 10 neural networks on the entire derivation data
set. The mean square errors were averaged and the ANN
that had a mean square error closest to the average was
selected.

A muluiple linear regression was emploved to develop
a model of AHI score based on the same independent vari-
ables used in the ANN. Interaction terms were not includ-
ed to determine the extent to which nonlinearities and inter-
action terms contributed to the predictive accuracy of the

Performance evaluation.—The predictive model
derived from the ANN was tested on an entirely different
set of patients (validation cohort) that were not included in
the derivation set. The validation cohort comprised all
patients who underwent a sleep study between September
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1996 and December 1996.

Predictive properties of the artificial neural net-
work.—A receiver operator characteristic (ROC) curve
was generated for the ANN. The ROC curve represents a
graphic display of the true positives (sensitivity) plotted
against the false positives (1-specificity) for various thresh-
olds that are used to define sleep apnea. The c-index was
used to estimate diagnostic accuracy by a method described
in detail elsewhere.”! The c-index is equivalent to the area
under the ROC curve. In brief, it is calculated by deter-
mining the probability of diagnosing sleep apnea correctly
in every possible pair of patients: one who has sleep apnea,
the other who does not. A bootstrap method was used to
calculate directly this measure of accuracy by generating
1000 data sets from our database by random sampling with
replacement. Comparisons between the c-index for both
models were assessed based on the confidence intervals.
Statistical significance was accepted at the 5% level.

To determine the predictive performance of the ANN,
the relation between the actual and predictive values of the
AHI were compared by linear regression. The pointwise
95% confidence limits of that linear regression were used
to establish the confidence interval of the predicted AHI.
Comparison between the predictive accuracy of the ANN
and multiple linear regression was made with correlation
coefficients. The correlation coefficient was calculated
from the actual values of AHI in the derivation data set and
the values predicted by the ANN and compared with the
correlation coefficient from the corresponding values
obtained by multiple linear regression.

RESULTS

Between November 1995 and December 1996, 289
sleep studies were performed at the Sleep Center. Twenty
were excluded from further analysis: 12 patients were
already diagnosed with sleep apnea, 6 patients were
referred for a evaluation of sleep disorder other than sleep
apnea, and 2 patients did not complete the sleep study. The
derivation cohort was comprised of 189 patients, 66%
males and 34% females. There were no significant differ-
ences in age, gender ratio, body mass index, or neck cir-
cumference of patients of the derivation data set compared
with the validation data set (Table 1).

Even accounting for the greater number of men than
women in the cohort, there was a predominance of sleep
apnea among males (chi-square Yates corrected p=0.022).
The age ranged from 14 to 95 years, with a mean of
48.1=12.1 for those with sleep apnea and 47.0+14.8 for
those without sleep apnea (p=0.2) (Table 2). Fifty-eight
(31%) were found to be nonapneic (AHI 0-10), 23 (12%) to
have mild obstructive sleep apnea (AHI 11-20), 28(15%) to
have moderate sleep apnea (AHI 21-40), and 80 (42%) to
have severe sleep apnea (AHI>40). Patients with sleep
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Table 1.—Demographics of the derivation and validation cohort.

Derivation cohort  Validation cohort

(n=189) (n=80)
AGE = SD (years) 47.9+130 479+112
GENDER (MF) 1.95:1 2.07:1
BMI = SD (kg/m?) 354492 344290
NC + SD (cm) 41658 419+52

No significant differences detected

apnea were significantly more obese (p<0.01) and had a
larger neck circumference (p<0.01) than their nonapneic
counterparts (Table 2). The validation cohort consisted of
80 patients—354 males (68%) and 26 (32%) females.
Eighty one percent of respondents had no missing data.
The number of respondents missing one, two, three, or four
apnea symptoms items were 32 (13%), 12 (6%), 2 (0.7%),
and 1 (0.3%), respectively.

Artificial Neural Network

Nine of 19 independent variables were selected in the
final construction of the classification and regression tree.
Six of the 19 independent variables of the logistic regres-
sion had coefficients that were statistically significant.
Three of the six were not present in the classification and
regression tree. Therefore, 12 variables were used as
inputs to the ANN: nine from the classification and regres-
sion tree, and three additional variables from the logistic
regression analysis. The questions to which responses
were deemed to have significant predictive power for sleep
apnea by the classification and regression tree and by logis-
tic regression analysis are listed in Table 3. Only body
mass index, neck circumference, and episodes of apneic
events during sleep were parameters common to both anal-
yses.

The average of the mean square error of the ten ANNs
performed was 0.089 (range 0.174-0.023). The ANN
selected for this study had a mean square error of 0.092.
The correlation coefficient from the ANN’s predicted val-
ues of AHI and the actual values in the derivation set was
0.856. The corresponding correlation coefficient for the
multiple linear regression with the same predictor variables
was 0.509. This was significantly less than the correlation
coefficient obtained with the ANN (p<0.01).

The performance of the ANN using a dichotomous def-
inition of the OSA is shown in Fig. 1 for the derivation data
set as ROC curves. The c-index, which is equivalent to the
area under the curve, was 0.946=00151SE,
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Table 2.—Comparison between patients with and without sleep apnea

DERIVATION COHORT VALIDATION COHORT
(N=189) (N=80)
Sleep No Sleep Sleep No Sleep
Apnea Apnea Apnea Apnea
(n=131) (n=58) (n=51) (n=29)
AGE+SD 486122 47.1+£149 476+11.1 483114
(years)
BMI£SD  367+90 323+82" 375+89 287+59"
_{kgim¥)
NCzSD 431+£566  384+45  438+46 383:40"
(cm)
AHI=SD 61314086 41130 525+334 40=33

(* indicates p<0.01 when those subjects with sleep apnea are compared
to those with no sleep apnea)

Table3.—Variables selected by CART and stepwise logistic regres-
sion

CART variables

1. Response to "l am told | stop breathing in my sleep.”
2. Response to "l feel tired upon awakening and want to
go back to sleep.”

3. Response to "My desire or interest in sex is less than
it used to be.”

4. Response to "At night, my sleep disturbs my bed
partner's sieep.”

5. Response to "l am very sleepy during the daytime and
struggle to stay awake.”

6. Response to "l have or have been told that | have
restless legs.”

7. Body mass index.

8. Neck circumference,

8. Age.

Logistic regression variables

1. Response to "l am toid | stop breathing in my steep.”
2. Response to "I suddenly awake gasping for breath
during the night.”

3. Response to "l am told | snore in my sleep.”

4. Response to "Do you have or are you being treated
for high blood pressure?”

5. Body mass index

6. Neck circumference

Variables not selected

1. Response to "Falling asleep while engaged in an
activity”

2. Response to "Falling asleep while in a quiet, passive,
or relaxing situation”

3. Response to “| have had accidents or near accidents
while operating a motor vehicle”

4. Response to “l have difficulty falfing asleep”

5. Response to "When | awaken during the night, | have
difficulty falling back to sleep”

6. Gender

7. Amount of alcohol ingestion.
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Tabie 4.—The sensitivities, specificities. positive predictive values. and negative predictive values for the neural network prediction in the derivation set

using AHI of 10, 15, and 20 as cutoff value for definition of sieep apnea

AHI Sensitivity (35% Cl) Specificity (35% Cl) PPV (85% CI) NPV (95% CI)

10 94.9% (89.8%-97.9%)  64.7% (50.1%-77.6%) 87.9% (82.7%-93.2% 85.2% (67.2%-92.7%)
15 95.3% {90.2% -98.3%)  60.0% (46.5%-72.4%) 83.7% (77.7%-89.6%) 85.7% (71.5%-94.6%)
20 95.5% (89.7%-98.5%)  73.4% (62.3%-82.7%) 83.3% (76.8%-89.8%) 92.1% (82.4%-97.4%)

PPV = Positive Predictive Value
NPV = Negative Predictive Value

Receiver Operator Characteristic Curve:
Derivation Data Set

0.8 F
0.6 -{ —_—
) il e =—AHI> 10!
Sensitivity == = AHI> 15
0.4 AH! > 20
0.2 +
0 1 l it i
0 0.2 0.4 0.6 0.8 1
1 - Specificity

Figure 1.—Comparison of ROC curves of the artificial neural net-
work for the derivation data set.

0.948=0.0149SE, and 0.944=0.0159SE when OSA is
defined as an AHI >10, 15, and 20/hour, respectively. There
were no statistically significant differences between these
c-indices. Table 4 provides the sensitivity, specificity, posi-
tive predictive value, and negative predictive value for each
of the AHI value selected. Similarly, the performance of the
ANN using a dichotomous definition of OSA is shown in
Fig. 2 for the validation data set as ROC curves. The c-
index was 0.96+0.0191 SE, 0.951+0.0203 SE, and
0.935=0.0274 SE when OSA is defined as an AHI of >10,
>15 and >20/hour, respectively. There were no statistically
significant differences between these c-indices or with the
corresponding c-indices obtained with the derivation data
set.

Figure 3 shows the relation between the predicted and
actual values of AHI for the patients in the validation data
set together with the pointwise 95% confidence limits.
Only one of the 80 values (1.25% 95% CI:0-6.7%) fell out-
side of the 95% confidence limits.
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Receiver Operator Characteristics Curve:
Validation Data Set

Sensitivity _
— —AHI> 10
- = = AHI> 15
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0
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1 - Specificity

Figure 2. —Comparison of ROC curves of the artificial neural net-
work for the validation data set.

DISCUSSION

With the advances in computer technology, neural net-
works have emerged as a powerful tool in analyzing corre-
lation among variables with nonlinear attributes. We have
seen recently an increasing trend of the use of artificial neu-
ral networks in medicine and surgery in predicting out-
comes.!*2-2% To our knowledge, previous neural networks
to predict sleep apnea have been described only in abstract
form. Chafin et al*s developed two neural networks with
age, gender, body mass index, the complaint of excessive
daytime somnolence, and snoring as inputs. One of the net-
works had oxygen saturation added to the inputs. The areas
under the ROC for the networks with and without oximetry
data were 0.892, and 0.868, respectively. Validation of the
predictive ability of the networks was not presented. In
addition, their ANN predicted the presence or absence of
OSA rather than the AHI.

The present study is the first to present a validated
ANN to predict sleep apnea that uses a combination of
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Validation of Artifical Neural Network

log10
[actual AHI +1]

0 0.5 1 1.5 2 2.5
log10 [predicted AHI +1]

Figure 3.—Relation between the actual and ANNs predicted values
of AH! for the validation data set (closed circles). The lines repre-
sent the mean and 95% confidence intervals for pointwise estima-
tion of the actual values.

anthropomorphic data and clinical information obtained
from a simplified questionnaire. The majority of the indices
presented to the network have been shown in previous stud-
ies>410 to be significant clinical predictors of sleep apnea,
but none were discriminating enough by themselves to
make accurate predictions.

It is not surprising that this study has demonstrated a
higher performance and an improved accuracy of the ANN
compared with other methods for prediction of clinical out-
come. The relations between variables that have been
shown to predict sleep apnea are unclear. The relations
describe which factors are relevant to decision-making but
not precisely how they might be used in a comprehensive
manner. In logistic regression analyses, the predictor vari-
ables not contributing significantly to the fit are ignored.
Interactions are not readily identified and need to be explic-
itly stated in the model. The fact that the correlation coef-
ficient of the predicted to actual AHI is much greater for the
ANN (0.852) compared with the multiple linear regression
model (0.509) indicates that interaction effects between
predictor variables and/or nonlinearities are responsible for
the greater predictive accuracy of the ANN.

In contrast, the classification and regression tree can be
influenced easily by noise in the data with successive par-
titioning.!2 As a result, the predictive ability of the classi-
fication and regression tree becomes impaired. The ability
of the network to extract intricate interrelations among
variables makes it ideal for application to biological sys-
tems. Another potential reason for the improved accuracy
of the network is that, in contrast to conventional statistical
methods, it is purportedly less susceptible to distortion
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from missing or incomplete data.’® Nevertheless, the fre-
quency of missing values in this study was small.

In this study, the artificial neural networks were
designed to provide a continuous scale of AHI to relay an
estimated frequency of apneic and hypopneic events. The
majority of the available predictive models have reduced
the responses to binary outcomes. The advantages of hav-
ing AHI as a continuous variable are multiple. Previous
studies=’2® have suggested an association between OSA
and acute cardiovascular events such as myocardial events,
sudden death, and cerebrovascular accident. In a retro-
spective study- of 267 adult male subjects diagnosed with
OSA, survival in the group of patients with an apnea index
(AI) >20/hour was reduced significantly compared to those
subjects with an Al <20/hour. Maislin et al*® noted that
42% of patients with AHI >75 events/hour reported falling
asleep at the wheel at least once per week. Consequently,
a priori knowledge of the estimated value of the AHI could
provide a stratification of disease severity in patients with
possible sleep apnea, and the identification of high-risk
groups for early diagnostic and therapeutic intervention. It
is noteworthy to mention that the neural network has not
been tested or validated in patients with upper airway resis-
tance syndrome.

There are several potential limitations of this study.
First, all the data involved in the validation of the network
were analyzed retrospectively. We doubt that the outcome
would have varied if the data had been collected prospec-
tively, since the validation set was not exposed to the net-
work until the design had been completed. Second, the cur-
rent network has been developed based on data obtained
from patients referred to a sleep center by their primarycare
physicians or consulting subspecialists. These patients
were in the majority symptomatic, or were evaluated due to
concern by their partners for their sleeping patterns. The
pretest probability in these cases is likely to be high as the
prevalence of the disorder in the group under investigation
is significant, which helps to explain the high degree of
prediction accuracy provided by the network in the valida-
tion set. Thus, the use of our network is currently limited
to evaluate a group of patients with a high pretest probabil-
ity for sleep apnea. Nevertheless, the previous prediction
models were also derived from similar patient populations.

Another source of limitation of this study stems from
the relatively small data sets. However, the high accuracy
performance of the network in the validation group sug-
gests that the network relied on robust features to perform
its classification rather than learning the idiosyncrasies in
the data.

A further limitation cited frequently in the literature?® is
the fact that little is known about the pathways used by the
ANN to reach its conclusion. These pathways are complex
and do not convey an understanding of the structure of the
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reasoning. The ANN is essentially a black box. Unlike the
logistic regression and the classification and regression
tree. the relations between variables are not explicit. We
acknowledge the above limitation inherent to all ANN. but
we are willing to accept it provided the ANN's superior
predictive ability has been demonstrated rigorously,

In conclusion, this study describes an ANN that can be
used as a tool in the diagnosis of obstructive sleep apnea. A
multicenter study designed to compare prospectively the
performance of the network on a large number of patients
is required to validate this approach further.
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