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Wavelet decomposition is proposed as a novel approach for
determining pulmonary arterial input impedance throughout
the breathing cycle. The canine pulmonary arterial input im-
pedance was evaluated throughout the ventilatory cycle at
5, 10, and 15 cmH,O of positive end-expiratory pressure. The
impedance spectrum was obtained by Fourier transformation
of wavelets generated by decomposing the pulmonary arterial
pressure and flow waveforms. With wavelet decomposition,
each heart beat is viewed individually as a transient pulse
rather than as an interval within a continuous function of
pressure and flow. The advantage of using this approach is
the ability to obtain stable estimates of input impedance spec-
tra with high-frequency resolution over the entire frequency
range with only a limited data set of pressure and flow decom-
posed to wavelets as short as singular extrapolated cardiac
cycles. This method was used to define the changes of input
impedance that occur during the ventilatory cycle. Results
show that the impedance spectrum undergoes notable
changes during the breathing cycle and demonstrate the util-
ity of the proposed method.

input impedance; pulmonary circulation; wavelets

IN A PREVIOUS STUDY (7), we demonstrated that pulmo-
nary arterial compliance (Ca) undergoes variations
during the ventilatory cycle and we concluded that it is
time varying. We hypothesized that pulmonary arterial
input impedance also may be varying throughout the
ventilatory cycle, but such variations may not have
been identified because we were limited to only two
specific phases of the ventilatory cycle. This matter is of
importance because time variation of input impedance
would impose severe restrictions on the conditions un-
der which it is estimated.

GENERAL METHODOLOGY

The concept of input impedance explicitly assumes
that the system under consideration is passive, causal,
and time invariant. A system is causal if the output at
any time depends only on the values of the input at
the present time and in the past (11). A passive system
is one that is free of energy sources besides these sup-
plied at the input (16). In the pulmonary circulation,
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this assumption is not satisfied because breathing acts
on the pulmonary vasculature as an external energy
source. Ventilation is responsible for changes in lung
volume, thus altering the geometry of blood vessels in-
side the lung itself (12). Changes of lung volume have
differing effects on the extra-alveolar and alveolar
blood vessels. These changes in lung volume result
from alterations in transpulmonary pressure that are,
in essence, a secondary energy source. We hypothesized
that the pressure-flow relationship with respect to the
cardiac cycle measured at the main pulmonary artery
(i.e., input impedance) while ventilation is sustained
may be time varying, because the passivity assumption
is not satisfied. To examine the pressure-flow relation-
ship with respect to the cardiac cycle, it is important
to account for the slow time variations imposed on the
data by ventilation or restore passivity. Thereafter, the
pressure-flow relationship can be examined (or inter-
preted) as belonging to a piecewise linear time-invari-
ant system.

From the viewpoint of cardiodynamics, ventilatory
changes violate passivity and may be viewed as render-
ing the system time varying with respect to the cardiac
cycle. One way to restore steady state to the system is
to examine specific phases of the ventilatory cycle. For
a system in steady-state oscillations, observations made
in a short time window in the past are equivalent to
observations made at any short time window later in
time. In our case, a short time window refers to the
duration of a cardiac cycle (see Fig. 1). The concept of
input impedance may become tenable if the pressure-
flow relationship is assumed to be time invariant with
respect to the cardiac cycle only, and time-varying
changes in input impedance are assumed to be occurring
over phases of ventilation. During each such phase, ven-
tilatory effects on the hemodynamics are frozen in time,
and observations on consecutive heart beats at the same
phase of ventilation can be considered as belonging to
a passive hemodynamic system. Thus specific phases of
ventilation can be considered as a collection of passive
hemodynamic systems that differ from each other be-
cause of the state of distention of the lung during the
ventilatory cycle. A sustained cyclical action of ventila-
tion on the pulmonary vasculature is needed for this
method. Observations on hemodynamic variables are re-
stricted to specific phases of the ventilatory cycle, and
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FIG. 1. Tracings of pulmonary arterial pressure, flow, airway pressure, ventilator trigger (VENT), and ECG

trigger.

consecutive observations are made at the same specific
phases in consecutive ventilatory cycles.

The underlying assumption is that the system is in
a steady state and the ventilatory cycles are indeed
repetitive. This assumption is readily satisfied when
subjects are mechanically ventilated. Furthermore, it
is assumed that each ventilatory cycle contains the
same number of heart beats. At any particular phase
of the ventilatory cycle, it is reasonable to assume that
in consecutive breathing cycles lung volume and trans-
pulmonary pressure will be virtually the same as in
previous breaths. Thus, for these particular heart beats
at consecutive breathing cycles, the right ventricle
faces a downstream system of equivalent properties.
Therefore, the system has now been rendered time in-
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variant with respect to a specific phase of the ventila-
tory cycle.

Figure 1 shows the traces of pulmonary arterial pres-
sure and flow, airway pressure, ventilator trigger, and
the electrocardiogram (ECG). The unshaded windows
in pulmonary arterial pressure and flow demonstrate
this concept and the equivalency of the hemodynamic
variables for heart beats at the onset of expiration. If
heart beats at specific phases of ventilation are concate-
nated (10), the resulting traces can be considered as
belonging to a time-invariant passive system in steady-
state oscillations. This concept is demonstrated in the
tracings of Fig. 2, where pressure and flow waveforms
of heart beats at the onset of expiration have been col-
lected from 15 breaths. The slow temporal variations

FIG. 2. Pulmonary arterial pressure and flow at begin-
ning of expiration. Thick line (top line of pressure graph)
represents experimental data and thin line represents
wavelet reconstruction.
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due to ventilation that are present in the tracings of
Fig. 1 are absent in Fig. 2.

Naturally, this type of processing requires the collec-
tion of a number of ventilatory cycles. The number of
the cardiac cycles (the fundamental frequency) in each
processed data record at any specific phase of breathing
will depend on the number of ventilatory cycles collected.
Frequently, it is difficult to maintain the system in a
steady state. Therefore, the number of cycles of the funda-
mental frequency is usually limited. Classic Fourier
methods are hard pressed to perform well on such short
data records (9). For signals composed of sinusoids in
noise, short data records refer to the number of cycles of
the fundamental frequency (heart rate). For example, a
record is considered short if there are only 10 cycles in
each of 15 segments. A different approach is required in
this circumstance. A wavelet spectral method that makes
use of the fast Fourier transform and is based on tran-
sients is more useful for short data records rather than
classic methods for estimating the input impedance spec-
trum (1, 14). The wavelets, in this context, are con-
structed from individual heart beats that are extrapo-
lated from measured data to represent pressure and flow
in the main pulmonary artery for a hypothetical singular
heart beat. The flow wavelet is essentially the regular
beat zero padded beyond diastole. The extrapolation of
the pressure wavelet is done by a first-order exponential
decay. The extrapolation by zero padding and exponential
decay also increases the frequency resolution in the sub-
sequent transformation. Furthermore, since the fast Fou-
rier transform is very sensitive to noise, ensemble averag-
ing over all available wavelet pairs in the spectral domain
can reduce greatly the instability of the estimates due to
extraneous noise (1).

The steady-state pulsatile pressure and flow wave-
forms can be decomposed into wavelets for each heart
beat. Pulmonary arterial flow during each cardiac cycle
can be viewed readily as a transient wavelet, because
blood ejection into the pulmonary vasculature occurs
only during systole. Flow is essentially equal to zero at
the start of systole and the end of diastole.

Pulmonary arterial pressure cannot be decomposed
into the transient wavelets as simply as flow. This dif-
ference is due to the viscoelastic nature of the pulmo-
nary vasculature that stores a portion of the pressure
as potential energy in the pulmonary circulation. The
pressure wavelet is generated by extrapolating the
measured pressure for each heart beat effectively to
zero. Therefore, the duration of a pressure wavelet
must exceed the duration of the cardiac cycle. As a
result, successive pressure wavelets overlap. Neverthe-
less, the summation of these pressure wavelets must
approximate the measured pressure. A special proce-
dure that is described below (see WAVELET DECOMPOSI-
TION OF PRESSURE) must be used to obtain the pressure
wavelets that meet these requirements, but first we
must define a wavelet and obtain the input impedance
by using wavelets.

INPUT IMPEDANCE BY USING WAVELETS

A wavelet (as shown in Fig. 3) of duration (T,) is
defined as a transient square integrable function that
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exists only within the time interval (0,T,), otherwise
it is identical to zero (14).

=t=T, o
fit) = {ﬂt) 0=t andf IAD12dt <= (1)

0 otherwise

where t is time. Pulmonary arterial pressure [P(¢)]
can be represented as the sum of the wavelets [P,(¢)],
which are convolved with a unit impulse function, 6(¢).
Similarly, pulmonary arterial flow [Q(®)] can be repre-
sented as the sum of Q,(¢), which are convolved with
a unit impulse function

P(t) = i P.@®) * 8¢t - T,)
. )
Q) = T, Q.t) * 6t — T,)

Here T, is the start of systole of the nth wavelet that
can be identified as the minimum pressure point prior
to ejection, and asterisk denotes the convolution opera-
tor. Considering the flow wavelet as an input to the
system, the pressure wavelet as the response, and A(?)
as a linear time-invariant operator between flow and
pressure wavelet, it can be shown (2) that

P(t) = h@t) * Q) 3)

If we reverse the roles such that the pressure wavelet
is an input to the system, flow wavelet is the response,
and a(?) is a linear time-invariant operator between
each pressure and flow wavelet, we can similarly obtain

Q@) = alt) * P@) )

For linear time-invariant systems, A(f) and a(t) are
also impulse responses of each system, and their Fou-
rier transforms [H(jw) and A(jw]) are the frequency
responses or the transfer functions of the system. The
two transfer functions are uniquely related by

A
H(jw) = AGo) 5)

Here H(jw) represents the input impedance whereas
A(jw) represents the input admittance (6). The fre-
quency response of the system, H(jw), can be evaluated
directly or by first determining A(jw) and then invert
it to obtain H(jw). For a truly linear time-invariant
system with noiseless measured input and response,
the two functions are interchangeable. In reality, how-
ever, the transfer function is unknown, and we have
to evaluate it from measured input and response, which
are usually contaminated with noise. In theory, the
impedance or the admittance functions do not have any
singularities (values of zero or infinity) in their magni-
tude, and evaluation of either function is permissible.
Bergel and Milnor (3) demonstrated that the pulmo-
nary bed approximates a linear system. It is also well
recognized that the pulmonary input impedance ap-
proaches a finite value of the characteristic impedance
and zero phase shift at high frequencies (15). There-
fore, singularities are not anticipated, and evaluation
of either function is possible and valid. However, the
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FIG. 3. Pulmonary arterial pressure at beginning of
expiration and wavelet decomposition of individual
beats.

0.0

0.0

Time (sec)

presence of noise in the measured data can adversely
affect the impedance estimate by making it statistically
inconsistent and may introduce singularities in the es-
timates. In our experiments, pulmonary arterial pres-
sure was measured with a solid-state pressure trans-
ducer, whereas pulmonary arterial flow was measured
with an electromagnetic flowmeter. Consequently, flow
measurements were more susceptible to noise than
pressure. Under such circumstances, it is preferable to
determine the input admittance first and then invert it
to obtain the impedance. By evaluating the admittance
first, only the autospectrum of the cleaner signal (pres-
sure) appears in the denominator of the expression for
evaluating the transfer function (see Egq. 6). A similar
approach of using the variable with the least noise in
the denominator has been suggested for estimating the
slope of the linear regression by Brace (4).

For H(jw) to be considered as the input impedance
[Z(jw)), the system must be passive and in steady state.
In mathematical terms, H(jw) needs to be a positive-
real function, i.e., the real part of the function needs
to be positive, such that the phase angle lies within the
open interval (—#/2, +7/2) for all frequencies. If Z(jw) is
a positive-real function, then Z(jw) is also a minimum-
phase system (11). The minimum-phase condition
uniquely relates the log of the magnitude of Z(jw) to
its phase. The log of the magnitude of Z(jw) [log Z(jw) ]
and its phase arg[Z(jw)] for a minimum-phase system
is called a Hilbert transform pair. Because the two are
uniquely related, the phase of Z(jw) can be recon-
structed from the logarithm of the known magnitude.

Wavelet spectral methods for estimation of input im-
pedance are based on the theory for nonstationary ran-
dom data analysis contrary to classical spectral meth-
ods that assume wide-sense stationary signals (1).
After the steady-state pressure and flow have been de-
composed into the wavelets, the frequency response can
be obtained by using nonstationary data-analysis the-
ory. The frequency response, H(jw) or A(jw), of a linear
time-invariant system can be estimated in the least
squares sense (1) by

oo« GaPGw) x . . Gealjw)
J2( = o V¥, 2 = QW)
2 Goaljw) ’ o) =& j) ©)

where hat () denotes estimated values, Gpg(jw) is the

energy cross-spectral density function between pres-
sure and flow, Gg4(jw) is the energy autospectral den-
sity function of flow, and Gpp(jw) is the energy autos-
pectral density function of pressure. An estimate of
Gry(jw) and Gag(jw) or Gep(jw) can be obtained by the
ensemble averaging the corresponding estimates for
each wavelet pair (2).

When only a limited number of wavelets is available,
the variance in the estimates of the magnltude and
phase of A(jw) or H(jw) at higher frequencies is too
large. Therefore, an alternative method was used to
estimate the magnitude of A(jw).

|ém(1w)|

LAG 7
Ul =1 )| @
where
1 N
|GPQ(JW) =N Y. 1 Qjw)P¥(jw)
) o~ 8)
| Gep(jw)| = =¥, 2 | P jw)|?

Here P(jw) and Q;jw) are the finite Fourier trans-
forms of the ith pressure and flow wavelets of duration
T.. Qi(jw) and P;(jw) are the complex conjugate of
Q:(jw) and P,(jw), respectlvely, and N is the number of
wavelets. An increase in the number of wavelets N will
reduce the random noise factor present in beat to beat
and also reduce the instability of the individual esti-
mates of the energy spectral density functions. In our
data, the instability of the magnitude of A(jw) was
greatly reduced compared with any other classic Fou-
rier method, even though a limited number (15) of
wavelets were available. A comparison of the stability
of the impedance spectra amplitudes that were ob-
tained by Fourier transform of the wavelets and by
fast Fourier transform of the continuous time record is
shown in Fig. 4. The best estimate of the fast Fourier
transform spectrum was obtained by ensemble averag-
ing four subsegments of the data with 20% (one cardiac
cycle) overlap in each.

As noted earlier, the phase response can be obtained
theoretically from the known magnitude by using the
Hilbert transform. In reality, it is difficult to estimate
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FIG. 4. Comparison of fast Fourier transform
(FFT) and wavelet estimates of input impedance at
onset of expiration.
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the phase directly because of the singularities in this
transformation. The most practical approach to esti-
mate the phase is to use the iterative technique devel-
oped by Quatieri and Oppenheim (13) to reconstruct
the phase from the magnitude. This technique is based
on the minimum-phase condition noted earlier. The it-
erative algorithm can be described by the following: 1)
by using the estimated magnitude and by setting the
initial guess for the phase angles to zero, an impulse
response function can be obtained by the backward (in-
verse) Fourier transform; 2) causality is imposed on
the impulse response by forcing the last quarter of the
transfer function values to be zero; 3) new phase angles
are calculated by forward Fourier transform of the new
impulse response function; 4) the process is repeated
by returning to step I while using the new phase angles
from 3, until the impulse response function and the
phase angles converge.

The input impedance can be obtained by inverting the
admittance. The validation of the reconstructed complete
frequency response function as representing the input
impedance is as follows. If the reconstructed phase angles
lie within the range of —7/2 to +7/2, then the frequency
response of the system, H(jw), is eqmvalent to the input
impedance, Z(jw). Otherwise, either the system is still
time variant or may have other distal energy sources.
Finally, the predicted steady-state pressure response
[P@®)] can be calculated by taking the inverse transforma-
tion of the product of the measured ﬂow, Q(jw), by the
frequency response function, H( Jw), in the frequency
domain. If the predicted pressure P(¢) faithfully repre-
sents the measured pressure P(¢), then this method suc-
cessfully estimated the input impedance.

WAVELET DECOMPOSITION OF PRESSURE

When the steady-state pressure is considered as a
collection of transients, the pressure signal is time ali-
ased because of the overlap of successive transients (8).
To reconstruct the pressure wavelets from the steady-
state pressure, time aliasing must be removed. For the
pulmonary vascular system with a relatively short in-
put flow wavelet, we can assume that the response
pressure wavelet will follow a first-order exponential
decay beyond one cardiac cycle, if it was not interrupted
by a new succeeding heart beat. We propose the follow-
ing procedure to unalias the steady-state pressure
when decomposing it into wavelets.

Let us assume an ideal case when the cardiac period
(AT) and the value of the steady-state pressure at the
onset of each systole (D) are constant. By extrapolation,
the pressure wavelet after the duration of the heart
beat is

Pit)=De ' for AT =t =T, 9

where the time constant (7) = AZ/In2. The pressure
overlap within each cardiac cycle due to the long decay
time of the wavelets is in fact a cumulative result of
all preceding wavelets that have not completely de-
cayed yet. The amount of overlap can be calculated by

Pol(t ) =

De-E+ATVr | Dp~@+2ATIT 4 D)p—G+3ATV
(10)

—(t+ AT/
€ =t

+ =D m = De
P, is the amount of overlap that needs to be subtracted
from the steady-state pressure signal to obtain an ap-
proximation for the pressure wavelet within the car-
diac cycle. This method guarantees a zero value for the
wavelet pressure when ¢ = 0 and pressure continuity
when ¢ = AT, in addition to completion of the wavelet
beyond the individual heart beat.

In practice, there is a beat-to-beat variation in both
the duration of each heart beat and the value of pulmo-
nary arterial pressure at the onset of each systole.
Therefore, the time constant 7 and the pressure con-
stant for the ith wavelet (D;) are determined by

. L =T,
In (2P/P;.,)

where T; is the time at the onset of the ith heart beat.

D; = P(T)) and 7, an

EXPERIMENTAL METHODS

Animal preparation. The experimental preparation that
we used has been described in great detail elsewhere (7).
Experiments were performed on mongrel dogs in compliance
with the guidelines of the American Physiological Society.
The anesthetized dogs were intubated and ventilated with a
volume-cycled pump (model 681, Harvard Apparatus, Natick,
MA). The ventilatory rate was set at 1418 cycles/min, with
a constant tidal volume throughout each experiment. Stroke
volume of the ventilator was set at ~15 ml/kg. Inspiration
was achieved by positive pressure while expiration was pas-
sive. The duration time of inspiration and expiration was
fixed and equal. Airway pressure was monitored with a Val-
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idyne differential pressure transducer. A catheter was placed
in the right femoral artery to monitor systemic arterial pres-
sure with a Statham P23 ID pressure transducer.

The chest was open throughout the experiment, and 5
emH,0 of positive end-expiratory pressure (PEEP) were ap-
plied to prevent atelectasis and serve as baseline. Thereafter,
10 and 15 emH,O were applied to simulate circulatory distur-
bances. The pericardium was transacted vertically, and the
pulmonary artery was isolated by blunt dissection. A Statham
electromagnetic flow probe (between 16 and 18 mm ID) was
placed around the main pulmonary artery. Two 3-Fr microma-
nometer-tipped catheters (Millar, Houston, TX) were placed,
through purse-string sutures, into the right ventricular out-
flow tract and into the pulmonary artery for simultaneous
pressure measurements. All pressure calibrations were per-
formed relative to atmospheric pressure. After instrumenta-
tion, data collection was started when the preparation was
judged to be stable, as manifested by constant mean systemic
pressure, pulmonary arterial pressure, and flow. Measure-
ments were collected over a period of 15 breaths.

Data collection and analysis. All the collected analog sig-
nals were displayed on an eight-channel Gould 2800S strip-
chart recorder. In parallel, all the analog signals were digi-
tized (Data Translation DT2801A) and stored on a computer
(Wells-American A Star, Columbia, SC) for off-line analysis.
The sampling rate of the various pressure and flow waves
was set at 250 Hz/channel. The beginning of each ventilatory
cycle was recorded by using the output of a microswitch that
was positioned on the ventilator and delivered a 5-V pulse
at the end of expiration. The beginning of each individual
heart beat was defined from a recorded pulse that was trig-
gered by the QRS complex of the ECG (ECG/Biotech ampli-
fier, Gould).

Data preparation. Pulmonary input impedance was esti-
mated for each cardiac cycle throughout the ventilatory cycle.
To eliminate time variations in the data to be analyzed and
obtain N cardiac cycles at each phase of the ventilatory cycle,
new data subsets were generated from the experimental data.
By using both the ventilator trigger and the ECG trigger, con-
secutive cardiac cycles within each ventilatory cycle were
marked, i.e., cardiac cycle i = 1, . . ., K within each ventilatory
cyclej = 1, ..., N. For each i, N cardiac cycles were collected
from the N successive ventilatory cycles for both pulmonary
arterial pressure and flow. The result was K new subsets of
pressure and flow data, each containing N cardiac cycles at
particular phases of the ventilatory cycle. The method is illus-
trated in Fig. 1. The new data subsets were free of time varia-
tions due to ventilation, although there was a small degree of
phase jitter in the newly constructed data sets because heart
rate is not synchronized precisely to the ventilatory rate. None-
theless, time variation of consecutive cardiac cycles due to
ventilation in the newly constructed data sets was virtually
eliminated. Because data was collected for 15 successive
breaths, the new subsets contained N = 15 cycles of the funda-
mental (cardiac) frequency. These sets can be considered as
obtained from a system in steady-state oscillations (without
time variations) driven by a steady frequency source.

RESULTS

For clarity, the tracings were low-pass filtered in the
frequency domain with a finite-duration impulse-re-
sponse filter (11), the cutoff frequency of which was
set to the 10th harmonic of heart rate. It has been
demonstrated by Bergel and Milnor (3) that ~99% of
the variance of measured pressure or flow signals in
vivo is contained in the first eight harmonics of heart
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rate. We tested our data (17) and found that 10 har-
monics of heart rate were necessary to reproduce >96%
of the variance in the original signals. However, in the
entire analysis, only the unfiltered tracings, which
were sampled with a rate of 250 Hz, were used to avoid
any loss of information contained in the data. Although
such high sampling rate also introduces some artifacts,
such as phase aliasing due to high frequency noise be-
ing collected with the data. Nonetheless, such artifacts
are small and can be eliminated as explained subse-
quently in DISCUSSION.

The analysis was performed on five dogs, but for
brevity results for one dog only will be illustrated in
detail. Figure 2 is an example of pressure and flow
waveforms collected in the start of expiration for PEEP
level of 10 cmH,0. Changes in transpulmonary pres-
sure are most rapid at the start of expiration and, thus,
should have the largest impact on the hemodynamics
variables. As can be seen in Fig. 2, time variations
due to ventilation have been virtually eliminated. The
reconstructed pressure that was obtained by summa-
tion of the wavelets is also shown in Fig. 2 by the thin
line. The reconstructed pressure becomes indistin-
guishable from the experimental pressure after a short
transient period of five cardiac cycles. Conceptually,
the transient period is the amount of time required to
pump up the pressure in the system from zero to the
steady-state level by successive transients. The wave-
lets that were used for the reconstruction in Fig. 2 are
shown in Fig. 3. Only the first and the third wavelets
are shown in Fig. 3, bottom, whereas the steady-state
pressure used to generate the wavelets is depicted at
the top. The construction of the flow wavelets is trivial,
since the only modification to the steady-state flow is
zero padding beyond end diastole of a heart beat. The
number of data points used in each wavelet is 2,048,
which allows the pressure wavelet to decay effectively
to zero. A power of two was chosen for convenience
when calculating fast Fourier transforms. The fact that
this mathematical approach of using wavelet decompo-
sition to calculate input impedance does predict the
steady-state signal is demonstrated in Fig. 5. The pre-
dicted pressure in Fig. 5 was obtained as outlined be-
fore by inverse Fourier transformation of the product
of predicted frequency response function and the exper-
imental flow data. Figure 5 demonstrates the close
agreement between measured and predicted pressure.
A thorough quantitative comparison of the two pres-
sure tracings is given in APPENDIX.

An example of the calculated amplitude and phase of
the input impedance throughout the ventilatory cycle is
presented for PEEP level of 5 cmH,0 (Fig. 6), 10 cmH,O
(Fig. 7), and 15 emH,0 (Fig. 8). The results are pre-
sented in the frequency scale up to 25 Hz only. We evalu-
ated the coherence function for each impedance data
subset used in the analysis and found that coherence
was generally maintained at a high value (>0.8) only
up to that frequency (17). Therefore, no definitive state-
ments can be made with regard to higher frequencies,
other than that the relationship between pressure and
flow at higher frequencies is highly nonlinear and may
be due to high frequency noise. In all data subsets used
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FIG. 5. Pulmonary arterial pressure at beginning of
expiration and predicted pressure.
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to construct the phase angles, they have been verified
to lie within the open interval of —m/2 to +7/2, thus
satisfying the minimum-phase assumption (17). A prom-
inent feature of the impedance spectrum is the existence
of four secondary maxima at frequencies of 6.6, 11.6,
15.1, and 19.2 Hz. These maxima are reflected in both
the magnitude and the phase. The striking features of
these extrema is that they are varying in magnitude
during the ventilatory cycle. At the lower frequencies,
the magnitude of the peaks is diminishing at the center
of the ventilatory cycle when airway pressure is high.
On the other hand, the magnitude of the peaks at
the higher frequencies possesses an opposite trend, and
the peaks are amplified at the middle of the ventilatory
cycle when airway pressure is high. This phenomenon
can be explained by wave propagation and reflection.
These results suggest that the apparent compliance
of the intrapulmonary arteries decreases when airway
pressure is high. As a result, wave speed (or its corre-
sponding frequency) is increasing. With decrease in ap-
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parent compliance, the energy in the reflected waves
is changed from low to high frequencies. Therefore, the
reflected waves at higher frequencies are amplified at
the expense of waves at lower frequencies.

An increase in the PEEP level results in the attenua-
tion of the reflected waves at all frequencies, as mani-
fested by decreasing surface variance with PEEP in
each of the five dogs (Table 1). This is particularly ap-
parent for high frequencies (Figs. 6—8). The surface
characteristic impedance was not affected significantly
by quasi-static changes of PEEP. However, the ampli-
tude scale in Fig. 8 is different than that from Figs. 6
and 7 because of the fact that there is a marked in-
crease in the input resistance. The input resistance is
the zero-frequency amplitude of the impedance spec-
trum. Obviously, the input resistance is increasing and
attains a maximum value close to the end of inspiration
where airway pressure is highest. However, it is not
only the reflected waves and the input resistance that
are time dependent. This important point can now be

Thoaee e \Degreen

F1G. 6. Input impedance amplitude (left) and phase (right) of pulmonary circulation throughout the ventilatory

cycle, PEEP = 5 cmH,O0.
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FIG. 7. Input impedance amplitude (left) and phase (right) of pulmonary circulation throughout ventilatory
cycle. Contour plot inset at top of impedance amplitude at low frequencies shows that impedance and not only
mean resistance are changing during ventilatory cycle; positive end-expiratory pressure (PEEP) = 10 cmH,O.

clearly demonstrated by the contour plot insert in Fig. data records are available. It is particularly useful
7, where the variation in the magnitude of the input when attempting to elucidate pulmonary arterial in-
impedance for the first 2 Hz is shown. Therefore, not put impedance that is varying during the ventilatory
only the input resistance but also input impedance cycle. In practice, it is difficult to obtain long steady-

changes considerably during the ventilatory cycle. state data records even in well-controlled animal ex-
periment, let alone in humans. Even if as many as 15
DISCUSSION ventilatory cycles are recorded, 15 cardiac cycles are

obtained in one particular phase of ventilation. Such
The wavelet method provides a novel approach for a record is too short for classic methods to obtain good
estimating the input impedance when relatively short spectral resolution with a reasonable variance. Only

P, P

Py, &

FIG. 8. Input impedance amplitude (left) and phase (right) of pulmonary circulation throughout ventilatory
cycle, PEEP = 15 emH,0.
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TABLE 1. Surface characteristic impedance and variance at different PEEP levels in five dogs

Dog N PEEP, Surface Characteristic Normalized Surface Mean at High Normalized Surface Variance at High
og TNo. emH,0 Impedance, mmHg-mi~!-s Frequencies, 2 < f(Hz) < 25 Frequencies 2 < f(Hz) < 25

5 0.191440 0.154811 0.011800

1 10 0.166670 0.120806 0.0055637
15 0.126277 0.072576 0.002826

5 0.215893 0.286681 0.021197

2 10 0.205618 0.237199 0.012055
15 0.217227 0.186817 0.008639

5 0.142041 0.306310 0.010005

3 10 0.085396 0.161902 0.002911
15 0.080599 0.119657 0.002170

5 0.178139 0.203940 0.004239

4 10 0.165288 0.159375 0.003311
15 0.185647 0.092806 0.001094

5 0.210155 0.285791 0.013032

5 10 0.188861 0.172336 0.004486
15 0.167245 0.087367 0.000775

Surface characteristic impedance is average of input impedance magnitude with respect to both time of ventilatory cycle and frequency
in the range 2 < f(Hz) < 25. Normalized values are with respect to average input resistance during ventilatory cycle. PEEP, positive end-

expiratory pressure.

harmonic analysis can be obtained. The advantage of
the wavelet method is that a reasonable spectral esti-
mate of high-frequency resolution can be obtained for
each cardiac cycle. Ensemble averaging over the avail-
able cycles then provides the means to reduce the vari-
ance of the estimate and obtain a stable spectrum.
However, a difficulty arises because of the fact that
the pulmonary arterial pressure is time aliased.

Wavelet decomposition method allows one to exam-
ine the pulmonary arterial pressure-flow relationship
at specific phases of the ventilatory cycle. In the method
proposed by Bennett (2), input impedance is calculated
by averaging over the wavelets from all phases of the
ventilatory cycle. Although this method is valuable in
identifying interaction caused by respiration, our ap-
proach can go one step further; namely, it provides a
vehicle to reveal details of how respiration affects input
impedance. Furthermore, the input impedance esti-
mated by this method is consistent with the impedance
concept that the system under study must be linear
and time invariant.

Time aliasing of the pressure signal required the in-
troduction of an assumption that extrapolates the pres-
sure wavelet with a first-order exponential decay be-
yond end diastole. Mathematically, it is valid to decom-
pose the steady-state pressure into wavelets by using
our proposed method under conditions of strictly sta-
tionary data and constant heart rate. However, in real-
ity, heart rate variability and nonrepeatability of pul-
monary arterial pressure at the onset of each systole
may introduce some artifacts in the estimated input
impedance, particularly at high frequencies. Nonethe-
less, it is a small penalty to obtain a reliable high-
resolution impedance spectrum, since physiologically
it is the low (<10 harmonics of heart rate) frequency
range that is of interest.

Wavelet decomposition has the advantage that it
avoids the necessity of performing the various mathe-
matical contortions required by the standard approach
of detrending and tapering to avoid leakage that dis-
torts the data considerably (5, 7). At first sight, the

question of a pressure wavelet is of concern because
it is untenable physiologically. If pulmonary arterial
pressure is allowed to decay, it will not fall to zero. The
wavelet is not intended to simulate a real event but
provides merely a method of representing a waveform.
The justification for using pressure wavelets is that
their summation actually reflects the recorded pres-
sure waves. The extrapolated data is not extraneous,
it is merely an alternative way of generating zero dia-
stolic pressure. For Fourier analysis, the mean is sub-
tracted from each data point. This concept is readily
acceptable because of our familiarity with it. Both ap-
proaches are valid, the wavelet is less easy to calculate
than the mean, but it has the advantage that it is sub-
ject to less restrictions.

High-frequency resolution input impedance is partic-
ularly important in attempting to calculate the dis-
tance of reflection sites, because the precise frequencies
of local extrema must be known first. The extrapolation
of the pressure waveform required to produce the wave-
lets might be considered to introduce spurious data into
the analysis and distort the impedance spectrum. How-
ever, it should be emphasized that with our method of
analysis the summation of the wavelets reproduces the
measured pressure recording precisely.

The method of analysis for phase reconstruction
makes use of timespectral transformations repeatedly.
Therefore, to obtain accurate estimates of the transfer
function and the phase of the frequency-response func-
tion, the iterative algorithm must make use of the mag-
nitude over the entire frequency range (up to 125 Hz
in our data for a sampling rate of 250 Hz). The high
sampling rate is particularly important in minimizing
the truncation error when an inverse Fourier trans-
form is applied to obtain the impulse response function.
However, the magnitude of the frequency response
function at high frequencies (>10 harmonics of the
heart rate) is usually biased because of noise in the
original signals. Depending on the noise level, a small
time shift occurs between the predicted and the mea-
sured pressure due to the flowmeter and slight differ-
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ences in the alignment between the pressure and flow
transducers. The precise time shift can be easily deter-
mined by evaluating the cross-correlation function be-
tween the experimental and predicted pressure. Usu-
ally, this time shift amounted only to 0.004-0.016 s.
Nonetheless, it is necessary to correct the phase re-
sponse of the input impedance in the frequency domain
in such situations to avoid phase aliasing.

In summary, the wavelet method is a powerful tool
in evaluation of pulmonary input impedance, since it
relies on nonstationary processes theory and thus is
more suitable for analyzing pulmonary hemodynamics
that are rendered nonstationary by ventilation. Fur-
thermore, it is capable of estimating input impedance
with a high-frequency resolution that will be helpful
for studying wave reflection. To calculate the distance
of the reflection sites from the origin of the pulmonary
artery, it is important to locate the frequencies with
maximum or minimum precisely.

APPENDIX

In general, the measured steady-state pressure P(¢) and
the predicted steady-state pressure P(t) will be very similar.
Nonetheless, all the quantities involved in the estimation of
the frequency-response function of the pulmonary vascula-
ture contain an unknown and inseparable amount of error
in them (see Fig. 9, top). The measured flow Q(¢) and the
measured pressure P(¢) contain noise components ng and np,
respectively. ng and np may (or may not) be partially corre-
lated depending on the experimental preparation and condi-
tions, data-acquisition system, or laboratory electronic cir-
cuitry. Therefore, the predicted frequency-response function,

(jw), is only an estimate of the actual function.

When the estimated transfer function of the system is con-
volved with the measured flow to produce the predicted pres-
sure, the noise in the measured flow undergoes the 2(jw) trans-
formation. It contaminates the predicted pressure in an un-
known way. Therefore, to evaluate the quality of the 2(jw)
by comparing the measured and predicted pressures, caution
should be exercised, since both contain random errors.

The two pressure sequences (measured and predicted) are
considered, respectively, the input and output of another sys-
tem, which is called the validation system. We assume that
these two sequences were generated as outputs by the same
system and they differ from each other only because of extra-

neous noise. The measured sequence is contaminated by np,
whereas the predicted sequence is contaminated by a trans-
formation of ng through the predicted system. The most rea-
sonable hypothesis in such a case is that the frequency-re-
sponse function of the validation system, K(jw), should be of
unit magnitude and a zero phase for all frequencies within
a bandwidth of interest.

In reality, however, these two sequences represent outputs
from two systems that are only nearly identical. This is due
to the fact that 2(jw) is only an estimate of the actual unknown
input impedance. Therefore, a small deviation from unit mag-
nitude and zero phase of K(jw) is expected. If K(jw) deviates
less than an arbitrary preset value from unit magnitude and
zero phase over a bandwidth of interest, the estimate of 2(jw)
should be accepted. Otherwise we may reject it.

The problem that arises from this approach is the need to
evaluate a frequency-response function for two short data
records for the purpose of error analysis alone. One way to
determine the transfer function of the validation system is
to apply again wavelet decomposition to the two pressure
sequences. However, to avoid the erroneous perception of a
circular problem, it would be preferable to obtain this trans-
fer function by another independent method. Autoregressive
modeling can be used to obtain an estimate of the frequency-
response function between the two pressure sequences and
the coherence function (7).

In its simplest form, the criterion of assessing how close
is the magnitude of K(jw) to unity and its phase close to zero
is by averaging K(jw) and arg[K(jw)] over the bandwidth B
of interest. In physiological applications in vivo, the band-
width of interest is usually <10 cardiac harmonics

_ 1 )
M= §f |K(jw)|dw An

— 1 .
Ph = 3 f arg[K(jw)ldw (A2)
B

where M and Ph are mean magnitude and phase, respec-
tively, arglK(jw)] is expressed in radians, and the errors in
the estimates of the means (¢) are given by

1/2
e = [% [ xgarr - M>2dw] 43)
B

e f (arglK(ju)] — PRYdw | AL
€pp = [E arg[K(jw)] — Ph) w] ,
B



PULMONARY ARTERIAL INPUT IMPEDANCE

As an example, for the tracings shown in Fig. 5, M = 0.98,
em = 0.08, Ph = 0.24, and €p, = 0.09. .

It is important to note, however, that any calculated fre-
quency-response function is only an estimate of the actual
function that in most cases is unknown. Any estimated fre-
quency-response function contains errors in the estimated
values, regardless of the method by which it was obtained.
These errors are due to either the modeling process by which
it was obtained (e.g., autoregressive modeling) or due to the
inherent large variance in the estimates when obtained by
Fourier methods. The errors in the estimated values can be
quantified but they are functions of frequency rather than
simply scalars.

The normalized random error involved in the estimation
of the magnitude of the frequency response function can be
obtained as follows (1)

R atd)
lv(H)l¥en

where y*(f) is the coherence function and 7 is the number
of segments used in the ensemble for obtaining the smoothed
estimate of the frequency-response function. The SD of the
estimated phase angles of the transfer function at any fre-
quency is approximated by the same Eq. A5.

(A5)
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