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The purpose of this paper is to offer our view 
of where ecohydrologic research will be 
going in the next 20 years and suggest how 

enabling technologies from hydro-informatics will 
support this research. Two decades ago Klemeš 
(1986) suggested that the hydrologist’s “efforts 
expended on the fitting of flood and drought 

frequency curves would be better spent in acquiring 
deeper knowledge of climatology, meteorology, 
geology, and ecology.” Klemeš was of course 
calling for interdisciplinary hydrology. Recently, a 
number of community reports have proposed a more 
interdisciplinary approach to hydrology, including 
the development of community infrastructure 
such as large scale hydrologic observatories with 
integrated, multi-scale monitoring and advanced 
informatics tools to enable this research (Band et 
al. 2002, Gupta et al. 1999, Hornberger et al. 2000, 
Maidment 2008). Specific calls were included 

to integrate the more physically or statistically 
oriented approaches in hydrology with ecosystem 
sciences including biogeochemical cycling and 
population ecology. 

The emergence of ecohydrologic research is one 
example of how hydrologic science has begun to 
move in this direction.  Ecohydrologic research 
seeks to understand how hydrological processes 
affect biological communities, and in turn how such 
communities affect water cycling (Newman et al. 
2006, Rodriguez-Iturbe 2000). With this marriage 
of ecology and hydrology new avenues of research 
are opening up, and with these come new scientific 

and technical challenges.  Some of the scientific 

challenges relate to the long-term memory in 
biological and geomorphic systems, complex 
feedbacks on water cycling, and the continuum of 
such interactions across space. Technical challenges 
include building more sophisticated simulation 

models to deal with such spatial dynamics, 
acquiring and managing the data needed to support 
these models, improving geo-visualization of 
spatial predictions and errors, and quantifying 
uncertainty associated with model structure and 
parameterization. Another interdisciplinary sub-
field of hydrology, hydroinformatics, emphasizes 

the development of information technology to help 
meet these challenges.  

Newman et al. (2006) identified a number of 

research challenges for ecohydrologic research in 
semi-arid regions, including dealing with spatial 
and temporal heterogeneity, scaling up to regional 
and global extent, improving understanding of 
subsurface processes, and addressing long-term 
processes.  They argue for a greater emphasis on 
place-based research where long-term data sets 
are being compiled.  Efforts aimed at addressing 
these problems are underway, albeit with a 
focus on vegetation in semi-arid environments, 
equilibrium models with stochastic inputs, and 
knowledge obtained in traditional plots or stands.  
We suggest that for ecohydrologic research to 
be globally relevant it must embrace the full 
spectrum of environments, including non-water 
limited regions and wetland-rich regions.  Over 
the next two decades, ecohydrologic research will 
explore more deeply the nature of transient system 
evolution and elucidate characteristic timescales 
of processes, such as those associated with 
ecosystem aggradation and degradation.  It will 
move toward developing predictive capability that 
builds from an understanding of processes along 
spatial gradients, including adaptations of nutrient 
cycling and plant hydraulics at wetland-upland 
transitions. Moreover, as cyber-infrastructure 
improves these activities will transcend individual 
study sites by utilizing combinations of data sets 
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not traditionally included in hydrologic analysis, 
including networks of flux towers, component 

ground-based measurements, multiple process 
models, phenology networks, and remotely sensed 
information.  We elaborate on these ideas below 
and offer suggestions for how advances in hydro-
informatics will help sustain these activities over 
the next 20 years.  To help focus the discussion 
we use a running example, canopy transpiration, 
which is a process that straddles the ecological and 
hydrological divide. 

Challenge: Ecohydrology Beyond 

Water Scarce Environments

The emergence of ecohydrologic research 
is for hydrology the recognition that biological 
processes play a large role in the cycling of water 
(Eagleson 1982, 2002, Newman et al. 2006).  
The soil-vegetation-atmosphere continuum in 
turn is an important component in climate. By 
tapping into sub-surface water sources, plant 
roots help to maintain a flow of water from the 

soil to the atmosphere well after surface soil 
moisture levels have drained or dried to the point 
that they are too low to sustain evaporation.  The 
global relevance of such processes is clear.  In 
humid regions, evapotranspiration (ET) typically 
consumes half the annual precipitation; this 
proportion is much higher in semi-arid regions.  
Plant canopy transpiration (EC) amounts to about 
half of annual ET, but generally represents a much 
higher proportion during periods when plants are 
most active, during dry inter-storm periods, or in 
water-scarce environments. Thus, future research 
on land surface water-energy interactions and 
hydroclimatic research will continue to depend on 
insights into vegetative responses to environmental 
drivers.  However, such insights will not come 
from a focus on just water scarce environments, 
since plants are adapted to and exert influence on 

environments across a full spectrum of available 
soil water. For instance, feedbacks between 
ecosystem and hydrological processes in wetland-
rich environments are poorly represented in current 
climate models, which lack specific mechanisms for 

ground water dynamics and anaerobic processes.  
In urban and other human managed ecosystems, 
significant subsidy of water and nutrients, and built 

drainage systems provide dramatically altered 
ecohydrologic gradients in limiting resources, 
tending to alleviate water limitations in drier 
climates and potentially introduce water limitations 
in more humid environments.

Vegetative responses to available soil water 
are conceptualized in Figure 1. Plants adapt to 
conditions of water scarcity by growing deeper 
roots (e.g., Jackson et al. 1996), supporting lower 
leaf areas (e.g., Grier and Running 1977), and 
reducing the vulnerability of their water conducting 
xylem to damage caused by air entry (e.g., Sperry 
et al. 1998).  While these patterns are more easily 
observed under water stressed conditions, the 
mechanisms responsible for these adaptations give 
plants competitive advantages in all environments.  
For instance, excessive soil water requires that 
plants adapt shallow and sometimes above ground 
roots for aeration, and nitrogen fixation for obtaining 

sufficient nitrogen in anaerobic environments.  The 

implication for obligate wetland species of a drop 
in the water table is a reduced ability to acquire 
sufficient water to maintain EC (Ewers et al. 2007).  
Stomatal closure, in particular, occurs at mid-day 
even in high levels of soil water because of limits 
in hydraulic transport from roots to leaves (Sperry 
et al. 1998, Tyree and Sperry 1989).  Moreover, 
evidence of coordination between photosynthetic 
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Figure 1. Conceptual response of vegetation processes 
to available soil water.  Both water scarcity and excess 
water represent limiting conditions for plants.  The 
solid line represents equilibrium responses based on 
short-term processes, while the gray zone represents a 
range of responses reflecting long-term transients and 

memory.
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activity and hydraulic conductance (Brodribb and 
Field 2000, Brodribb et al. 2002) provides a clear 
link between plant hydraulics and carbon uptake, 
which ultimately feeds into vegetation growth and 
long-term memory effects of biological processes 
on water cycling. Feedbacks between these 
biological responses to environmental drivers and 
water cycling across the full spectrum of available 
soil water has so far received little attention, but an 
understanding of such processes will provide a vital 
contribution to the problem of making hydrologic 
predictions in ungaged basins (Sivapalan et al. 
2003).

Much uncertainty remains in the parameter-
ization of stomatal conductance even in place-based 
research (Mackay et al. 2003, Samanta et al. 2007), 
and it currently cannot be conveniently estimated 
as a spatial variable in large-scale models.  Indeed, 
in regional to global scale models it is accessed 
from lookup tables keyed to remotely sensed 
vegetation types (e.g., Dickenson et al. 1998, 
Loveland and Belward 1997, Running et al. 1995, 
Sellers et al. 1996). Recent studies have shown 
that stomatal closure is proportional to the rate of 
water loss for a wide variety of species (Addington 
et al. 2004, Ewers et al. 2001, Ewers et al. 2005, 
Ewers et al. 2007, Oren et al. 1999, Wullschleger 
et al. 2002).  We believe such insights will lead to 
dynamic modeling of stomatal function at relevant 
scales by linking the physiological understanding 
with dynamic parameterization from satellites.  
Theoretical work towards this includes linking the 
complementary relationship between potential or 
actual evapotranspiration and stomatal conductance 
(e.g., Pettijohn and Salvucci 2006).  Technical 
advances with thermal remote sensing are now 
exploiting the large-scale equilibrium between 
the lower atmospheric moisture content and 
evaporation rate (e.g., Hashimoto et al. 2008), and 
multi-temporal remote sensing to take advantage 
of soil thermal properties (e.g., Anderson et al. 
2007).  Furthermore, hyperspectral data from 
sensors such as Hyperion have shown potential for 
quantifying photosynthetic activity (Grace et al. 
2007). These advances in technology coupled with 
the predictive power of physiology-based models 
will become common elements of watershed 
hydrology, hydroclimatology, and water resource 
sustainability research. 

Research Challenge: Modeling 

Transience

The characteristic timescales of ecosystem 
processes are affected by ground water dynamics, 
ecosystem aggradation and degradation, soil 
development, and climatic cycles. Short-term 
processes include the diurnal adjustments of 
stomatal conductance discussed above, daily or 
longer-term adjustments to available soil water, 
seasonal adjustments in plant growth, inter-annual 
plant responses to disturbance and competition for 
available resources, decadal adjustments to soil 
carbon and nitrogen, and much longer-term changes 
in soil or landform development. Characteristic 
time responses for different processes need to be 
understood if we are to make better predictions of 
global climate change effects on water resources.  
To address this problem Eagleson (1982, 2002) 
hypothesized short-term canopy density adjust-
ments to minimize soil water stress, medium-term 
preference for species that minimize consumption 
of scarce soil water, and long-term adjustments in 
soil properties that maximize the optimal canopy 
density.  In this view, plants were seen to optimize 
their environment. Such an optimization view 
lends itself to equilibrium modeling of which there 
are many examples (e.g., Arris and Eagleson 1994, 
Collins and Bras 2007, Eagleson 1982, Kergoat 
1998, Nemani and Running 1989, Rodriguez-
Iturbe et al. 1999, van Wijk and Bouten 2001, 
Zea-Cabrera et al. 2006). Optimization models 
are appealing because they generally require only 
a small amount of data, can be developed with 
mathematical elegance, and can often generate 
patterns that fit an intuitive understanding of 

ecohydrologic systems. However, they generally 
lack feedbacks between water, carbon, and nutrient 
cycles such that, for instance, root growth is 
enabled to sustain EC without concomitant carbon 
and nutrients “costs” to the plant. One promising 
development in the equilibrium approach is that 
of D’Odorico et al. (2003) who incorporated 
below ground nutrient responses to soil water.  
However, their approach still did not couple below 
and above ground processes, which would tend to 
impart memory effects of the soil biogeochemistry 
on the vegetation while at same time adjusting over 
the long-term to the development of vegetation 
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(Mackay 2001).  
Global climate change dictates that an 

understanding of coupled hydrologic and ecological 
processes requires long-term memory effects 
involving transient system evolution in a broad 
range of climates and biomes.  Ecohydrologic 
research on this front has been slower to develop, 
primarily because of a lack of data.  A few models 
that feature long-term memory with plant-
hydrology feedbacks (e.g., Running and Gower 
1991) have been incorporated into global (e.g., 
Foley et al. 1996, Running and Hunt 1993) and 
watershed models (e.g., Band and Tague 2004, 
Mackay and Band 1997, Vertessy et al. 1996) to 
understand biogeographic responses of vegetation 
to climatic and topographic controls (Kim and 
Eltahir 2004) and to deal with vegetation succession 
(Bond-Lamberty et al. 2005). A fundamental 
problem with simulating transience is the paucity 
of observational records that are sufficiently long 

to show, for example, inter-annual anomalies.  
Some long-term data sets do exist, such as the 
Long-Term Ecological Research Station network, 
flux tower networks, remote sensing records, and 

phenology networks.  However, with the exception 
of remote sensing, most long-term observations 
are limited in terms of spatial extent, such as single 
stands (Dunn et al. 2007), and so their relevance to 
regional or global scale is uncertain.  Over the next 
20 years, with sufficient funding, some of the short-

term data sets may become multi-decadal, which 
should help.  However, multi-site data will need 
to be assimilated in future ecohydrologic studies 
at regional and larger scales, and this is going to 
require greater reliance on cyber-infrastructure 
to more seamlessly integrate diverse data sets.   
While “eco-hydro-informatics” is not necessarily 
unique in its need for improved data and model 
infrastructure, it does span types of data not 
typically employed in hydrologic research, such as 
below ground carbon and nutrient accounting.  As 
such, new enabling technologies are needed that 
build in the intelligence to deal with “knowledge” 
that extends beyond the traditional sphere of 
hydrology.  Moreover, maximum benefits will be 

gained from this knowledge only once we are able 
to explicitly deal with spatial continua of biological 
and hydrological interactions.

Finally, much of the structure and function of 

ecosystems is based on disturbance regime, and 
the transient recovery from disturbances of varying 
magnitudes. The effect of fire, harvest and numerous 

other disturbance sources on watershed hydrology 
are not adequately handled by ecohydrologic 
analysis and models based on equilibrium 
concepts. Direct coupling of disturbance regimes 
into ecohydrologic analysis is critical.

Research Challenge: Spatial 

Heterogeneity

 Hydrological models incorporate parameterized 
vegetation (e.g., Entekhabi and Eagleson 1989, 
Wood et al. 1992), assume potential vegetation 
(e.g., Dickinson 1984, Foley 1996, Pielke and 
Avissar 1990, Sellers 1986), or model vegetation 
dynamics (e.g., Foley et al. 2000, Mackay and 
Band 1997, Vertessy et al. 1996). However, these 
models rely on measurements made in stands. 
Indeed, the traditional stand/gap approach to both 
measuring and modeling fluxes in vegetative 

communities has been to identify centers of 
relatively homogeneous ecosystem types, make 
flux measurements, and then apply mechanisms 

learned in these plots to whole landscapes or larger 
scales (e.g., Mackay et al. 2002).  This unnecessary 
simplification ignores changes in vegetation 

function along gradients, promotes classification 

of vegetation in terms of potential vegetation, and 
ignores important feedbacks between the terrestrial 
biosphere and climate, and between adjacent 
vegetation patches connected along hydrologic 
flow paths.  Given present-day and future climate 

and land use changes, it is conceptually appealing 
to think of all terrestrial ecosystems as transitional 
in space.  There is also a growing recognition that 
spatial variation of water storage and fluxes (e.g., 

Grayson et al. 1997, 2002, Seyfried and Wilcox 
1995, Tromp-van Meerveld and McDonnell 
2006) is critical to understanding hydrologic 
path ways.  Future ecohydrologic research must 
embrace spatial variability and move beyond the 
use of unrealistic vegetative boundaries.  Recently, 
Adelman et al. (2008) for a lodgepole pine-covered 
slope in southern Wyoming, and Loranty et al. 
(2008) for an aspen-wetland gradient in northern 
Wisconsin, have shown that spatial variability of 
tree transpiration changes with environmental 
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drivers.  Figure 2 illustrates the increase in spatial 
heterogeneity as transpiration increases, a response 
attributable to spatial variability in biological 
responses.  Such feedbacks between plants and 
water flux rates suggest non-linearities that are lost 

in the homogenization that occurs with traditional 
center-of-stand methodology. 

The patch-based approaches to ecohydrologic 
systems also do not allow the investigation of 
spatial dependency in the form of soil-vegetation 
catenae along hydrologic flow paths.  In more 

humid environments, where lateral redistribution of 
soil and ground water are significant, the behavior 

of hill slope and catchment ecosystems may not 
be generalized as the sum of discrete ecosystem 
patch behavior because one-dimensional mass 
balance approaches cannot capture emergent 
patterns in ecosystem form and function, or in 
runoff production.  Lateral redistribution of soil 
water creates heterogeneity in biogeochemical 
and soil water effects on canopy physiology, and 
generally tends to dampen temporal variability 
of ecohydrologic flux while maintaining spatial 

variability (e.g., Band et al. 1993).  Future work 
will incorporate and develop methods of estimating 
the effects of heterogeneity through spatially 
explicit simulation, as has already been done, 
and by developing statistical-dynamic methods 
for estimating growth and decay of hydrologic 
heterogeneity (e.g., Albertson and Montaldo 
2003). 

This spatially explicit measurement and modeling 

approach needs to be employed in a variety of 
ecosystems, and over longer time periods than are 
possible with single projects.  While such efforts are 
laborious, new developments in automated sensor 
networks using wireless technology should make 
spatially explicit ecohydrologic measurements 
feasible.  Moreover, a true move to a mechanistic 
understanding of ecohydrologic processes will 
in the next few years embrace spatially explicit 
genetics.  With the sequencing of genetic code 
for tree species (e.g., populous) and identification 

of genes specifically responsible for controlling 

plant water use (e.g., Cao et al. 2007) the next 20 
years of ecohydrologic research will definitely be 

dominated by molecular biological research and 
will almost certainly require a genetic component. 
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