
ORIGINAL ARTICLE

Spatial autocorrelation of West Nile virus vector
mosquito abundance in a seasonally wet suburban
environment

P. R. Trawinski Æ D. S. Mackay

Received: 29 January 2008 / Accepted: 29 September 2008 / Published online: 24 October 2008
! Springer-Verlag 2008

Abstract The objective of this study is to quantify and model spatial dependence
in mosquito vector populations and develop predictions for unsampled locations
using geostatistics. Mosquito control program trap sites are often located too far
apart to detect spatial dependence but the results show that integration of spatial
data over time for Cx. pipiens-restuans and according to meteorological conditions
for Ae. vexans enables spatial analysis of sparse sample data. This study shows that
mosquito abundance is spatially correlated and that spatial dependence differs
between Cx. pipiens-restuans and Ae. vexans mosquitoes.
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1 Introduction

West Nile virus (WNv), a mosquito-borne flavivirus, causes an infection in humans
that is usually asymptomatic or a mild febrile illness but may also cause severe
disease or even death (CDC 2003). The mild form is known as West Nile fever while
more severe neurological forms are termed West Nile encephalitis and West Nile
meningitis (Kramer et al. 2007). Its distribution encompasses Australia (subtype
Kunjin), most of Africa and Europe, parts of Asia, and has recently extended into
North America (Hubalek and Halouzka 2000; Rappole et al. 2000; Campbell et al.
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2002). Outbreaks have occurred in Israel (1950s, 1980, 2000), South Africa (1974),
Bucharest (1996–1997), Romania (1996), Russia (1999), and the United States
(2002–2003) (Hubalek and Halouzka 2000; Rappole et al. 2000; Platonov et al. 2001;
Weinberger et al. 2001). Since the emergence of the virus in the United States in
1999, neuroinvasive disease has been reported in 11,016 human cases, with 1,071
case fatalities (9.7% case–fatality ratio) (CDC 2008). All reported cases in the US
number 27,485 but serosurveys have documented that less than 1% of people
infected with the virus will develop the severe form of the disease, so estimates of
actual cases are much higher (Mostashari et al. 2001; O’Leary et al. 2004). West Nile
virus spreads rapidly among the bird and mosquito populations across the continental
United States and now is firmly established in most areas of the United States.

There is no vaccine or other treatment specific for infection with West Nile virus.
Vector control and public education are the primary means of fighting infection.
Habitat elimination (‘‘source reduction’’) and larvicide application are the preferred
methods of controlling nuisance mosquito populations. Aerial spraying of insec-
ticides is generally the intervention of last resort but is used more often when
mosquito populations are determined to be a public health threat. Aerial applications
are generally used conservatively because of cost, potential environmental damage,
and potential development of resistance (Spielman et al. 2001). Control with
larvicides and adulticides requires larva and adult population surveillance and most
states require these public health pesticide applicators to be certified (CDC 2003).
Many municipalities and counties lack the resources to staff dedicated mosquito
control personnel and certified insecticide applicators.

Better understanding of vector population structures in space is vital to improving
knowledge of population dynamics and ability to control these populations (Srividya
2002; Ryan et al. 2004; Diuk-Wasser et al. 2006). Analysis of vector populations in
space is based upon a simple but powerful premise by Tobler (1970) that ‘‘everything
is related to everything else, but near things are more related than distant things’’.
The key is to find the distance below which values are more alike, or spatially
autocorrelated. Detection, modeling, and estimation of spatial autocorrelation can be
accomplished with geostatistics, a branch of statistics that originated from mining
applications. The semivariogram is the tool used in geostatistics to find the range of
autocorrelation. Small values of semivariance correspond to data that are more
similar and large values reflect data that are more dissimilar. As the distance between
a value and its neighbor increases, the value of its semivariance increases and should
level off at some point that is equal to the conventional variance. This point where the
variogram levels off indicates that the variance is now independent of distance and is
termed the range. The sill is the actual plateau of the variance at that point. The
discontinuity at the origin of the variogram is the nugget effect, a result of sampling
error and microscale variability (Isaaks and Srivastava 1989; Cressie 1993; Bailey
and Gatrell 1995; Piegorsch and Bailer 2005). The parameters of the semivariogram
model provide important information about ecological systems and may be used with
the data from the sample locations to produce kriged maps. Ecosystems would not be
able to function without the spatial structure inherent in them. Organisms are not
distributed randomly or even uniformly throughout ecosystems but are found
clustered where the environment is most conducive to their survival (Legendre
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1993). A hierarchy of geomorphic and meteorologic physical processes controls the
spatial heterogeneity in the environment to which biologic systems respond. Within
homogeneous geomorphic zones smaller scale processes act to induce further spatial
structuring of the ecosystem (Legendre 1993). Geostatistics have been used to
quantify and interpolate population densities of tick vectors of Lyme disease
(Nicholson and Mather 1996; Estrada-Pena 1998), filariasis (Srividya 2002), and
mosquitoes (Gleiser et al. 2000; Ryan et al. 2004).

The known primary vector of WNv in the northeastern US, Culex pipens, is
associated with human settlements and prefers water habitats with a high organic
content (Turell et al. 2000; Kilpatrick et al. 2005; Turell et al. 2005). Cx. pipiens has
similar feeding behavior to Culex restuans and the two species breed in similar
habitats. Cx. pipiens-restuans combined data will be used because it is almost
impossible to distinguish between the two similar species as adults (DeGaetano
2005; Diuk-Wasser et al. 2006). These two species have been grouped in previous
studies (DeGaetano 2005; Kilpatrick et al. 2005; White et al. 2006; Trawinski and
Mackay 2008). Another possible vector in the northeast is Ae. vexans, the inland
floodwater mosquito, which is known to carry WNv and is a prolific human biter,
allowing for transmission of the virus to humans (Hayes et al. 1985; Andreadis et al.
2004; ECDOH 2005; Turell et al. 2005). Larvae are found in practically all
temporary pools of water and eggs are laid on the ground, hatching when flooded
with fresh water (Hayes et al. 1985; Pratt and Moore 1993).

In this study, we use classification and regression tree (CART) analysis to
classify vector abundance data into appropriate bins and geostatistical techniques to
investigate the spatial structure of mosquito abundance of these bins for two West
Nile virus vectors in the Town of Amherst, New York. Lacustrine silt and clay
dominate this area, which is generally wet and prone to mosquito problems. As
such, the Town of Amherst has a mosquito control program that is more than
30 years old. The Town of Amherst Mosquito Control Program works in
conjunction with the Erie County Vector and Pest Control Program; sampling is
done by the Amherst program and virus testing is provided by Erie County. Since
virus testing began in 2002, 89 mosquito pools have tested positive for WNv in
Amherst, of which 87 were pools of the Cx. pipiens-restuans complex of mosquitoes
and two were Ae. vexans pools. Isolation of WNv from field-collected mosquitoes
has been found to be a sensitive indicator of virus activity that is associated with the
risk of human infection (Andreadis et al. 2004). We hypothesize that vector
abundance will be spatially correlated, and that spatial autocorrelation will be higher
in Cx. pipiens-restuans populations versus Ae. vexans populations because Cx.
pipiens-restuans has a high affinity for human habitations and a very small flight
range. Ae. vexans will travel much further for food or breeding purposes so
clustering may not be as important for this species. Furthermore, we hypothesized
that spatial autocorrelation would vary with time for Cx. pipiens-restuans and
meteorological conditions for Ae. vexans, as these variables will affect the
abundance of habitats available to each species. Ae. vexans prefer temporarily
flooded areas and their abundance is highly dependent upon meteorological factors.
Cx. pipiens-restuans is much less dependent upon weather conditions (Trawinski
and Mackay 2008).
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2 Methods

2.1 Study area: Amherst and Erie County overview

Amherst, Erie County, New York is a suburban community east of Buffalo,
encompassing nearly 54 square miles (139 km2), and having a population of
126,253 (Census Bureau 2006) (Fig. 1). Its land uses are primarily residential and
light industrial. Amherst is relatively flat as a result of being occupied by glacial
lakes at the end of the last glaciation approximately 10,000 years ago. The surficial
geology includes glacial till in the form of moraines, silt and clay deposited on the
lake bottoms, and sand deposited on the beach ridges (USDA 1986). Soils range
from hydric to non-hydric with a corresponding range in textures from silt to clay
dominated to sand dominated. Both hydric soils and surficial geology dominated by
lacustrine silt and clay occupy most of the northern portion of Amherst. In contrast,
the southern section of the town is predominately variable till material and non-
hydric soil, though there are many soils with the potential for hydric inclusions
(USDA 1986). The main topographic feature of Amherst is the Onondaga

Fig. 1 Study area map of Amherst in Erie County, New York with Soil Survey Geographic drainage
classes and the location of the Onondaga escarpment
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escarpment that runs east–west through the southern part of town, with differences
between elevation and other physical factors north and south of the escarpment. The
only areas of significant slope occur along the Onondaga escarpment and Ellicott
Creek. Amherst is susceptible to flooding during the late winter and early spring
when snowmelt and runoff events coincide (Ebert 1988).

2.2 Mosquito vectors

Mosquito sampling by the Town of Amherst Mosquito Control Program from 2002
to 2005 utilized CDC light traps, CDC gravid traps, and ‘‘receiver’’ gravid traps to
collect 112,551 mosquitoes. These traps often attract different species of mosqui-
toes. Light traps attract females seeking a blood meal while gravid traps attract
females seeking to lay their eggs (‘‘gravid females’’) and are much more likely to
capture Culex sp. mosquitoes. Generally, these two sources of data are not
combined for analysis due to these differences (Trawinski and Mackay 2008). Ice
trapping accounted for more than 72% of total collections in Amherst and
constitutes the data used for this study.

Mosquito trapping by the Town of Amherst is not conducted on a systematic
basis. Trapping occurs in brush or wooded areas throughout the town, including
residential areas. Trapping may be performed in response to complaints about
nuisance mosquitoes. In effect, some areas may be undersampled due to this bias in
the sampling method. Initial mapping of trap locations indicated that the area south
of the Onondaga escarpment has been undersampled and was therefore excluded
from the spatial analysis.

Twenty-seven species of mosquito are known to inhabit Erie County (ECDOH
2005). Cx. pipiens-restuans and Ae. vexans are known vectors in the county capable
of transmitting WNv to humans, horses and birds. These two species accounted for
5.31 and 36.97% of the 81,903 mosquitoes collected in CDC light traps by the
Town’s Mosquito Control Division between 2002 and 2005. Ae. vexans is the most
widespread species of Aedes in the United States. It is reported from every state and
its abundance causes troubles in many areas (Pratt and Moore 1993). Adults of this
species lay eggs on the ground in intermittently flooded areas and on the margins of
water bodies. The eggs hatch after flooding and development may take from 10 to
21 days, depending on temperature. Migration of five to ten miles from their
breeding places is not uncommon by adults (Pratt and Moore 1993).

Cx. pipiens-restuans, which is commonly known as the ‘‘northern house
mosquito’’, prefers water with a high organic content, often associated with storm
water runoff, and permanent water sources and containers. These preferred sites are
often associated with urbanization, and include rain barrels, tanks, tin cans, and
almost any artificial container. Storm sewers, street gutters, neglected swimming
pools, and effluent drains from sewage disposal are other important habitats for Cx.
pipiens-restuans. Eggs are laid in rafts of 50–400 that hatch within a day or two in
warm weather. Development time to adult stage may take as little as 8–10 days or
may take several weeks during a cold spring (Pratt and Moore 1993). Adults migrate
only short distances and it is usually assumed that when adults are present larvae are
close (Turell et al. 2000, 2005; Kilpatrick et al. 2005).
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Mosquito data from the Town of Amherst Mosquito Control Program contains
information on 777 trap-nights of sampling at various times and locations
throughout the season. The mean number of mosquitoes captured per trap-night is
38.8 for Ae. vexans, with a range from zero to 816. The mean is 5.6 for Cx. pipiens-
restuans, with a range from zero to 206. Examination of probability–probability
(P–P) plots of the original count data and the natural log of the data plus one
revealed a significant improvement in normality and so the log transformed data
were used for subsequent analyses (Table 1). Initial spatial analysis of all vector
abundance data was problematic due to seasonal fluctuations of mosquito
abundance in a temperate climate so the data were binned according to temporal
and meteorological factors previously determined to be significant by time series
analysis. (Trawinski and Mackay 2008).

2.3 Binning of mosquito data

Town of Amherst mosquito surveillance activities occur from mid-May to mid-
October each year. Exploratory analysis of all the surveillance data from 2002 to
2005 revealed a need to bin the vector data according to time or meteorological
factors in order to conduct spatial analysis. Spatial patterns of data from an entire
season were masked by changing meteorological conditions while spatial patterns of
data from only a single date or week in time were too sparse for spatial modeling.
We used the results from a previous study on the meteorological variables
significant for timing of Ae. vexans and Cx. pipiens-restuans population abundance
in a regression tree analysis to determine the appropriate bins for the spatial data
(Trawinski and Mackay 2008). Specifically, time-series analysis of mosquito
abundance data from a location approximately 6 km from the current study area
determined that there were three true meteorological predictors, accounting for
54.8% of the variation, for the abundance of Ae. vexans: an interactive cooling
degree day base 65"F (CDD_65)—precipitation variable at a lag of 2 weeks,
evapotranspiration (ET) 9 ET at a lag of 5 weeks, and CDD_65 9 CDD_65 at a lag of
7 weeks (Trawinski and Mackay 2008). Three variables were significant for Cx.
pipiens-restuans abundance: cooling degree days base 63 (CDD_63) 9 CDD_63 and a

Table 1 Descriptive statistics
of log-transformed mosquito
abundance data

Ae. vexans Cx. pipiens-restuans

Range 6.71 5.33

Minimum 0.00 0.00

Maximum 6.71 5.33

Sum 1608.12 859.90

Mean 2.07 1.11

SD 1.79 1.11

Variance 3.20 1.23

Skewness 0.44 0.88

Kurtosis -0.79 0.19
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ponding index both at lag zero and CDD_63 at a lag of 8 weeks. However, these three
variables only account for 16.4% of the variation in Cx. pipiens-restuans abundance
and the model without any predictors performed nearly as well as the model with
the meteorological predictors (Trawinski and Mackay 2008).

Initially, the abundance data were graphed by the week of trapping (season week)
in order to explore possible categories for binning. Visual interpretation of the
graphs showed distinct changes in slope for the Cx. pipiens-restuans abundance data
that would allow classification of the data for this species. Visual interpretation of
the Ae. vexans data showed no clear groupings so further exploration of the
abundance data was performed using classification and regression trees, modern
statistical techniques used to explain variation in a response variable by one or more
explanatory variables. Classification trees are used for categorical response
variables while regression trees are used for quantitative response variables (De’ath
and Fabricius 2000; Camp and Slattery 2002). Explanatory variables can be
categorical or numeric. Trees are constructed by repeatedly splitting the data into
groups that become more and more homogeneous with each split. Each split is
defined by a simple rule based on a single explanatory variable, i.e. less than or
greater than some chosen value (De’ath and Fabricius 2000). Each group produced
by a split is mutually exclusive and as homogeneous as possible. The splitting
procedure is then applied again to each group separately (De’ath and Fabricius
2000). The size of the tree is equal to the number of final groups or leaves of the
tree, also termed terminal nodes. Trees are generally overgrown and then pruned
back as needed (De’ath and Fabricius 2000; De’ath 2002).

We constructed regression trees with the Ae. vexans and Cx. pipiens-restuans
abundance data as response variables and the significant meteorological variables
and the temporal variable season week as explanatory variables. The final groups
were used as bins with the node rules supplying the significant cut-off values
(De’ath and Fabricius 2000). The tree was pruned as necessary and sometimes
expanded when the number of observations was large enough to explore the spatial
variation at a finer temporal scale. Regression tree analyses were performed with
Systat (version 11, Systat Software Inc. (SSI), San Jose, CA, USA).

2.4 Spatial variance of mosquito density by species

The spatial distribution of each group of mosquito trap sites was examined and
locations north of the escarpment were selected for further analysis of each group. A
few of the mosquito groups contained lone trap sites located at a distance (greater
than 3,000 m) from the rest of the sample and were excluded from analysis because
they were likely to skew the results of the spatial analysis by virtue of their isolation
from other trap locations. No points were excluded from the study because their z
values were exceptionally high or low (outliers). All spatial distributions were
visually inspected using ArcMap version 9.2 (ESRI, Redlands, CA).

Spatial variability of Cx. pipiens-restuans and Ae. vexans abundance in Amherst
was quantified using geostatistical techniques. Specifically, we used variograms to
describe the spatial dependence of the Cx. pipiens-restuans and Ae. vexans mosquito
densities to determine if there was spatial structure to the variance of mosquito

Spatial autocorrelation of West Nile virus vector mosquito abundance 73

123



abundance and as input to kriging analysis for interpolating mosquito abundance at
unsampled locations. A semivariogram is a descriptive measure of spatial pattern
that expresses variance (c) as a function of distance between sample locations:

cðhÞ ¼ 1

2NðhÞ
X

ði;jÞ hij¼hj
ðvi % vjÞ2 ð1Þ

where h is the lag distance, N(h) the set of all pairs of observations separated by h,
and vi and vj are the data values at locations i and j, respectively. We obtained
estimates of the nugget, the sill, and the range of the variogram and determined how
much of the sample variability was truly random, how much was spatially depen-
dent, and the range of influence over which the spatial dependency was in effect.
The results of this analysis can be used to derive prediction parameters specific to
the spatial variability of the data. The Amherst data sampling was not designed with
the intent of spatial analysis. Practically, this made semivariogram construction
more difficult. We examined the number of lag pairs at each interval for a minimum
of 30 pairs for the lag sizes of 250–500 m used in this study and, when necessary,
we combined lags to achieve this minimum. We further examined the credibility of
the data with the construction of confidence intervals around each average semi-
variance value for each lag. Ninety-five percent confidence intervals for the
experimental semivariograms were calculated as (Cressie 1993):

CI95 ¼ 1:96

ffiffiffi
2

p
cffiffiffiffi
N

p : ð2Þ

All data were plotted to 6,000 m in order to ensure appropriate representation of
the whole study area (Liebhold et al. 1993). The width of the study was
approximately 10,500 m.

Models were evaluated with the residual sum of squares, an exact measure of the
model fit to the sample data (lower is better). R-squared is also reported as a
common measure of overall explanation of the model. Semivariogram modeling
also allows for the estimation of spatially structured variance [C/(C0 ? C)], which
is the distance between the nugget and the sill (C) in proportion to the total variance
of the sill (C0 ? C). This value equals zero when there is no spatial dependence at
the scale measured and increases to one as the nugget variance decreases.

We produced interpolated maps of mosquito abundance to help interpret the
parameters of spatial structure estimated from fitting the semivariogram models. We
used block kriging for interpolation of mosquito densities because it provides
estimates for a discrete area around an interpolation point, which is more
appropriate for mosquito densities than point kriging, which provide estimates for a
precise point (Bailey and Gatrell 1995). Kriging is a linear interpolation that allows
predictions of unknown values in the study area based on information from
measurements made at sample locations (Isaaks and Srivastava 1989; Piegorsch and
Bailer 2005). It produces a map in the form of a uniform grid of pixels across the
spatial domain of the study area. Cross-validation analyses were performed for each
kriged map with point-by-point exclusion. Geostatistical analyses were performed
with GS? (version 7, Gamma Design Software, Plainwell, MI, USA).
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3 Results

Nine bins of data were developed for Cx. pipiens-restuans based on the regression
tree and were used for semivariogram analysis (Table 2). Regression tree branches
were only significant for the season week variable when analyzed with Cx. pipiens-
restuans population abundance as the response variable and season week is the only
explanatory variable used to partition the abundance data for further analysis. These
results agreed with the visual interpretation of the graph of abundance by week of
trapping (season week).

The Ae. vexans regression tree was more complex (Table 3). The first split was
based on seasonal week and split the abundance data at week 33 into early summer
and late summer primary branches. The early summer branch was split again by
seasonal week into very early summer and mid-early summer branches at week 24.
The mid-early summer branch was split into two terminal nodes based on the
CDD_65-precipitation variable. The late summer primary branch was split based on
the CDD_65 9 CDD_65 variable—cool 7 weeks prior and warm 7 weeks prior. The
warm branch was further split based on ET 9 ET, resulting in a total of seven
branches. The third group of the branch of the tree contained almost 40% of the
observations and was further split into bins 3a–3d by season week to further explore
the data temporally.

Empirical semivariograms are presented for ten bins of Ae. vexans based on time
and meteorological factors (Fig. 2). Most of the sampling intervals had empirical
semivariogram values with wide confidence intervals that did not allow modeling of
a valid semivariogram. Only semivariograms from groups 1, 3b, and 7 showed
spatial autocorrelation, in a range from 3,252 to 3,750 m (Table 4). All semivari-
ograms were isotropic and best modeled by a spherical model. Plots of drift
(regional trend) showed no discernible slope. Ae. vexans groups 1 and 7 contained
the most spatially structured variance. Group 1 was comprised of mosquito
sampling from very early in the season, from weeks 20 to 23, and correspondingly
had the lowest mean value of all the groups (0.13). The estimated sill was 0.165
with an estimated nugget of 0.062 and range of 3,252 m. The model explained
33.2% of the variation in mosquito samples with 62.2% of the variation as spatially
structured variance. Group 7 consisted of samples taken later in the summer with

Table 2 Bins of Culex pipiens-
restuans mosquitoes based on
time series and regression tree
analyses

Confidence intervals are shown
for empirical semivariograms

Group Weeks N

1 20–23 100

2 24–25 114

3 26–27 82

4 28–29 89

5 30–31 75

6 32–33 69

7 34–35 77

8 36–37 46

9 38–42 125

Spatial autocorrelation of West Nile virus vector mosquito abundance 75

123



cooler temperatures occurring 7 weeks earlier and had the highest mean of all the
Ae. vexans groups (4.67). The estimated sill was 1.489, estimated nugget was 0.601,
and range was 3,630 m. This model explained 43.1% of the variation in the
mosquito sampling from this group with 59.6% being spatially structured. Estimated
parameters from the semivariogram analysis are presented in Table 4. All models
had residual sum of squares (RSS) values in the acceptable range, but RSS was by
far the lowest for the group 1 model and, therefore, this was considered the best
model of the set.

Empirical semivariograms for nine groupings of Cx. pipiens-restuans based on
time are presented in Fig. 3. Seven of the groups showed significant spatial
autocorrelation in the range of 1,971–6,540 m, and the model RSSs were low for all
groups (Table 5). With the exception of groups 2 and 3, all groups showed evidence
of spatial correlation distinguishable from pure nugget. Cx. pipiens-restuans group 6
contained the least spatially structured variance and group 8 contained the most.
Group 6, containing samples from weeks 32 to 33, had a mean of 1.660, an estimated
sill of 1.303, an estimated nugget of 0.980, and a range of 5,200 m. The model
accounted for 21.2% of the variation in the sample, spatially structured variance was
low at 24.8%. Group 8, consisting of weeks 36–38, had a mean of 0.972, an estimated
sill of 0.995, an estimated nugget of 0.219, and a range of 5,840 m. The spatially
structured variance was high at 78.0%. This model explained 68.6% of the variation
in mosquito samples. All semivariograms were isotropic and best modeled by a
spherical equation. Plots of drift showed no discernible slope. Random variations and
measurement errors were manifested by oscillations in gamma along the sill but very
few points were outside the confidence intervals. A graph of the variation in range for
all groups of Cx. pipiens-restuans is presented in Fig. 4.

The maps in Figs. 5 and 6 show the interpolated mosquito abundances for Ae.
vexans and Cx. pipiens-restuans. Kriged maps that incorporate both the model of
spatial variance derived from observations and the individual measurements often
aid in the interpretation of the variograms. Regression coefficients for the cross-
validation of each kriged map indicate how well the model performs at estimating a
sample point from the rest of the data, excluding one sample point at a time. The
regression coefficient represents a measure of the goodness of fit for the least-
squares model describing the linear regression equation. Regression coefficients for
each group of mosquito abundance are presented in Table 6.

Table 3 Bins of Aedes vexans mosquitoes based on time series and regression tree analyses

Group First Branch Second Branch Third Branch Fourth Branch N

1 Week\ 33 Week\ 24 – – 100

2 Week\ 33 Week C 24 cdd65-precip C 90.526 – 89

3 Week\ 33 Week C 24 cdd65-precip\ 90.526 – 309

4 Week C 33 CDD65 x CDD65 C 729 Week\ 39 ET x ET\ 3.161 51

5 Week C 33 CDD65 x CDD65 C 729 Week\ 39 ET x ET C 3.161 99

6 Week C 33 CDD65 x CDD65 C 729 Week C 39 – 50

7 Week C 33 CDD65 x CDD65\ 729 – – 79
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4 Discussion

As hypothesized, evidence of spatial dependence was found in both species of
vector mosquitoes analyzed; however, more spatial dependence was evident in Cx.
pipiens-restuans populations than in Ae. vexans populations. Semivariograms for

Fig. 2 Empirical and modeled semivariograms for Aedes vexans
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Ae. vexans indicated that many of the samples were pure nugget, and the nuggets
were relatively large with wide confidence intervals, implying that mosquito
abundance was not spatially correlated at the scales measured for these mosquito
groups (Fig. 2). Spatial autocorrelation of Ae. vexans abundance data did not show a
significant change during periods of detectable spatial dependence. The range only
varied from 3,250 to 3,750 m for the three valid models representing groups with
different meteorological characteristics (Table 4). Our data support the concept that
the placement of physical features, such as wetlands and other areas prone to
ponding water, is important in the life history of Aedes vexans. More testing is
needed to determine if this range of spatial dependence occurs for all Ae. vexans
populations in varied landscapes.

Spatial autocorrelation of Cx. pipiens-restuans was not detected in the same range
but was shown to vary with groups based on time, as is illustrated in Fig. 4. Most
groups ofCx. pipiens-restuans exhibited spatial autocorrelation in the 5,000–6,500 m
range, but spatial dependence was only evident to about 2,000 m for a brief period
(Table 5). At the beginning of the mosquito season in Amherst, the range of spatial
dependence was about 5,300 m. During the next 4 weeks (24–27) spatial dependence
was not detectable at the scale examined. Spatial dependence was detectable again in
weeks 28–29 at a much smaller range of about 1,970 m and only increased slightly
through week 31–2,200 m. The range of spatial dependence then increased sharply to
5,200 m, back to the range found very early in the season, and then gradually
increased late in the season to over 6,500 m. This pattern of change in spatial
dependence over time supports our hypothesis that spatial autocorrelation varies
temporally forCx. pipiens-restuans and may be due to variations of breeding sites and
adult mosquito habitats with meteorological conditions. However, a range between
5,000 and 6,000 m was encountered often and may be significant for this species.

In general, the regression coefficients for Cx. pipiens-restuans estimates are
much better than those for Ae. vexans (Table 6). The interpolated estimates of Cx.
pipiens-restuans are best for groups 7, 8, and 9, with regression coefficients ranging

Table 4 Ae. vexans semivariogram model parameters for groups based on time and weather variables

Group Model C0 C0 ? C A Residual SS R2 C/C0 ? C N Mean

1 Spherical 0.062 0.165 3,252 0.026 0.332 0.622 99 0.13

2 Nugget 1.707 1.707 – – – – 83 1.12

3a Nugget 2.652 2.652 – – – – 55 1.72

3b Spherical 1.569 2.519 3,750 0.964 0.446 0.377 54 1.39

3c Nugget 1.405 1.405 – – – – 97 2.26

3d Nugget 2.274 2.274 – – – – 87 2.29

4 Nugget 1.893 1.893 – – – – 78 1.81

5 Nugget 2.285 1.310 – – – – 73 2.03

6 Nugget 3.074 3.074 – – – – 47 3.63

7 Spherical 0.601 1.489 3,630 1.260 0.431 0.596 72 4.67

The nugget is represented by C0, the sill is represented by C0 ? C, the range is represented by A, and the
spatially structured variance is represented by C/C0 ? C

78 P. R. Trawinski, D. S. Mackay

123



between 0.718 and 0.875. Cx. pipiens-restuans is the most important mosquito
vector of WNv in the northeastern US and human cases are most likely to occur late
in the mosquito season, with onset in late August and September. Because the best
models of Cx. pipiens-restuans are the late season models, they may contribute
significantly to control efforts when an outbreak occurs.

Fig. 3 Empirical and modeled semivariograms for Culex pipiens-restuans. Confidence intervals are
given for empirical semivariograms
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Insect populations in general are spatially heterogeneous in their densities, which
is important for devising optimal sampling procedures, understanding predator–prey
relationships and intraspecific competition, and in development of rational pest
management strategies (Liebhold et al. 1993; Ryan et al. 2004). Furthermore, the
spatial heterogeneity found in ecosystems is functional—ecosystems would not
operate properly without spatial continuity of habitats (Legendre 1993). The
characteristics of the geostatistical models provide insight on the spatial patterns of
the landscape. Legendre (1993) proposed that a nugget-to-sill ratio of 0.4 or less
may indicate biological significance in spatial pattern. Much of the effort in
characterizing spatial patterns of insect densities has emphasized descriptions of
spatial patterns with dispersion indices such as patchiness indices. Such methods
focus on frequency distributions of samples and ignore sample locations. The result

Table 5 Culex pipiens-restuans semivariogram model parameters for temporal groups 1–9

Group Model C0 C0 ? C A Residual SS R2 C/C0 ? C N Mean

1 Spherical 0.239 0.585 5,330 0.128 0.599 0.591 99 0.51

2 Nugget 1.154 1.154 – – – – 114 1.38

3 Nugget 1.224 1.224 – – – – 81 1.31

4 Spherical 0.657 1.048 1,971 0.173 0.453 0.373 78 1.37

5 Spherical 0.963 1.310 2,200 0.477 0.243 0.265 73 1.45

6 Spherical 0.980 1.303 5,200 0.351 0.212 0.248 64 1.66

7 Spherical 0.552 1.509 5,000 0.579 0.465 0.634 72 1.61

8 Spherical 0.219 0.995 5,840 0.395 0.686 0.780 43 0.97

9 Spherical 0.225 0.361 6,540 0.098 0.213 0.294 121 0.40

The nugget is represented by C0, the sill is represented by C0 ? C, the range is represented by A, and the
spatially structured variance is represented by C/C0 ? C

Fig. 4 Graph of change in range for Culex pipiens-restuans
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is often a failure to differentiate spatial patterns and descriptions of spatial patterns
that are highly dependent on the size of the sample units (Liebhold et al. 1993).
Spatial analysis of mosquito and other insect populations are better served by the
use of geostatistics, in which both value and location are taken into account.
However, geostatistical techniques have been under-utilized in the analysis of
disease vectors in general, and specifically for mosquito vectors of disease.
Geostatistical analyses of tick vectors, primarily of Lyme disease, have been
performed more frequently than analyses of mosquito vector populations (Nicholson
and Mather 1996; Estrada-Peña 1998). Recently, a few studies have begun to
explore spatial autocorrelation in mosquito population distributions. Ryan et al.
(2004) used Moran’s I indices and kriged maps to illustrate spatial dependence in
three of four species of mosquitoes studied with the strongest spatial autocorrelation
occurring at intervals between 0 and 1.5 km. Gleiser et al. (2000) found a range of
10 km with semivariogram analysis for Aedes albifasciatus in Central Argentina.
No evidence of spatial autocorrelation was found for Cx. pipiens, Cx. restuans, and
Ae. vexans at trap sites averaging 4.7 km apart in Fairfield and New Haven
Counties, Connecticut (Nicholson and Mather 1996; Estrada-Peña 1998; Diuk-
Wasser et al. 2006). Our results indicate that the range of spatial autocorrelation
varies over time for Cx. pipiens-restuans, occurring up to a range of 6.5 km in the
late season. Many mosquito control programs conducted on a state-wide or county-
wide basis perform sampling at sparse locations that are many kilometers apart. The
sample spacing of these studies is often too large to detect spatial autocorrelation in
the sample (Diuk-Wasser et al. 2006). However, our results indicate that sparse
mosquito trapping data that are collected over long periods of time can be
successfully categorized into groups based on time and meteorological conditions
and analyzed with geostatistical techniques. These results should encourage spatial
analysis of abundance data by other researchers with mosquito sampling data that
are sparse in an instantaneous sense through the appropriate integration of the data
over time. This integration of mosquito abundance over time may be especially
useful for spatial analysis of late season Cx. pipien-restuans populations. However,

Table 6 Regression
coefficients from cross-
validation of interpolated
mosquito abundances

Mosquito Group Regression coefficient

Culex pipien-restuans

Group 1 0.422

Group 4 0.709

Group 5 0.250

Group 6 0.541

Group 7 0.875

Group 8 0.718

Group 9 0.771

Aedes vexans

Group 1 0.010

Group 3b 0.297

Group 7 0.206
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Fig. 5 Kriged maps of Aedes vexans groups 1, 3b, and 7
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Fig. 6 Kriged maps of Culex pipies-restuans groups 1, 4, 5, 6, 7, 8, and 9
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these bins may need to be re-examined; as the amount of data available for time
series analysis of Cx. pipiens-restuans and Ae. vexans increases, drift in the bins of
the vectors may occur between years.

The spatial relationships elucidated in this research allow for recommendations
in future mosquito trapping designs. The confidence intervals of the empirical
semivariogram values are relatively large, especially at the smaller lag intervals, and
impeded identification of valid semivariogram models for nine mosquito groups.
Further information on the spatial dependence of vector mosquitoes may be derived
from more sampling at smaller lag intervals between 200 and 2,000 m. Systematic
sampling at these distances will allow for more robust descriptions of spatial
dependence. Systematic sampling would remove the bias in the sample data that
occurs because traps are set in areas suspected to be problematic. This bias may
actually lead to over-estimation of mosquito abundance in areas that are not
sampled. Also, sampling over an area greater than the Town of Amherst would
facilitate the modeling of spatial dependence, especially in Cx. pipiens-restuans
populations, some of which have a range of spatial dependence estimated at over
6,000 m. Increasing the width of the study area will allow better estimations of the
range and the sill in these populations.

A best mosquito sampling scheme might include a combination of targeted areas
of cyclic sampling with random sampling throughout the study area. Unrestricted
access to all areas in an urban environment is unreasonable and a comparison of
cyclic, random, and uniform sampling designs to determine the optimal sampling
scheme for extracting spatial information from the abundance data is not feasible.
However, studies have indicated that cyclic sampling designs increase sampling
efficiency, so that samples are distributed more efficiently for geostatistical analyses
and that regular grid spacing requires many more points for spatial analysis than
either random or cyclic sampling. It is harder to achieve narrow confidence intervals
with random sampling (Burrows et al. 2002; Adelman et al. 2008; Loranty et al.
2008). Inaccessibility to certain areas, land use of the area designated to be sampled,
and a limit to the available resources for trapping may hinder mosquito trapping
efforts designed for maximizing information on spatial distribution.

Although geostatistics provide better estimates for unsampled locations than
techniques which ignore space, several problems with kriging exist. Kriging is
useful for interpolation within the study area but not for extrapolating outside the
study area. Moreover, kriging must be used with caution on a coarse spatial scale.
Kriging is ideal for continuous spatial processes, but vector abundance data is
usually count data (Das et al. 2002). Also, kriging does not use the relationships of
the organism to its environment in its estimations but only uses the idea that
locations close together seem to be more similar (Kitron 1998). Furthermore,
kriging techniques for mosquito populations are good for static data collected in one
time period but do not include any reference to the dynamic state of population data.
Analytical techniques that combine spatial statistics with methods for analyzing
changes over time should be developed to provide a comprehensive analysis of the
landscape epidemiology of vector-borne diseases such as West Nile virus.

Despite many calls to incorporate spatial analysis in the study of infectious disease
and the vectors that transmit such diseases to humans, analysis of space has largely
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been neglected in such studies (Liebhold et al. 1993; Graham 2004; Ostfeld et al.
2005). Especially as it pertains to mosquito data, spatial analysis based on trap
collection data can assist in determining base population levels of disease vectors.
Global climate change will likely change the distributions and abundances of such
vectors, but without baseline abundance data these changes can not be documented
(Epstein 2001). Furthermore, increased global transportation of people and goods
potentially will allow more infectious agents to establish in non-endemic environ-
ments, in locales where the population is especially susceptible (Petersen and Marfin
2005). The use of spatial models to generate risk maps can assist in the formulation of
plans to control and manage the ever-changing distributions of infectious diseases.

5 Conclusions

The finer spatial resolution of sample points achieved through appropriate grouping
of the data used for this study allowed for detection of spatial dependence in Ae.
vexans and Cx. pipiens-restuans populations. Low spatial resolution often hinders
geostatistical analysis of mosquito control data but our results show that other
studies may successfully apply a similar grouping to mosquito abundance data and
enable spatial analysis of such data. Spatial dependence was conditional mainly for
Ae. vexans data, in which only 30% of groupings exhibited evidence of spatial
dependence as compared with almost 80% of Cx. pipiens-restuans groups. The best
models of spatial variation were developed for late-season Cx. pipiens-restuans and
may contribute significantly to control efforts of this important vector species. A
limitation of this study is the lack of consideration for the known breeding sites and
habitats of these vector species. Future spatial modeling efforts should include the
preferred breeding sites and adult habitats, especially including human population
density in the modeling of Cx. pipiens-restuans abundance.
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