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ABSTRACT
Accurate characterization of leaf area index (LAI) is
required to quantify the exchange of energy, water,
and carbon between terrestrial ecosystems and the
atmosphere. The objective of this study was to use a
cyclic sampling design to compare the spatial pat-
terns of LAI of the dominant terrestrial ecosystems
that comprised the area around the 447-m WLEF
television tower, equipped with an eddy flux sys-
tem, near Park Falls, Wisconsin, USA. A second
objective was to compare the efficiency of cyclic,
random, and uniform sampling designs in terms of
the precision of spatial information derived per unit
sampling effort. The vegetation surrounding the
tower was comprised (more than 80%) of four
major forest cover types: forested wetlands, upland
aspen forests, upland northern hardwood forests,
and upland pine forests, and a fifth, nonforested
cover type, grass (open meadow). LAI differed sig-
nificantly among the five cover types and averaged
3.45, 3.57, 3.82, 3.99, and 1.14 for northern hard-
woods, aspen, forested wetlands, upland conifers,
and grass, respectively. The cyclic sampling design
maximized information about the variance of veg-

etation characteristics of the heterogeneous land-
scape and decreased by 60% the number of plots
needed to obtain the same confidence interval
width using a random sampling design. The range
of spatial autocorrelation for LAI was 147 m, but it
was decreased to 117 m when vegetation cover was
included as a covariate. The cyclic sampling design
has several important advantages over other sam-
pling designs. The cyclic sampling design increased
the sampling efficiency by optimizing the place-
ment of plots so they were distributed more effi-
ciently for geostatistical analyses such as semi-var-
iograms, correlograms, and spatial regression and
can incorporate covariates (for example, vegetation
cover, soil properties, and so on) that may explain
the sources of spatial patterns. The cyclic sampling
design was used to derive a spatial map of LAI and
the average LAI for the 3 � 2 km area centered on
the flux tower was 3.51 � 0.89 (with a minimum of
0 and a maximum of 6.35). Airborne and satellite
reflectance data have also been used to characterize
LAI, but in this region, and many other forests of
the world, remotely sensed vegetation indexes sat-
urate in forests with an LAI greater than 3–5. The
cyclic sampling design also provides a general eco-
logical sampling approach that can be used at mul-
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tiple scales.
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INTRODUCTION

Accurate assessment of regional and global-scale
changes in the terrestrial biosphere is essential if
human impact on biosphere sustainability is to be
understood. There are a myriad of ecosystem at-
tributes to be monitored, but quantifying human
habitability will likely include an evaluation of veg-
etation cover, leaf area index (LAI), and net pri-
mary productivity (NPP) (Running and others
1999). These variables are important because veg-
etation cover is a proxy for land use and biodiver-
sity, LAI is positively correlated to NPP, and NPP is
important because it is correlated to fuel, fiber, and
food production for human consumption.

Measuring vegetation characteristics such as veg-
etation cover, LAI, and NPP is not a straightforward
task, especially over an area larger than 10 km2.
How to measure, when to measure, what to mea-
sure, and where to measure are all questions that
have to be answered before a study can begin.
Although all of these questions are essential, the
last question—where to measure—is the focus of
this paper.

Traditional experimental sampling designs, such
as transects (Iachan 1982), random samples (Müller
and Zimmerman 1999; Bogaert and Russo 1999), or
stratified random sampling schemes (Fassnacht and
others 1997), are commonly used to quantify veg-
etation characteristics and their spatial patterns.
These designs, however, may not be the most effi-
cient designs for characterizing spatial patterns of
land cover and LAI, especially given the inherent
spatial autocorrelation that is often prevalent in
ecological systems (Legendre 1993; Aubry and De-
bouzie 2000; Dutilleul 1993). Many sampling de-
signs are spatially inefficient because they do not
account for methods normally used to determine
patterns of spatial autocorrelation using geostatisti-
cal tools (variograms and correlograms). An effi-
cient sampling design distributes pairs of points at
different distances (or lags) to retain the sampling
density needed, while decreasing the number of
redundant measurements at a constant distance be-
tween sample points (Fortin and others 1989).

To estimate the changes and patterns measured
across space, geostatistical analysis can be used in a
way similar to the use of time-series analysis to
study changes and patterns over time. In this paper,

we present a cyclic sampling design that comple-
ments the tools used for geostatistical analysis. The
cyclic sampling design is illustrated with a case
study in northern Wisconsin where LAI was char-
acterized for the footprint of a very tall eddy flux
tower as part of NASA’s Earth Observing System’s
Validation Program (Justice and others 1998; Co-
hen and Justice 1999).

Geostatistical data often exhibit small-scale vari-
ations that can be modeled based on spatial corre-
lation. Spatial variability is modeled as a function of
distance between sample locations. Locations that
are closer to each other are often more similar than
locations that are farther apart, and are thus more
highly correlated. Spatial variability is often mod-
eled with a semi-variogram instead of a correlation
function (Cressie 1993). The semi-variogram repre-
sents variance (�) as a function of distance between
sample locations. Gamma (�) is defined as:

��h� �
1

2�N�h�� �
N�h�

� zi � zj�
2 (1)

where N(h) is the set of all pairs of observations
such that the distance between i and j is h. �N(h)� is
the number of distinct pairs in N(h), and zi and zj are
data values at locations i and j, respectively.

The characteristics of the semi-variogram are par-
ticularly important: the nugget, the sill, and the
range. The nugget is the estimate of the variance at
distance (h) equal to 0 (limh30�(h)). The sill is the
limh3��(h) and represents the variance (�2) of the
random field (the study area as a whole). Finally,
the range is the distance at which data are no longer
autocorrelated (Kaluzny and others 1998). Know-
ing these three characteristics of a semi-variogram
(nugget, sill, and range) can provide insight into the
spatial patterns on the landscape. A large sill in
comparison to the nugget indicates that variance is
spatially dependent at scales smaller than the range.
Similarly, a longer range indicates that the variance
is spatially dependent over longer scales. As the
nugget increases, the variation at distance 0 in-
creases, which indicates an increase in the variance
not attributable to spatial dependence. This can be
caused by measurement errors, or by inherent vari-
ations at very small distances. Semi-variograms can
be modeled using several different generalized
equations that fit the observed patterns, including
spherical, exponential, gaussian, rational, and lin-
ear equations. Details about fitting semi-variograms
can be found in Cressie (1993), Kaluzny and others
(1998), and Pinheiro and Bates (2000).

Numerous optimization methods have been pro-
posed to derive efficient sampling designs that help
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in estimating variograms. Pettitt and McBratney
(1993) proposed a transect sampling design devel-
oped specifically for the purpose of variogram esti-
mation. Bogaert and Russo (1999) proposed a D
optimization of a sampling design starting with ei-
ther a random or systematic base sampling struc-
ture. Several other sampling designs have been
compared for computational time and optimality in
Müller and Zimmerman (1999).

Clinger and Van Ness (1976) proposed a cyclic
scheme for sampling over time that uses a pattern
of sampled plots to provide information about all
lags (time periods between measurements) and re-
peated the pattern in time. This initial proposal of
measuring over time can also be applied to space. A
cyclic sampling scheme provides information on the
relationship between the characteristics of plot pairs
separated by any distance. The number of funda-
mental unit lengths taken before the sample pattern
repeats defines the cycle length. For each cycle
length, an optimum sample spacing can be defined
that minimizes the number of samples but provides
sample pairs separated by any distance (Table 1).
Clayton and Hudelson (1995) applied the cyclic
sampling design to examine plant disease epidemi-
ology patterns in an agroecosytem and proposed a
method for extending the cyclic sampling design to
two dimensions. Miller and others (forthcoming)
used a two-dimensional, cyclic sampling design to
examine spatial patterns of understory vegetation
in old-growth northern hardwood forests in north-
ern Wisconsin.

The objective of this study was to use a cyclic
sampling design to compare the spatial patterns of
LAI of the dominant terrestrial ecosystems that

comprised the area around the 447-m WLEF tele-
vision tower, equipped with an eddy flux system,
near Park Falls, Wisconsin, USA. A second objective
was to compare the efficiency of cyclic, random,
and uniform sampling designs in terms of the pre-
cision of spatial information derived per unit sam-
pling effort.

METHODS

Site Description

The study was conducted in northern Wisconsin,
near Park Falls (45.9458°N, 90.2723°W). The study
area, one of NASA’s Earth Observing System Core
Validation Sites (http://modis-land.gsfc.nasa.gov),
was centered on a 447-m–tall communications
tower that also supports an eddy flux system to
measure energy, water, and carbon exchange be-
tween the forest landscape and the atmosphere
(Bakwin and others 1998). The tower and sur-
rounding area is located in the Chequamegon-Nico-
let National Forest. The study area is in the North-
ern Highlands physiographic province, a southern
extension of the Canadian Shield. The bedrock is
comprised of Precambrian metamorphic and igne-
ous rock. It is overlain by 8–90 m of glacial and
glaciofluvial material deposited approximately
10,000–12,000 years ago. Topography is slightly
rolling, varying by 45 m between highest and low-
est elevations within the defined study area. Out-
wash, pitted outwash, and moraines are the domi-
nant geomorphic landforms. The growing season is
short and the winters are long and cold. Mean
annual July and January temperatures are 19°C
and –12°C, respectively.

The effects of landform on forest ecosystem dy-
namics and management activities such as thinning
and selective and clear-cut harvests have impacted
the forest vegetation (Fassnacht and Gower 1997,
1999). Red pine (Pinus resinosa Ait) and jack pine
(Pinus banksiana Lamb) dominate areas of exces-
sively drained, sandy soils derived from glacial out-
wash. Northern hardwood forests, comprised of
sugar maple (Acer saccharum Marsh.), red maple
(Acer rubrum L.), green ash (Fraxinus Americana
Marsh.), yellow birch (Betula alleghaniensis Britton),
and basswood (Tilia americana L.), occur on the
finer-textured soils derived from moraines and
drumlins. Soils of intermediate characteristics sup-
port a wide variety of broad-leaf deciduous tree
species, such as paper birch (Betula papyrifera
Marsh), quaking aspen (Populus tremuloides Michx),
bigtooth aspen (Populus grandidentata Michx), red
maple, and red and white pine (Pinus strobus L.).

Table 1. Selected Cyclic Sampling Design
Patterns

Cycle
Definition

Cycle
Length
(x)

Plots
Sampled
(n)

Sample Locations
(0 to x-1)

1/1 1 1 0
2/3 3 2 0, 1
3/7 7 3 0, 1, 3
4/13 13 4 0, 1, 3, 9
5/21 21 5 0, 1, 4, 14, 16
6/31 31 6 0, 1, 3, 8, 12, 18
7/37 37 7 0, 1, 6, 10, 17, 23, 35

Based on Clinger and Van Ness (1976)
A 3/7 cycle indicates that three plots in every seven are measured. The three plots
are spaced such that pairs of plots can be found that are separated by one, two,
three, four, five, six, and seven plot widths. The seven-plot cyclic pattern provides
additional plot pairs separated by eight, nine, . . . and so on plot widths.
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The poorly drained organic soils are dominated by
white cedar (Thuja occidentalis L.), balsam fir (Abies
balsamea (L.) Mill), white spruce (Picea glauca
(Moench) Voss), black spruce (Picea mariana (Mill)
B.S.P.), tamarack (Larix laricina (Du Roi) Koch.),
and speckled alder (Alnus regosa (Du Roi) Spreng.).

Cyclic Sampling Design

To illustrate the cyclic sampling design, consider a
3/7 design, indicating that three plots in every
seven are measured (Table 1). The three plots are
spaced within a cycle and the cycle repeats, such
that pairs of plots can be found that are separated by
one, two, three, four, five, six, and seven plot
widths (Figure 1). For example, pair AB is at a plot
distance of one, BC is at a distance of two, AC is at
a distance of three, and so on. The seven-plot cyclic
length provides additional plot pairs separated by
eight, nine, and so on plot widths. In the figure, the
cycle is repeated four times, but ideally the cycle is
repeated numerous times. The only redundancy (or
inefficiency) in the design is the frequency at which
the cycle is repeated. In the example, it is at a plot
distance of seven where there are 12 pairs of plots
compared to the four pairs of plots found at all
other distances. The cyclic sampling design can also
be implemented in multiple dimensions, and the

cycle can differ in the x and y dimension: for ex-
ample, a 5/21 cycle can be used in the x dimension,
and a 4/13 cycle can be used in the y dimension
(see Campbell and others 1999).

Before installing plots in the field, a preliminary
study was conducted to determine the approximate
scale at which spatial patterns of vegetation charac-
teristics occurred. Normalized difference vegetation
index (NDVI) has been used to characterize LAI for
this region (Fassnacht and others 1997). We devel-
oped NDVI maps for the study area from several
Landsat midsummer images and quantified the spa-
tial patterns (S-PLUS Spatial Statistics Module 1.5
for Windows; Mathsoft Inc., Cambridge, MA, USA).
The range of spatial autocorrelation was approxi-
mately 500–600 m depending on the Landsat im-
age used. We tested other vegetation indexes (Tas-
selled caps, Simple Ratio, individual bands) because
they have been found to be better predictors of LAI
for northern hardwoods (Fassnacht and others
1997; Gower and others forthcoming), but we
found that all the vegetation indexes produced sim-
ilar estimates for the range of variation. Therefore,
we used NDVI to determine which cycle length was
most likely to yield spatial patterns and minimize
the number of field measurements. An iterative
process was used to identify an optimal design. We
sampled the image at the locations prescribed by
each design and estimated the spatial variations
(using variograms) to determine if it matched our
population estimates derived from using all pixels
within the NDVI scene. Confidence intervals, based
on Cressie (1993) and Kabrick and others (1997),
were calculated for gamma to ensure that the width
of a 95% confidence interval was within 10% of the
gamma estimate from the variogram calculation.
We ensured that the confidence interval width
stayed below 10% for distances up to two times the
range estimates generated from remote sensing.
This conservative assessment was done because our
initial range estimates from remote sensing were
only approximations of LAI ranges.

We selected the 6/31 cyclic sampling design pat-
tern (Table 1) and implemented it in a 3 cycle by 3
cycle pattern across the landscape, except that one
cycle had to be moved and 12 plots excluded to
avoid private land, leaving a total of 312 plots (Fig-
ure 2). Plot size was defined at 30 � 30 m to be
consistent with Landsat TM pixel size. Comparisons
of NDVI-based variograms and the changes in con-
fidence interval widths showed that the modified
design still complied with the predefined selection
criteria. We assessed our final sampling design
against the vegetation cover of the surrounding
area, using the WISCLAND statewide vegetation

Figure 1. Example of a one-dimensional sampling design
based on Clinger and Van Ness (1976) using four 3/7
cycles, illustrated with the dashed gray lines. Thinned
lined boxes represent the fundamental plot size. Black
boxes represent sampled plots. The table lists the pairs of
points found at each plot distance in the four cycles that
are used. Equal sampling is achieved at all plot distances
except the plot distance that is equal to the cycle length,
at which point all pairs of points in one cycle overlap with
the pairs of points in another cycle.
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cover map (WiDNR 1998), to ensure that we were
sampling vegetation cover types in percent cover-
age that were representative of the percent cover-
age found in the study area (see Table 2).

Field Measurements

Plot centers were located using an Ashtech GG-24
Surveyor (Magellan Inc., Sunnyvale, CA, USA), a
single-frequency real-time kinematic (RTK) global
positioning system (GPS) that used both the GPS
and GLONASS satellites (Van Diggelen 1997). A
base station and a rover unit were used. The base
station was equipped with a 35-W radio modem

(Pacific Crest, San Jose, CA, USA) to broadcast the
real-time differential correction information to the
rover unit. All 312 plots were surveyed to within
50-cm horizontal root mean square error, and the
center of each plot was marked with a wooden
stake.

Variable radius subplots were established at plot
center and at 7.5 m from plot center in each of the
four cardinal directions (Figure 3). A detailed de-
scription of the plot design is summarized in Camp-
bell and others (1999). All trees greater than 2.5 cm
diameter at breast height (DBH, 1.37 m) were iden-
tified to species and the diameter was measured.

Figure 2. Image illustrating
the cyclic sampling design
used to characterize the vege-
tation characteristics for the
WLEF tall eddy flux tower in
the Chequamegon-Nicolet
National Forest, Price County,
Wisconsin, USA. First, second,
and third order plots are over-
laid on top of an airborne
multispectral image from Sep-
tember 1998 that shows the
common spectral characteris-
tics of the major cover types
found in the site. First and
second order plots had optical
LAI and direct LAI measure-
ments taken; third order plots
only had optical LAI measure-
ments taken.
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Litterfall traps were installed to measure leaf litter-
fall and LAI. Five 60 � 40 cm litterfall traps were
used at 100 of the 312 plots. The 100 plots were
located in three distinct corners of the study area,
each with different vegetation types present.

Plots were defined as first, second, or third order

depending on the intensity of measurements at the
plot. LAI was measured optically at all plots (first,
second, and third order plots) using a Li-Cor LAI-
200 Plant Canopy Analyzer (Li-Cor Inc., Lincoln,
NE, USA) and measured directly from litterfall traps
at the first and second order plots. Standard field
measurement methods were used (Gower and Nor-
man 1991; Fassnacht and others 1994; Chen and
others 1997).

LAI is normally calculated as LAI � (1-	)Le �E/

E, where 	 is the ratio of wood area to total
(wood � foliage area) plant area, Le is the effective
LAI, �E is the needle-to-shoot area ratio that quan-
tifies clumping at the shoot level, and 
E is the
site-specific clumping correction factor for clump-
ing at the branch to tree level (Chen and others
1997; Gower and others 1999). �E is calculated as
An/As, where An is the ratio of one-half the total
area (all sides) of needles in a shoot and As is
one-half the total shoot area (Gower and others
1999). Because of the mixed nature of many of the
plots, the �E parameter for each species was
weighted by the basal area that each species con-
tributes to total plot basal area. Because of the high

Table 2. Summary of the Percent Vegetation Cover Types Sampled for the Entire Study Area Population,
Uniform Sampling Scheme (with 315 Points), Random Sampling Scheme (312 Points), and Implemented
Cyclic Sampling Scheme (312 points)

WISCLAND Cover Type
WISCLAND
Cover (%)

Uniform
Sampling
Design
(%)

Random
Sampling
Design
(%)

Cyclic
Sampling
Design
(%)

Agric. other 0.3 0.3 1.3 0.3
Grass 1.8 1.9 1.0 1.6
Jack pinea 6.7 7.0 3.5 7.7
Red pine 6.5 7.3 9.0 3.5
Mixed/other conifer 2.4 1.9 1.3 1.3
Aspen 23.8 22.2 25.3 22.1
Sugar maple 7.8 9.8 8.7 12.5
Mixed/other deciduous 5.9 7.0 7.7 6.1
Mixed/deciduous/conifer 5.0 7.0 5.4 7.4
Open water 0.2 0.0 0.0 0.0
Wetland: emergent/meadow 0.3 0.3 0.0 1.6
Wetland: lowland shrub 3.7 2.5 4.5 2.6
Wetland: shrub deciduous 10.6 8.3 10.3 7.7
Wetland: broad-leaved evergreen 2.8 2.2 1.9 1.3
Forested wetland: conifer 6.2 8.3 5.1 8.7
Forested wetland: mixed 9.3 9.5 9.9 12.5
Barren 3.5 1.3 1.9 0.6
Shrub land 3.2 3.2 3.2 2.6

Total 100 100 100 100

Based on the WISCLAND land cover classification (WIDNR 1998)
aAll jack pine in study area clear-cut in 1996–97

Figure 3. Plot-level sampling scheme for leaf area mea-
surements. Crosses represent optical LAI measurements;
hashed circles represent litter basket leaf area estimates.
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levels of heterogeneity at the site, it was difficult to
ascertain the correct value for 
E. We therefore
assumed a value of one, so that LAI was only cor-
rected for shoot clumping. Excluding the 
E correc-
tion factor should not affect the results because it is
typically near one for northern hardwoods forests
(Gower and others 1999) and will not affect general
spatial relationships, which is the focus of this pa-
per.

Design Comparison Methodology

We compared the cyclic sampling design to uniform
and random sampling schemes for the 312 plots
used. To do this, we sampled from a Landsat TM
image that served as our “population.” The uniform
sampling design had plots located 180 m apart in
the x and y dimensions, and the random sampling
design used plots that were randomly located with
a minimum of 30 m between plot centers. The test
consisted of a series of simulations to quantify the
number of points needed for the random sampling
design to achieve a similar estimate of variance and
confidence interval of gamma as the cyclic sampling
design. Using ERDAS Imagine 8.4 (ERDAS, Inc.,
Atlanta, GA, USA), cells were randomly sampled
from that population. Estimates of spatial autocor-
relation parameters and confidence intervals were
calculated from those samples.

Statistical Analyses

All of the analyses presented are based on the sub-
plot data. Statistical analyses were performed using
S-Plus 2000 for Windows (Mathsoft, Inc., Cam-
bridge, MA, USA.), the S-Plus Spatial Statistics
Module version 1.5 for Windows (Mathsoft, Inc.,
Cambridge, MA, USA), and the NLME Library v3.3
(Pinheiro and Bates 2000). Spatial regression was
accomplished using SAS’s PROC MIXED procedure
(SAS release 8.1 for Windows; SAS Institute, Inc.,

Cary, NC, USA). We used variograms because their
results can easily be integrated into the mixed-
effects model’s covariance structure. The LME pro-
cedure of Pinheiro and Bates (2000) has spatial
covariance structure built into the model-fitting
routines. Neither SAS nor S-Plus alone had the
capacity to accomplish all that we needed, so a
combination of the tools available in each package
was used.

A spatially explicit prediction (that is, a map) was
created using the built-in Kriging function in SAS’s
PROC MIXED. Kriging is a linear interpolation that
allows predictions of unknown values in the study
area based on information from measurements
made at sample locations. The process works by
taking the local information measured at each plot
and applying it to each cover type based on the
variogram models (Table 3). It incorporates the
model of spatial variance derived from those obser-
vations, as well as the individual measurements, to
produce a map that predicts both the values across
the landscape and the standard errors of those pre-
dictions. For additional information on Kriging, see
Cressie (1993), Kaluzny and others (1998), and
Pinheiro and Bates (2000). We used the range, sill,
and nugget values of the different cover types and
applied those to a cover type map of the site
(Mackay and others forthcoming).

RESULTS AND DISCUSSION

Comparison of Different Sampling Designs

We focusd on gamma and the confidence interval
calculated for the gamma estimates at different dis-
tances to evaluate the sampling plans. Specifically,
if the confidence interval width was less than 10%
of gamma, the sampling design was considered ef-
fective for that distance. The uniform sampling de-
sign provided spatial information only at intervals

Table 3. Summary of July 1999 Leaf Area Index Estimates by Dominant Cover Type, with a Spherical
Spatial Covariance Structure

Vegetation Cover
Type Mean SE 5th % 95th %

Range
(m) Sill Nugget

Aspen 3.57 0.19 0.51 5.72 80.20 1.90 0.2585
Forested wetlands 3.82 0.12 1.32 5.66 158.99 1.29 0.5144
Grass 1.14 0.35 0.10 3.80 22.49 1.23 0.3431
Northern hardwoods 3.45 0.16 1.31 5.44 90.63 1.61 0.2268
Upland conifers 3.99 0.23 0.98 6.57 53.19 2.37 0.3240

SE, standard error of the estimated mean
The sill is the estimated variance (�̂2) as limh3� �(h), the nugget is the estimated variance at distance zero, and the range is the estimated distance at which the sill begins.
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of the sample spacing (that is, 180, 360, 540, and so
on). The uniform sampling scheme provided no
spatial information for some distances at less than
500 m (Figure 4). The random sampling scheme
sampled all lag distances better than the uniform
design, but the number of plot pairs separated by
less than 100 m was inadequate and therefore not
effective (based on the confidence interval width).
The cyclic sampling design sampled an adequate
confidence interval width at all lag distances to
quantify spatial variation with confidence interval
widths less than 10% of gamma at scales ranging
from 30 to 3000 m (Figure 5).

The cyclic sampling design included pairs of re-

dundant plots at specific lags because the diagonal
pairs provided more information at certain dis-
tances that were not in the original one dimension
and also some redundancy where the lag distance
equals the cycle length (or multiples thereof). In
contrast, all plots in the uniform sampling design
occurred at a constant distance from each other.
The random sampling design produced a spatial
coverage comparable to the cyclic sampling design,
but the random plot locations would be very diffi-
cult to relocate in a study site that is 900 ha in
extent, even using GPS navigation. Also, the ran-
dom sampling design required 1000 random plots
to achieve confidence interval widths comparable
to the 312 plots used in the cyclic sampling design.
Because all of the sample plots are equally spaced,
the uniform sampling design can only achieve the
same spatial resolution by two means—either the
spatial domain of the study has to be reduced so
that all of the plots are only 30 m apart from each
other, making the study area size 1/36th the origi-
nal size, or the number of sampled plots must be
increased to 36 � 312 (11,232 plots).

All three of the sampling designs adequately sam-
pled the different vegetation cover types, as classified
by WISCLAND (WIDNR 1998). Cover types that
made up less than 5% of the landscape were often
undersampled in all three sampling designs. If project
goals were to sample all vegetation cover types, this
underrepresentation may have been a concern. Given
the errors in the WISCLAND classification (WIDNR
1998) and that management activities have changed
the vegetation since the classification was performed
(all jack pine stands in the study area were clear-cut in
1996 and 1997), we thought that we sampled the
vegetation adequately with the cyclic sampling de-
sign. For other ecosystems, where small areas may be
of larger concern, such as quantifying boreal wetlands
and their trace gas emissions (Roulet and others
1997), a stratified cyclic sampling design that captures
each cover type may be more desirable.

The benefits of the cyclic sampling design must be
weighed against potential drawbacks (Table 4).
There is sampling redundancy when the cycle re-
peats itself, but a uniform sampling design is far
more redundant and the random design less so. A
more important concern is that if the cycle length is
the same as the spatial patterning on the ground,
that pattern may not be detected. This problem can
be avoided both with adequate sampling and by
ensuring unbiased placement of sample locations.
The cyclic sampling design is also more complicated
to implement because designing the optimal
scheme requires a priori information, thereby re-
quiring users to understand the intricacies of the

Figure 4. Comparison of the effectiveness of three differ-
ent sampling schemes at sampling distances between 30
and 500 m given a plot size of 30 m.

Figure 5. Histogram of the number of pairs of points
sampled using the cyclic sampling design from 30 to
3000 m. Below are the confidence interval widths based
on the number of pairs of points sampled at each lag
distance shown.
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calculations and design. The additional costs asso-
ciated with developing a strong cyclic sampling de-
sign are justified. Because some points are located
near each other, hotspots of increased knowledge
are created on a prediction surface where multiple
points improved the local predictions.

Definitions of Plots and Subplots

Subplot measurements, made at distances from 7.5
to 15 m apart from each other, were expected to
influence lag distances only up to the 30-m plot
size, but there were unexpected consequences. The

estimated range of spatial autocorrelation of LAI
decreased from 205 to 147 m when we switched
from plot-level average to subplot measurements,
suggesting the individual subplot measurements
provided useful information for describing the var-
iogram shape. We concluded that it is important to
maintain as much spatial information as possible
and not to aggregate or average data either in the
field or during analysis until after the geostatistical
analyses have been completed.

Site Vegetation Characteristics

Four forest cover types comprised 80% of the total
area of the 312 plots used to characterize the footprint
of the WLEF tower (Figure 6). The four dominant
forest types were (a) lowland forested wetlands con-
sisting of alder and northern white cedar; (b) trem-
bling aspen, often mixed with a balsam fir understory;
(c) northern hardwoods dominated by sugar maple,
red maple, and basswood; and (d) upland red and jack
pine plantations. Grass (meadows, clear-cuts, and so
on) was the fifth major cover type. Roads, houses, and
a mixture of different lesser cover types comprised the
remaining land area.

The estimated autocorrelation range for effective
LAI (as measured with the Li-Cor LAI-2000 and
corrected for shoot-level clumping) was 147 m with
an estimated sill and nugget of 2.16 and 0.53, re-
spectively (Figure 7a). Including vegetation cover as
a covariate decreased the overall estimated range to
117 m, with an estimated sill and nugget of 1.78
and 0.55, respectively (Figure 7b), implying a rela-
tionship between vegetation cover and LAI, as in-
dicated in Figure 7b. Most of the oscillations in

Table 4. Qualitative Benefits and Drawbacks of the Three Sampling Schemes: Uniform, Random, and
Cyclic

Issue Uniform Random Cyclic

Ease of design and implementation – – ��
Problem if sampling pattern exactly

matches pattern on landscape �� 0 ��
Plots near each other produce

hotspots of information on a
Kriged prediction surface 0 �� –

No redundant pairs of points �� 0 �
Equal number of pairs of points

across all lag distances �� 0 �
Maximizes variance of samples �� 0 ��
Distance traveled to reach all points �� �� ��
Ease of navigation to each point �� �� ��

��, large negative attribute; –, small negative attribute; 0, neutral impact; �, small positive attribute; ��, large positive attribute

Figure 6. Percent basal area for the overstory tree species
in 1248 variable radius subplots located in the tower
footprint.
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gamma along the sill (Figure 7a and b) were attrib-
uted to random variation; note the 99% confidence
intervals where very few points lie completely off
the estimated spherical model. The oscillations in
the variogram could be caused by spatial patterns
on the landscape caused by glacial deposition, soil
types, management activities, management unit
size, and so on; however, the cause(s) cannot be
determined directly (Radeloff and others 2000). Fu-
ture research will use covariates such as manage-
ment activities and biophysical variables to examine
the potential causes of the spatial patterns of LAI.

The spatial autocorrelation patterns differed
among the five main vegetation cover types: aspen
had a mean LAI of 3.57 and a range of 80 m,
forested wetlands had a mean LAI of 3.82 and a
range of 159 m, grass had a mean LAI of 1.14 and a
range of 22.5 m, northern hardwood forests had a
mean LAI of 3.45 and a range of 91 m and, upland
conifer forests had a mean LAI of 3.99 and a range
of 53 m (Table 2). Recall that the range represented
the distance at which LAI was correlated. Grasses
had a very short range, suggesting that there are
mostly fine-scale differences in LAI values, probably
due to the short stature of the vegetation and the
location where it occurred. The three upland forest
cover types (aspen, hardwoods, and conifers) had
moderate range estimates (53–91 m), probably
caused by frequent management (thinning, timber
stand improvement), which fragments a continous
canopy into patches. Forested wetlands had the
largest range estimate (159 m) because human dis-
turbances do not fragment the canopy as much.

Fassnacht and Gower (1997) measured the LAI of
the six major forest types in north central Wiscon-
sin and reported that the LAIs for jack pine (AQV
and QAE habitat types), mixed conifer–hardwood
forests (PMV and AVVib habitat types), and north-
ern hardwood forests (ATD and AViO habitat types)
averaged 2.16, 4.73, and 6.48, respectively. Gower
and others (Forthcoming), using the 24 plots from
Fassnacht and Gower (1997) and an additional 24
plots that included a greater combination of forest
leaf habit (evergreen versus deciduous) and soil
drainage classes, reported that LAI ranged from 2.1
to 8.4. The lower LAI values reported in this study
are likely due to the lower water-holding capacity
of the soils in the area as well as recent harvesting
and thinning management practices.

Spatial Estimates of LAI

An important aspect of the sampling design and spa-
tial regression analysis is to develop predictions and to
derive error estimates for the predictions. Based on
our cyclic sampling design, we developed a map of the
predicted LAI for the study site (Figure 8). The aver-
age LAI for the 3 � 2 km area was 3.51 � 0.89 (with
a minimum of 0 and a maximum of 6.35). Error
estimates are an important tool for evaluating both
the predictions and the sampling design itself. There-
fore, we derived a map of standard errors using the
same spatial regression as used to generate the map of
predicted LAI (Figure 9). The standard errors decrease
near sampled locations, especially when there are sev-
eral sampled plots close together. Partly for this rea-
son, the design is best used for interpolation within
the study area, not extrapolation outside this region. If

Figure 7. (A) Semi-variogram for the model, indepen-
dent of vegetation, of effective leaf area index measured
in July 1999. Open circles represent gamma estimates at
different lag distances, with 99% confidence intervals;
solid line represents fitted spherical model. (B) Semi-
variogram for the vegetation dependant model of effec-
tive leaf area index measured in July 1999. Open circles
represent gamma estimates at different lag distances, with
99% confidence intervals; solid line represents fitted
spherical model.
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the goal was only prediction, and the variogram was
known (which was not the case in this study), then a
different design may be more efficient.

Remote Sensing and Geostatistics

Quantifying spatial heterogeneity is an essential com-
ponent of the validation of MODIS products. Cover
types that comprise a small fraction of the total land-
scape but are of importance are omitted as the scale of
observation increases in a heterogenous landscape
(Benson and MacKenzie 1995; Roulet and others
1997). The application of geostatistical analysis of data

will play an important role in increasing the under-
standing of how spatial heterogeneity differs among
biomes, in accurately compositing pixels of the same
size from a single sensor, or using different-sized pix-
els from different sensors. The approach described in
this paper provides an alternative method to remote
sensing for estimating LAI and vegetation cover for
the footprint of eddy flux towers. Our approach may
be a good alternative for terrestrial ecosystems that
have LAIs that exceed the threshold at which many
remotely sensed vegetation indexes saturate.
Fassnacht and others (1997) showed that in the same

Figure 8. Kriged LAI surface
map based on estimates of
spatial patterns of effective
LAI in four major forest cover
types and the minor nonforest
cover type.
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region as this study, high LAI values (more than 5) are
difficult to predict using NDVI or SR (simple ratio)
indexes derived from Landsat TM 5 images because of
sensor saturation. Alternatively, geostatistics can be
used in combination with remote sensing to adjust for
locally high or low areas of LAI. The cyclic sampling
design could provide a new approach for deriving
other important ecosystem characteristics that cannot
be estimated accurately via remote sensing. For ex-
ample, soil carbon content is an important parameter
that is needed to parameterize ecosystem models used
to simulate carbon and water exchange for areas sur-
rounding eddy flux towers.

CONCLUSION

The sampling design first proposed by Clinger and
Van Ness (1976) is applicable for ecological sam-
pling schemes to quantify spatial patterns of vege-
tation characteristics. Accurate characterization of
LAI is essential for parameterizing surface vegeta-
tion atmosphere transfer models that are routinely
calibrated at eddy flux towers and used to simulate
water, energy, and gas exchange between terrestrial
ecosystems and the atmosphere. This study demon-
strated the strength of the cyclic sampling design at
the landscape level to quantify ecosystem charac-

Figure 9. Kriged LAI stan-
dard error estimates based on
estimates of spatial patterns of
effective LAI in four major
forest cover types and the mi-
nor nonforest cover type.
Black regions contain cover
types that were not spatially
Kriged.
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teristics and adds additional knowledge and value
to ground-based measurements.
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