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Abstract

Spatial models of ecological and hydrological processes are widely used tools for studying natural systems over large
areas. However, these models lack speci�c mechanisms for reporting output uncertainty contributed by model structure, and
so testing their suitability for studying a large range of problems is di�cult. This paper describes a method of evaluating the
uncertainty contributed by underlying assumptions used in constructing integrated environmental models from two or more
sub-models that were developed for di�erent purposes. Integrated environmental models are typically constructed from many
individual process-based models. Conicting assumptions between these sub-models, e.g., spatial scale di�erences, are easily
overlooked during model development and application. This “semantic error” cannot be predicted prior to simulation, as it
may only emerge through the interaction of sub-models applied to a particular set of data used to drive a simulation. Model
agreement is proposed and demonstrated as a way to detect problems of model integration at the state variable level within
an integrated ecosystem model. This model agreement is then propagated to model response variables using multiple criteria
to examine their sensitivity, predictability, and synchronicity to the measured uncertainty in state variables. These three
properties are combined under fuzzy logic in order to provide decision support on where, for a given time during simulation
the sub-models agree on a particular response variable. This paper describes the details of the approach and its application
using an existing integrated environmental model. The results show that, for a given set of model inputs and application,
integrated environmental models may have spatially variable levels of agreement at the sub-model level. The results using
RHESSysD, a spatially integrated ecosystem hydrology model, indicate that semantic error in estimates of plant available
soil moisture are consistent with observations of the need for resetting events, such as ooding, to initialize the model to a
point where further simulation results can be trusted. These results suggest that a dynamic selection of sub-models may be
warranted given a reasonable method of determining sub-model disagreement during simulation. Fuzzy set theory may be a
useful tool in arriving at such a model selection process as it allows for a relatively straightforward synthesis of numerous
model evaluation criteria with a large quantity of output from the model. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Concern over the role of human activity on our
environment has increased the demand for integrated,
spatially-distributed, environmental models that ad-
dress the interactions of human activity, the terrestrial
biosphere, climate, and hydrology. Furthermore, the
widespread availability of geographical information
systems (GIS) to support spatial data processing and
analysis is making spatial models accessible to a
larger audience that includes policy makers. As a re-
sult, there has never been a greater need for decision
support tools to help in evaluating the applicability of
complex environmental models to a given problem.
One of many possible requirements for such models
is that their underlying assumptions be consistent with
a potential application of the model. Models abstract
from reality to varying degrees by assuming that
certain properties of the system represented can be ig-
nored. Some of these simplifying assumptions will be
known to a model end-user, while others will not. The
more deeply rooted assumptions, such as those based
on spatial aggregation, are often poorly documented
and thus less well understood to model end-users. If
explicit knowledge of the assumptions underlying a
process-based model is unknown, then conicting as-
sumptions resulting from a combination of such mod-
els will undoubtedly produce unexpected, and often
di�cult to evaluate, output. Conicting assumptions
in geographical information systems have previously
been described as semantic errors [27,35], since they
are usually attributable to di�erences in interpretation
of a modeled reality and usually contribute to the over-
all error. Semantic error in the context of integrated
models also contributes to error in the form of over-
prediction or under-prediction of model output. While
there are many sources of error in environmental
models it is this semantic error contributed by model
structure that we address here.
For the purposes of this paper integrated models

are composed of many individual process-based mod-
els (or sub-models) that describe di�erent processes.
Each sub-model represents an interpretation of system
behavior, intended for the purpose of (1) elucidating
complex system behavior, or (2) predicting system be-
havior [15]. A model developed as a null hypothesis
may be used for making predictions if it demonstrates
a convincing level of validity. Such adaptation is a po-

tential source of uncertainty for environmental mod-
els, which are not subject to formal proof and so are
neither unconditionally validated nor invalidated [28].
Since the conditional requirements for using a model
are either not reported or are subject to interpretation,
there is a danger that the perceived “: : : theoretical
rigor that underlies the models will engender uncriti-
cal belief in their prediction” [20].
This paper presents a methodology and example

prototype software system for testing combinations of
process models intended to be integrated into an envi-
ronmental model and applied to a particular problem.
A new method of managing semantic errors caused
by the structure of integrated environmental models is
developed to evaluate model suitability for answering
speci�c questions. Here it is suggested that a decision
about sub-model suitability as part of an integrated
model can be made given a knowledge of how model
response variables are a�ected by semantic error de-
termined by a divergence from some expected sys-
tem behavior. The decision-making framework upon
which this decision is made is referred to as model
agreement. This framework is described in the next
section. A method of measuring semantic error in the
context of a particular integrated model is then de-
scribed, and �nally we will step through an example
to illustrate the application of the system.

2. Decision making framework

2.1. Model agreement

Hayes-Roth and Jacobstein [12] suggest that knowl-
edge bases give application programs increased ex-
ibility by lending them reasoning ability. Previous
work in knowledge-based simulation modeling has
demonstrated improved control over model develop-
ment, analysis of model results, and model use [4,14].
Knowledge-based modeling has improved the rigor
and provability of some earth science models. For
instance, decision-support systems have aided in the
application of both hydrological and ecosystem mod-
els [7,10,30,34,36]. Decision-support systems help in
choosing, from a repository of models, a collection
of models that is suitable for a given problem. While
the model selection process remains largely human-
guided a number of model description languages have
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Fig. 1. Model-based management can be approached from the
perspective of the model as (a) black-box, or (b) an integral part
of the software system in which all components, e.g., sub-models,
must be viewed as acting together towards achieving a common
goal.

emerged to formalize some of the human decision pro-
cesses and information management associated with
model development [3,5,6,19,33,38].
Model information management can be approached

at di�erent levels (Fig. 1). In the model informa-
tion management strategy that is most commonly
seen within the GIS community (Fig. 1a), all deci-
sion rules are held separate from the process models
and decisions are made centrally [10,21,36]. This is
considered a coarse level of integration in which se-
mantic errors within the process models cannot be
detected, as they depend on the interactions between
sub-models during simulation. A �ner level suggested
here (Fig. 1b) allows sub-models to measure seman-
tic error that emerges through model interaction. The
degree to which semantic errors in the linkages be-
tween models a�ect model output is here referred to
as model agreement.
Model agreement follows from model theoretic

ideas, which are applied to databases and knowl-
edge bases [18]. A model theory clearly states the
semantics of a knowledge base, KB, and provides
the software system an unambiguous understanding
about which statements added to KB agree with KB
(Fig. 2a). The statements based on model theory
are either true or false in the context of the existing
database or knowledge base. Here we must deal with
the fact that process models do not lend themselves
to mathematical proof [28], and so, by de�nition, se-

Fig. 2. Model theory requires perfect agreement between knowl-
edge bases KB 1 and KB 2. Model agreement measures a shift
from a central concept representing perfect agreement between
models.

mantic equivalence of process models must follow a
di�erent paradigm that is not based on a Boolean set.
Instead, a continuous measure of agreement between
models is suggested (Fig. 2b). Two models are in per-
fect agreement if they give the same system response
under the same conditions. Integrated models that
are designed top-down, in which all sub-models are
designed together for a speci�c goal, will have sub-
models that are compatible in their underlying space,
time, and attribute assumptions. However, large in-
tegrated models are more likely to be constructed in
a bottom-up fashion, in which sub-models that were
originally designed for di�erent goals are combined to
solve a new set of goals. Thus, integrated models are
most likely to have conicting assumptions between
sub-models, and so the sub-models may diverge from
perfect agreement. Instead of being true or false, the
combined models do not totally agree on all variables
of interest to the end-user of the model.
While it is obvious that a detected semantic error

can be corrected given a better model, we suggest
that a given integrated model structure may perform
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admirably over a wide range of applications and then
easily trusted for all applications. However, there is
as yet little theory on how to determine when an inte-
grated model is misbehaving at a semantic level. Here
it is suggested that semantic errors can be detected
for a larger number of variables than more tradi-
tionally tested variables that are corroborated against
measurements. Many modeled variables have no
�eld-measured values for which a rigorous model
corroboration can be made. For instance, the spatial
variability of soil moisture is di�cult to measure
over large areas, and yet it has a profound inuence
on surface runo�, which is routinely measured. For
the model described here we found that semantic er-
rors could be detected in storage, or state, variables
such as water table depth. The propagation of this
detectable error to other model variables, such as
soil moisture, give the modeler insight on how and
when to change model structure. Of course, even the
“best” integrated models may have undetectable se-
mantic errors, for which the methodology presented
here cannot help. However, the methodology relies
on the modeling being able to specify all simplifying
assumptions used to translate what is currently known
about the physical system into a model structure.
The discussion that follows assumes that semantic
error is directly related to violation of one or more
underlying assumptions of the models and that this
error is propagated to variables of interest to the
model developer. A multiple criteria method of trans-
ferring model agreement from measured semantic
error to output variables is described in the next
section.

2.2. Transfer of model agreement

Fig. 3 shows the overall ow of processes within
the decision support system. If we assume that the
response variable is de�ned in some query to the in-
tegrated modeling system, then such a query could
have the form, 〈�; �; �; �(��)〉, where � is the goal of
the query (or response variable of interest), � and �
respectively de�ne the spatial and temporal domains
within which � is de�ned, and �(��) is a membership
function that describes the extent to which � is a mem-
ber of the fuzzy set [23] describing model agreement
for the goal. We assume that a membership of 1.0 will
be used to denote that � was computed with perfect

agreement between sub-models, and a membership of
0.0 will denote perfect disagreement.
The simulation model provides agreement amounts

in both the response and state variables. Agreement
in response variables and state variables are distin-
guished in that agreement in a response variable, ��,
is said to be functionally related to semantic error in
a state variable, ��:

�� = f〈��;M 〉; (1)

where the function, f, combines one or more crite-
ria, and M represents the integrated model itself. The
actual computation of �� is made by parallel simula-
tion in which an output variable � is calculated twice:
(1) �1 with �� uncorrected and (2) �2 with �� cor-
rected. The di�erence between �1 and �2 is ��, which
can then be compared to �� to assess how semantic
error is transferred to variables of interest. A one-to-
one relationship between �� and �� is not necessary
to determine the actual transfer of agreement, as the
�nal agreement is reported as a membership regard-
less of the absolute sign of the relationship between
�� and ��. For instance, there could be a form of hys-
teresis in which �� may take on completely di�erent
values at di�erent times while �� remains constant.
Hysteresis is partially accounted for by incorporating
a synchronicity criterion as described below.
We identi�ed three criteria for measuring the

transferral of semantic error to goal variables. The
criteria are: (1) sensitivity, (2) predictability, and (3)
synchronicity. These criteria were selected to be con-
sistent with indicators used in sensitivity analysis to
assess model performance. Sensitivity describes the
total amount of variability in a response variable that
is attributable to a given amount of model disagree-
ment measured for a state variable. The membership
function for sensitivity is computed as

�〈��〉 = min
{
1−

[
��(i; t)−min(��)
max(��)−min(��)

]}
(2)

for all i patches and time intervals, t, within a de-
�ned spatial domain. A spatial domain is represented
as a collection of one or more patches. Patches may
be considered as a group in order to reduce the num-
ber of end-member response functions and facilitate
easier presentation to a model designer. The member-
ship function that results from the transformation in
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Fig. 3. Flow of processes within the decision support system. RHESSysD is contained within the box, while all components to the right
of the box are considered part of the decision support system.

Eq. (2) describes the worst case sensitivity of the re-
sponse variable to measured disagreement. The shape
of this function indicates how sensitive the response
variable is to model disagreement.
Predictability describes the rate of change of ��

with respect to ��. Slowly or smoothly varying re-
sponses are predictable over a small range of variation
in semantic error. Sharp transitions or discontinuities
make it di�cult to predict response variable behavior
for even small amounts of model disagreement. A re-
sponse variable whose behavior is linearly related
to disagreement in a state variable would yield a
predictability membership function with a value of
1.0. The membership function for predictability is
computed as

�(��) = min
{
1−

[
��(i; t)−min(��)
max(��)−min(��)

]}
; (3)

where ��= @��=@�� is the rate of change of the
response variable with respect to measured model
disagreement.
Synchronicity describes the degree to which agree-

ment in a response variable follows state variable
agreement. In many cases a response variable dis-
agreement may peak at a later time during a simula-
tion than the peak disagreement in a state variable.
This lag is attributable to a storage e�ect in many
physical systems. For instance, some water stored in
the soil by a rising water table during a spring snow
melt often remains in the soil well into the summer
months at which time it may be depleted by transpir-
ing vegetation. An error in calculating the position
of the water table can result in an error in soil water
storage. Although the error in the water table position
may occur over only a short time period, e.g., the time

it takes to melt a snow pack, the error propagated to
soil moisture storage remains for a longer period of
time. This storage e�ect results in an asynchronous
response, possibly in the form of some hysteresis, as
illustrated in Fig. 2b. The actual width of the grey
band is variable and is conceptually de�ned as the
di�erence in relative residual semantic error between
the response and state variables, for a given spatial
location, calculated over the full time domain of the
simulation. It is computed as follows:

� (!�(i)) = 1− |(i)− �(i)|; (4)

where

�(i) =
���(i)−min(���)
max(���)−min(���) ; (5)

(i) = 1− |��(i)| −min(|��|)
max(|��|)−min(|��|) ; (6)

respectively, describe relative magnitude of the range
of residual error in a response variable for a given
amount of state variable disagreement, and relative
magnitude of the state variable disagreement. The
range of residual error in the response variable is
given by

���(i) = max(��(i))−min(��(i)): (7)

Finally, an overall membership function for model
agreement with respect to a particular goal variable is
given by

�(��(i)) = min[�(��(i)); �(��(i)); �(!�(i))];

(8)

where �(��) gives the membership of response vari-
able, �, in the model agreement set for that variable.
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We choose to use the minimum function on the
grounds that lowmembership in any one of sensitivity,
predictability, and synchronicity should produce un-
desirable integrated model response. How these indi-
vidual criteria interact with each other is otherwise
unknown. Furthermore, it is assumed that disagree-
ment is given by the complement of agreement,
@�(�), such that a group of sub-models are in agree-
ment with respect to � if �(��)¿ 0:5.
The preceding discussion is easily extended to

multi-variate goals by recognizing that each goal vari-
able in a query can have its own membership function
and decision-making process. However, speci�c rules
for combining the individual membership functions
to assess overall agreement of the multi-variate query
are beyond the scope of the present work. In the next
section we describe a particular environment model
and a method of measuring semantic error within it.

3. Measuring model semantic error

To demonstrate our approach we used the Re-
gional HydroEcological Simulation System-Dynamic
(RHESSysD). RHESSysD is a spatial information
processing and modeling environment for simulat-
ing water, carbon, and nutrient uxes (Fig. 4). The
model incorporates a hydrology model, TOPMODEL
[22,26], to link a collection of landscape patches via
ground water. Vertical water balance is maintained
within each patch using a collection of models to
represent evaporation, transpiration, soil drainage,
capillary rise, snow melt, and storage of water. De-
tails of the mechanics of the integrated model are
given in [8,25]. Some details of the hydrology model
that determines the position of the water table at each
time step during simulation are described here. The
position of the water table in turn a�ects soil water
storage, which is used by vegetation and determines
the spatial extent of saturated areas that can generate
surface runo�. The position of the water table is also
used to control the rate of ground water ow, which
sustains stream ow. In TOPMODEL the depth to a
water table in thin, well-drained soils on moderate to
steep slopes is represented by

zi = 〈z〉 − 1
f
(�− TSI); (9)

where zi is the water table depth at a particular land
surface area (or patch), 〈z〉 is a mean water table
depth, f is a soil hydraulic parameter, � is the mean
topography-soils index (TSI) [29], where TSI ac-
counts for horizontal water ow convergence in con-
cave areas, water retention in areas with relatively low
soil transmissivity, ow divergence in convex areas,
and rapid drainage in areas of high soil transmissivity
[26]. Patches with high TSI will tend to have small
z values while patches with low TSI will have large
z values. Eq. (9) allows for a redistribution of water
based on a probability distribution of TSI with no
regard for spatial position other than its connected to
a single simulation unit. This allows TOPMODEL
to e�ectively move water laterally without knowing
explicit connections between patches. This lack of
a spatially explicit hydrological model poses a chal-
lenge for constructing spatially distributed models
such as RHESSysD, yet these simpler models remain
in the mainstream because of their applicability to ad-
dressing watershed management problems for which
there may be a paucity of detailed spatial information
[16,20].
Patches are represented as groups of cells within a

raster GIS. Patches are in turn organized into subcatch-
ments over which 〈z〉 and � are computed. Patches
within a given subcatchment that have the same TSI
are considered hydrologically equivalent. Each patch
is assigned vegetation, soil, and other attributes using
GIS analysis. TSI assumes that subsurface recharge
is spatially uniform in order to allow the water table
to rise and fall uniformly with the subcatchment av-
erage water recharge. A net positive recharge raises
the water table the same amount everywhere, while a
net water loss lowers the water table the same every-
where. The model generates runo� from any patch in
which zi¡0. The uniform rise and fall of the water
table is only considered a reasonable representation
under conditions of spatially uniform water recharge
to the water table. Otherwise, transient localized wa-
ter table mounding occurs for short periods of time in
areas of greater than average recharge. Spatial varia-
tions in snow melt rates, evaporation and transpiration
rates, and drainage determine the actual spatial distri-
bution of water recharge in RHESSysD, which is not
required to be uniform. The result is a spatial scale
mismatch between TOPMODEL and the other models
within RHESSysD. Mackay [9] tested the validity of
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Fig. 4. Physical processes represented by RHESSysD. Shown are three patches (e.g., forest stands) with vertical water uxes and horizontal
water uxes.

Eq. (9) given spatial variation in surface-subsurface
water ux processes, by incorporating a model self-
evaluation tool that di�erentiates between expected
subsurface ow and actual subsurface ow as repre-
sented by TOPMODEL.
Fig. 5 describes the process of di�erentiating be-

tween expected subsurface ow and semantic error
due to variable recharge. Patches are spatially arranged
into groups by elevation, allowing for water redistri-
bution using Eq. (9) within each elevation group, but
restricting between-group water redistribution to oc-

cur only from higher to lower elevation. This restric-
tion assumes that the partitioning of the landscape into
a series of hillslope facets attached to streams captures
the dominant landscape dissection and that major path-
ways of surface runo� are not contained within hill-
slopes. It is recognized that this assumption may not
always hold and it may be possible that runo� gener-
ating areas higher on the slope will occur. However,
it is the redistribution of excess recharge that occurs
in runo� generating areas to source areas that con-
stitutes a semantic error here. By restricting water
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Fig. 5. Conceptual representation of semantic error in the redistribution of water to compute water table depths.

redistribution we hope to approximate the behavior
of explicit routing models that move water in only a
down slope direction without creating an explicit rout-
ing model that would be di�cult to integrate into the
existing model structure. The unrestricted water redis-
tribution of TOPMODEL allows water to e�ectively
be moved in an up slope direction under certain con-
ditions in which higher than average recharge occurs
in the lower elevation areas within the subcatchment.
For example, snow melt rates are usually higher at
lower elevation sites than at high elevation sites due to
the higher temperatures, and so snow melt processes
can violate the uniform recharge assumption. The dif-
ference between unrestricted water redistribution and
restricted water redistribution gives the patch level se-
mantic error.
Following Moore and Thompson [32] Eq. (9) is

solved for patch i using the current water table position
at patch j. Solving for zj gives an estimate for zj as

ẑji = zi +
1
f
(TSIi − TSIj): (10)

A residual between stored water table depth, which
was computed in a previous iteration of the model us-
ing the correction described below in Eq. (13), derived
from Rules 1 and 2 (below), and the estimated depth
is computed as

�Rji = zj − ẑji ; (11)

where zj is explicitly stored from the previous time
step. Eq. (11) describes the e�ect of redistributing wa-
ter from (to) i to (from) j, but we still need to de-
termine how this potentially contributes to semantic
error. Since we would like to preserve the down-slope
movement of water that is produced by explicit rout-

ing models, semantic error can be quanti�ed to de-
termine if lower elevation patches contribute water
to higher elevation patches. The following rules de-
�ne up-slope and down-slope components of the water
redistribution:
Rule 1 (Water incorrectly redistributed to an up-

slope patch from patch i):

∀j; ∈ sub-area | elevation(j)¿elevation(i);
i∈ sub-area

⇒ �iupslope = MAX


0;

k∑
j=1

�Rjiwj


:

Rule 2 (Water incorrectly distributed from a down-
slope patch to patch i):

∀j; ∈ sub-area | elevation(j)¡elevation(i);
i∈ sub-area

⇒ �idownslope = MIN


0;

k∑
j=1

�Rjiwj


;

wherewj is weighting of sub-area j by its relative area.
Total semantic error, which is error in the position of
the water table due to violation of the uniform recharge
assumption of TOPMODEL, at patch i is

��(i) = �iupslope + �idownslope (12)

where ��(i) is positive when the predicted water table
is too deep and negative when the modeled water table
is too near the surface. Given a knowledge of semantic
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error a “true” patch water table is computed as

zi = (〈z〉 − ��(i))− 1
f
(TSIi − �); (13)

where ��(i) is used as a correction to the mean wa-
ter table depth used in redistribution. This corrected
model (Eq. (13)) is then applied iteratively with
Eq. (11) in the next simulation time step. By us-
ing Eqs. (9) and (13) in parallel two sets of output
variables are generated representing, respectively, un-
corrected and corrected sets. The di�erences between
respective corrected and uncorrected variables, ��(i),
that arise using the di�erent sets of state variable cal-
culations are then applied in Eq. (8) to obtain model
agreement (or disagreement) about � at patch i.

4. Results

We tested the decision support system using data
sets obtained for Onion Creek, a 13 km2 watershed in
the Central Sierra Nevada in California. Relief in this
watershed ranges from about 1600m a.s.l to 2600m
a.s.l. Annual precipitation averages about 1300mm
and occurs primarily as snowfall. In this region hydro-
logical processes are dominated by snow pack storage
and snow melt. We partitioned the watershed [24] into
subcatchments, elevation bands, and TSI [29] patches
(Fig. 6). We then ran the decision support system with
the following query:

Where do the sub-models agree on soil moisture

predictions at the start of the growing season?

In this query the goal is soil moisture, the spatial
domain is de�ned by the spatial layers shown in
Fig. 6, and the temporal domain is the start of the
growing season, which corresponds with the end of
the snow melt period. Fig. 7 shows six zones de�ned
by spatially aggregating TSI patches. This aggrega-
tion is made to improve presentation clarity and re-
duce computational requirements. The actual number
of spatially aggregated areas can be de�ned by the
end-user. Fig. 8 shows the corresponding membership
functions for (a) sensitivity, (b) predictability, and
(c) synchronicity of soil water variability as functions
of semantic error in the water table position for the
six zones. In these relations the x-axis represents se-

mantic error as computed by Eq. (12), with positive
values corresponding to locations where the water ta-
ble depth is over-predicted by the model and negative
values corresponding to where the water table is pre-
dicted to be too close to the surface. The plots were
generated by �tting a weighted, localized robust line
[39] through the points representing the lower enve-
lope of the scatter of points representing the respec-
tive relationships. The lower envelope is presented as
the most conservative of memberships. In general, the
memberships tend to be larger at more positive levels
of semantic error. This is expected to occur in higher
recharge areas, which are typically saturated during
the snow melt period regardless of the semantic error
and hence do not inuence plant available soil water
greatly. This is clearly shown in the �nal membership
functions for agreement on soil moisture for each of
the six aggregated spatial areas (Fig. 9). The �nal
membership functions were plotted using the same
�tting method as described above [39]. The highest
memberships tend to occur in areas around streams,
where soil moisture is near saturation with or without
the semantic error removed. Fig. 8a shows that drier
(lowest TSI) areas tend to be more sensitive to small
amounts of error in predicting the water table posi-
tion. This suggests that the integrated model provides
semantically reasonable plant available soil moisture
prediction in valley bottom areas and poor prediction
of soil moisture in drier areas. This is not surprising
given that TOPMODEL was designed for predict-
ing stream ow response, not providing reasonable
estimates of plant available soil water.
Mackay [9] showed that semantic error in the water

table position approaches zero everywhere at the end
of snow melt. This period of time corresponds with
the beginning of the vegetation growing season. Thus,
an evaluation of the memberships for each aggregated
area when semantic error of the water table position
is zero was used to evaluate the results of the query.
Fig. 10a shows the fuzzy memberships in spatial set
agreed soil water, which were produced by mapping
the fuzzy memberships from Fig. 9 at a point where
semantic error in the water table position (��) is zero,
for each of the six respective zones. Areas of low soil
moisture agreement membership occur where soils
should normally have low water content, but have
increased water content due to error in the water table
depth redistribution. Also shown (Fig. 10b) is the crisp
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Fig. 6. Partitioning of Onion Creek into subcatchment areas, elevation bands or zones, and TSI patches for spatial representation of input
to RHESSysD.

Fig. 7. Spatially aggregated TSI zones used for model agreement analysis and presentation of �nal memberships.
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Fig. 8. Plots of (a) sensitivity memberships, (b) predictability memberships, and (c) synchronicity memberships for soil moisture versus
semantic error in the water table, for each of the respective aggregate TSI zones.
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Fig. 9. Overall agreed soil water memberships for the 6 aggregate TSI zones.

Fig. 10. Final (a) fuzzy and (b) crisp maps showing where the sub-models within RHESSysD agree=disagree on soil moisture at the start
of the growing season. In (a) brighter areas have higher fuzzy memberships, while in (b) the black areas represent where the models agree.

spatial set derived from the fuzzy spatial set by map-
ping only the areas that have fuzzy memberships of at
least 0.5. The areas mapped in black correspond to ar-
eas of greatest likelihood of soil saturation and hence
runo� generation. The results are consistent with

the need for a resetting event, such as a soil surface
saturation, to establish a reasonable set of initial
conditions for simulation [8,25]. For the purposes of
decision making the areas mapped in black are where
the integrated model successfully answers the query.
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These are areas where the integrated model gives soil
moisture estimates that are not adversely a�ected by
model structure.

5. Discussion

Simulation models typically generate large quanti-
ties of output, which usually have to be analyzed by the
model end-user in order to assess model quality. For
instance, simulations of the watershed used here have
1450 TSI patches, which are simulated for each of 365
days. This represents over a half-million soil moisture
output values, which may or may not be trustworthy
given the structure of the integrated model and the
characteristics of the input data. Model self-evaluation
provides an initial basis for evaluating the model by
measuring model semantic error in computing the
position of the water table. How goal variables respond
to this error provides deeper insight on model agree-
ment. The signi�cance of transient disagreements
between sub-models is that for certain queries to
the integrated model (e.g., soil moisture), sub-model
incompatibility may or may not preclude the use
of these models. The semantic analysis presented
here allows for the identi�cation of areas within the
spatial and temporal domains where sub-models pro-
vide agreed upon answers to speci�c queries. This
approach di�ers from more commonly used model
testing tools such as sensitivity analysis (e.g., Monte
Carlo analysis in which many realizations of equal
likelihood are run) for a model treated as a black box
[1,17,13]. Sensitivity analysis cannot distinguish be-
tween uncertainty due to data quality and uncertainty
due to model structure [17], whereas the approach
presented here focuses on model structure problems
rather than comparison of model output to data.
Here fuzzy sets are used as a method of combining

several criteria for evaluating model performance.
This di�ers from other applications of fuzzy sets in
the GIS community. For instance, systems such as
SRAS [37] and SOLIM [2] use fuzzy set theory to lin-
guistically express spatial or co-spatial relations using
experience of expert subjects to produce membership
functions. Here, membership functions are generated
by a simulation model using a �xed set of criteria
for evaluation, for the purpose of controlling the
selection of sub-models to be combined. Once a deci-

sion is made on model agreement for a given query,
a speci�c set of model alternates can be selected.
For instance, a model that represents the water ta-
ble in a mathematically more explicit way, but is
computationally intractable for large spatial areas
[31], may be preferred for certain types of ques-
tions over small spatial areas. However, for many
queries aggregating to a level appropriate for cap-
turing the dominant spatial variability of processes
avoids the need for extremely accurate, �ne resolu-
tion data sets [11]. Since most data cannot always
be obtained to support detailed physically-based
models, more conceptually-based models, which are
based on simpli�ed relationships that use more read-
ily available data, will remain in widespread use
[6,16]. Thus, model self-evaluation is an important
step towards providing general tools for determining
the range of acceptable queries for integrated models
constructed from conceptual models.

6. Conclusions

The most signi�cant result of this work is the in-
troduction of self-evaluation into spatially distributed
process models, and its application as a decision-
making tool for selecting or rejecting a combination
of sub-models for a given application. The model,
RHESSysD, incorporates this self-evaluation in the
sense that it identi�es and keeps track of semantic
error in the water table position for every modeled
patch. In essence, two parallel simulations, one using
Eq. (9) (uncorrected) and the other using Eq. (13)
(corrected), are maintained by the model. All other
aspects of the model remained unchanged between
the parallel versions, making the comparative analysis
between the two simulated results feasible. The results
of these simulations are then passed to the decision
support system for comparative analysis using the
three criteria. The ability to manage the interactions
between sub-models during simulation allows for the
identi�cation of model semantic inconsistencies that
could be used to trigger the replacement of particular
sub-models as the simulation model executes. The use
of fuzzy set theory allows the decision to be based on
a combination of criteria allowing for di�erent indi-
cators of uncertainty in the model response variables
to be considered. Fuzzy sets theory thus facilitates
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the analysis of a large quantity of simulation output
and its synthesis more decision making. The current
software system is only a prototype and is geared
towards analysis of output from RHESSysD. Future
work should consider how alternative models can be
selected and used based on the decision processes de-
scribed in this paper. In addition, future work with the
method must consider how queries involving multiple
response variables can be addressed, and an integra-
tion of memberships made across a suite of variables.
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