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How much complexity is needed to simulate watershed
streamflow and water quality? A test combining time series

and hydrological models
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Abstract:

Modelled hydrologic processes are represented in a set of numerical equations; the complexity of which can be measured by the
total number of variables needed. A single dominant hydrologic process could control the hydrologic response of a watershed,
and so the identification of the corresponding dominant variable(s) would aid in identifying a parsimonious model and in
collecting more reliable data. By accounting for both model complexity and serial correlation in the variables, a model is used to
identify the dominant variables for representing watershed scale streamflow, sediment transport and phosphorus yields. Long-
term water quantity and quality data were used to show that rainfall and non-linear soil water storage were the dominant variables
for weekly streamflow, suspended sediment and particulate phosphorus. Model accuracy did not consistently improve when
other statistically significant variables were included. The results suggest that improved model performance may not justify the
added model complexity. As such, identification of dominant variables would be the priority for developing parsimonious
hydrologic models, especially at watershed scales. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

Watershed scale process models of water quantity and
quality vary in complexity, number and quantity of
processes represented and data required (Merritt et al.,
2003; Sivapalan, 2003). The expectation is that by adding
complexity to watershed models, one should be able to
represent more complex watersheds and their processes
(Doherty and Christensen, 2011). In fact, predictions of
water quantity and quality at the watershed outlet are not
substantially improved by using complex models instead
of simple ones (Sivapalan, 2003). This is inevitable, as
most watershed scale hydrologic models incorporate
process knowledge acquired piecewise in small-scale
studies (Klemes, 1983), packaging it in a way that requires
a large amount of data and many hard to constrain
parameters (Sivakumar, 2008). Modellers have sought
sophisticated methods for calibrating hydrologic models to
obtain these parameters (Beven, 2001; Duan et al., 1992b;
Gupta et al., 1998; Wagner et al., 2004; Yadav et al.,
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2007). However, few true insights are possible if the
calibration exercise cannot identify the simplest model
structure needed to represent each process.
Hydrologic processes are represented in a model as a

set of numerical equations comprised of variables, which
include environmental drivers, flux variables and state
variables. The number of these variables within a model is
one measure of that model’s complexity. As such, the
goal of model simplification is to reduce the number of
variables by identifying just the key or dominant variable
(s), and developing a focused model and measurement
plan that emphasizes just these variables (Grayson and
Blöschl, 2000a; Woods, 2002b; Young et al., 1996).
Sometimes, a hydrologic response is controlled by a single
dominant hydrologic process (Grayson and Blöschl,
2000b; Sivakumar, 2004; Sivakumar, 2008; Sivapalan
et al., 2003a; Woods, 2002a), which can make the task of
simplifying a model easier. When many processes are
needed, previous researchers have employed top–down
modelling to identify the appropriate model structure
and necessary model complexity (Fenicia et al., 2008;
Klemes, 1983; Sivapalan et al., 2003a). In top–down
modelling, one starts with dominant hydrologic pro-
cesses (Sivakumar, 2008), adding model complexity
only when it is supported by available data. However,
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it is difficult to ascertain the dominant variables
because most of these variables are to some extent
correlated with each other (Brodie and Dunn, 2010),
and generally serially correlated.
The goal of this research is to investigate the dominant

variables and their relative importance for watershed scale
hydrologic responses including streamflow, sediment
transport and phosphorus yields, accounting for both
model complexity and serial correlation in the variables.
We had two focusing questions. First, what are the
dominant variables driving streamflow, suspended sedi-
ment (SS), particulate phosphorus (PP) and soluble
reactive phosphorus (SRP) yields? Second, how do the
dominant variables influence model performance?
METHODS

Study site

The watershed used for this study was Rock Creek, a
tributary of the Sandusky River, in Seneca County,
northwestern Ohio, USA (Figure 1). The watershed
outlet, with US Geological Survey gauging station
04197170, is located at Rock River at Tiffin, Ohio. Rock
Creek watershed drains an area of 89.6 km2. The
geology of the Rock Creek watershed, part of
Sandusky River watershed, varies from Devonian
limestone and shale to Silurian dolostone (Forsyth,
1975). The Rock Creek watershed lies at the interface
between till plain and lake plain environments. The till
plains distributed on the south and east of Tiffin are
characterized by extensive flat to very gently rolling
topography with heavy till soils. The lake plains,
distributed at the north of Tiffin area, were formed by
the recession of glacial lakes. Dominant soils typically
have silt loam and silty clay loam textures (Richards
et al., 2002; Riddle, 2006).
Figure 1. Study site – Rock C

Copyright © 2013 John Wiley & Sons, Ltd.
Rock Creek watershed is situated in a humid
continental climate zone that features cold winters and
hot summers. Average low and high monthly tempera-
tures in Tiffin, Ohio, during the years 1983–2007 ranged
from �8.24 °C to 2.64 °C in January and from 21.07 °C
to 25.12 °C in July. For the same period, the average
annual precipitation was around 957.97mm. The wettest
month (June) and driest month (February) had average
monthly precipitation of 100.27 and 51.97mm, respec-
tively. The mean monthly discharge of the Rock River
near Tiffin for water year 1983–2007 ranged from
1.55m3s-1 during high flow in March to 0.26m3s-1

during low flow in September. Analysis of land use based
on National Land Cover Dataset (Homer et al., 2004) has
shown that the main land uses within Rock Creek
Watershed include agriculture (78.88%), urban (8.27%),
forest (11.26%) and water( 0.26%).

Hydrologic and water quality data

Daily streamflow, SS, total phosphorus (TP) and SRP
from 1983 to 2007 were obtained from the Water Quality
Laboratory at Heidelberg College. Three samples per day
during storm events and one sample per day during inter-
storm periods were collected using autosamplers
(Richards and Baker, 2002; Richards et al., 2001;
Richards et al., 2002). When there was more than one
sample in a day, we calculated daily weighted average
concentrations of the fluxes using relative flow at each
time step during the diurnal period. Streamflow and
concentration data were approximately log-normally
distributed (Gilbert, 1987), and so to prepare the data
for time series analysis, the data were log transformed.
Our log-transformed data were approximately normally
distributed. In addition, outliers were removed from the
log-transformed streamflow and water quality data using
Rosner’s test (Rosner, 1983). This test is designed to
avoid masking one outlier by another, assuming that
reek watershed at Tiffin, OH
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observations are normally distributed. Masking occurred
when an outlier was undetected because it was very close
in value to another outlier. The removed outliers were
treated as missing data. All daily water quality concen-
tration data were transformed to unit volume by
multiplying the flow volume and dividing by the
watershed area (kg ha-1 for SS; g ha-1 for P). PP was
calculated by subtracting the SRP from TP.

Model variables

Observed daily maximum temperature, minimum
temperature and precipitation were obtained from the
Tiffin National Weather Service Cooperation station
(#338313), located about 0.37 km northeast of the
watershed outlet. Hourly solar radiation data were
simulated by the National Renewable Energy Laboratory
(NREL, 1992; NREL, 2007) and summed to get daily
solar radiation. Several predictive variables were derived
from the observed weather data and model results.
Cooling degree days base 5 °C (CDD5), cooling degree
days base 10 °C (CDD10) and cooling degree days base 15
°C (CDD15) were calculated as follows:

CDDn ¼ Tmax þ Tminð Þ
2

� Tn (1)

where Tmax, Tmin and Tn represent maximum, minimum
and base temperature (°C), respectively. In addition to
precipitation, net precipitation (Pnet) was calculated as

Pnet ¼ P� Ea (2)

where P is daily precipitation, and Ea is daily actual
evapotranspiration. Ea is a function of soil moisture and
potential evapotranspiration (Ep). Ea was calculated as

Ea ¼ θrel*Ep (3)

where θrel is relative soil moisture; θrel is defined as
follows:

θrel ¼
θ � θpwp
θfc � θpwp

; θ < θfc

1; θ≥θfc

8<
: (4)

where θ is the ratio of water volume to soil volume, θfc is
the field capacity and θpwp is the permanent wilting point
of the root-zone soil. θfc and θpwp are functions of soil
texture. For silt loam, s = 0.22 and θpwp= 0.12 (Dingman,
2002). Ep was calculated using the Priestley and Taylor
Equation (Priestley and Taylor, 1972). Because Ea

depends on rooting zone soil moisture (Capehart and
Carlson, 1994), the soil water limits to Ea were calculated
using a soil depth of 150mm.
In addition to the environmental drivers, other model

variables including soil moisture and runoff were calculated
Copyright © 2013 John Wiley & Sons, Ltd.
at the watershed scale. Soil moisture was calculated as

S tð Þ ¼ S t�1ð Þ þ P tð Þ � Ea tð Þ � Q tð Þ (5)

where S(t) is the soil moisture at the end of the day
(millimetre), and S(t-1) is the soil moisture of the previous
day (millimetre). P, Ea and Q are daily total precipitation
(millimetre), actual evapotranspiration (millimetre) and
water yield (millimetre), respectively, at day t. The total
water (Q) from soil profile could be from saturation excess
flow (Qse) and subsurface flow (Qss). Qse was calculated
using the Soil Conservation Service curve number method
(USDA-SCS, 1972). Subsurface flow (Qss) only occurred
when soil moisture was over the field capacity and was
calculated as

Qss ¼
K�

h

θ
∅

� �c

; if θ > θfc

0; if θ≤θfc

8<
: (6)

where K�
h is saturated hydraulic conductivity, ∅ is soil

porosity and c is a constant set to 13.6 for silt loam in
this study.
Selection of dominant variables

A statistical time series model, seasonal autoregressive
integrated moving average (SARIMA), was used in this
study to account for serial correlation in all hydrologic
fluxes. Time series analysis required continuous time
series data. Due to equipment failure, daily water quantity
and quality data at times had missing data. The proportion
of days having data gaps was 6.49% and 14.52% in
sediment and phosphorus daily time series, respectively,
for the period from 1982 to 2007. Because data gaps in
the water quality data precluded using a daily time scale,
all hydrologic response data as well as model variables
were aggregated into weekly mean data for time series
analysis. Weekly temporal resolution for daily data
aggregation is selected because it was the optimal
temporal resolution to comprise all data gaps especially
in water quality data. When there was missing data within
a week, the mean of the available data was used to
represent the weekly mean data. To understand the
temporal influence on the dominant variable identification
for watershed hydrologic responses, daily time series of
streamflow and SS was also analysed. A regression
relationship between streamflow and SS was used to fill
the missing data of daily SS time series (Chen and
Mackay, 2004).
A SARIMA model is typically expressed as SARIMA

(p,d,q)(P,D,Q). Three basic components include the order
of autoregressive (p), integrated (d) and moving average
(q) components. The P, D and Q terms respectively
represent seasonal autoregressive, seasonal integrated and
Hydrol. Process. 28, 5624–5636 (2014)
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seasonal moving average components. When several
possible SARIMA models were available for a hydrologic
response time series data, we selected the model that
minimized the root mean square error (RMSE) when the
model was applied to the calibration period. We also
applied Akaike’s information criterion (AIC) (Akaike,
1974) as measure of parsimony of the model parameters.
AIC was calculated as

AIC ¼ n lnσ2
a þM ln nð Þ (7)

whereM is the number of parameters in the SARIMAmodel,
and σ2

a is model residual variance. A smaller AIC meant that
the model was more parsimonious. Consequently, a
SARIMA model with both small RMSE and AIC was
preferred over models with poorer fit or added complexity.
After the optimal SARIMA model was selected for

each hydrologic response, we used it with stepwise
regression to select the environmental variables according
to RMSE and AIC. Environmental variables were
selected for inclusion by first identifying significant lags
in the cross correlation analysis. In addition to the original
environmental variables, variables were squared to test for
nonlinear effects. The final variables chosen for inclusion
Table I. Characteristics of

Weekly environmental variables Units Minimum

Precipitation mm 0.00
Snowfall mm 0.00
Rainfall mm 0.00
Surface runoff mm 0.00
Snow melt mm 0.00
Maximum temperature (Tmax) °C �13.25
Minimum temperature (Tmin) °C �24.76
Mean temperature (Tave) °C �19.01
Cooling degree days 5 (CDD5) Degree days 0.00
Cooling degree days 10 (CDD10) Degree days 0.00
Cooling degree days 15 (CDD15) Degree days 0.00
Solar radiation (Rn) Wattm-2 26.91
Evapotranspiration (Ea) mm 0.15
Net precipitation (Pnet) mm �5.57
Soil water mmmm-1 0.18
Precipitation × precipitation mm2 0.00
Snowfall × snowfall mm2 0.00
Rainfall × rainfall mm2 0.00
Surface runoff × surface runoff mm2 0.00
Snow melt × snow melt mm2 0.00
Tmax × Tmax °C2 0.00
Tmin × Tmin °C2 0.00
Tave × Tave °C2 0.00
CDD5 ×CDD5 Degree days2 0.00
CDD10 ×CDD10 Degree days2 0.00
CDD15 ×CDD15 Degree days2 0.00
Rn ×Rn (Wattm-2)2 724.19
Ea ×Ea mm2 0.02
Pnet × Pnet mm2 0.00
Soil water × soil water mmmm-1 0.03

Copyright © 2013 John Wiley & Sons, Ltd.
in the time series model were added to the model one by
one andwere selected based on comparisons of the SARIMA
models with and without inclusion of the extra variables
(Alberdi et al., 1998; Trawinski and Mackay, 2008).
Each model was developed and tested by dividing the

data set into two periods: Data between 1983–2002 water
years were used to construct a SARIMA model, and data
for 2003–2007 water years were then used to validate the
model by comparing the predictions and observations,
which was called the forecasting model in this study. As a
test of the sensitivity of our models to periods used for
SARIMA model development, we repeated the process
such that the SARIMA model development and validation
were conducted during 1995–2007 and 1983–1994 water
years, respectively. During model validation, goodness-
of-fit of the models’ predictive capability was assessed
using RMSE and index of agreement (d) (Willmott,
1981). Lower confidence interval and upper confidence
interval were provided and calculated as

LCIð Þt ¼ FITð Þt � T1�α=2; df SEPð Þt t ¼ 1; 2;…N

UCIð Þt ¼ FITð Þt þ T1�α=2; df SEPð Þt t ¼ 1; 2;…N

(

(8)
environmental variables

Maximum Mean Standard deviation

16.04 2.60 2.71
6.28 0.20 0.62
16.04 2.38 2.74
7.55 0.26 0.81
5.80 0.22 0.75
35.08 15.68 10.79
22.38 5.01 9.29
27.86 10.34 9.98
22.86 7.68 7.10
17.86 4.72 5.29
12.86 2.42 3.34
328.65 154.94 76.00
7.37 2.06 1.28
13.78 0.54 2.73
0.38 0.30 0.05

257.23 14.08 29.09
39.41 0.42 2.33
257.23 13.17 28.76
57.05 0.73 3.50
33.68 0.61 2.71

1230.57 362.20 328.73
613.15 111.41 118.78
776.03 206.59 208.21
522.46 109.39 133.91
318.88 50.24 72.50
165.31 17.00 30.25

108 013.92 29 777.19 24 953.24
54.27 5.89 6.99
189.85 7.75 16.67
0.15 0.09 0.03

Hydrol. Process. 28, 5624–5636 (2014)
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where FIT and SEP are predicted values and standard
errors of the predicted values, respectively, at time series
t. T1� α/2, df is the (1� α/2)th percentile of a t distribution
with df degrees of freedom, and α is the specified
confidence level (α = 0.05).
The SARIMA models developed and verified were

focused on weekly time series dataset including
streamflow, SS, PP and SEP. In terms of daily time
series data, SARIMA models for streamflow and SS were
developed and verified in forecasting mode only. All
analyses were performed using SPSS trends version 13.0
and version 16.0 (SPSS Inc., Chicago, IL).
RESULTS

Statistics of environmental variables

Weekly total simulated water yields compared
favourably with weekly total observed streamflow for
1983–2002 (calibration) and 2003–2007 (validation)
water years, with goodness-of-fit (d) of 0.68 and 0.64,
respectively. Table I shows summary statistics for each
environmental variable from 1983 to 2007 water years.
The weekly maximum temperature, minimum temperature
and average temperature were 15.68, 5.01 and 10.34 °C,
respectively. Weekly mean total CDD5, CDD10 and CDD15

were 7.10, 5.29 and 3.34, respectively. Weekly mean
precipitation, rainfall, snowfall, snow melt and surface
runoff were 2.60, 2.38, 0.20, 0.22 and 0.26 mm,
respectively. The mean of evapotranspiration, net precip-
itation and soil water were 2.06, 0.54 and 0.3.
There were significant correlations between all hydro-

logic responses and precipitation, snowfall, rainfall, snow
melt and surface runoff at various lags (Table S1).
Maximum temperature, minimum temperature, mean
temperature, CDD5, net precipitation and soil water also
had correlation at different lags with all hydrologic
responses. The non-linear terms for precipitation and
rainfall correlated with streamflow, PP and SRP at several
lags, but at lag 0 only for SS. Streamflow and PP were
non-linearly correlated to soil water at lag 0, whereas SS
and SRP were non-linearly related to soil water at several
lags. All of the significant lags of these variables were
tested for statistical significance in the SARIMA model.
Squared variables for maximum temperature, CDD5,
CDD10 and CDD15 were not significant at any lag.

Dominant variables for streamflow, suspended sediment,
particulate phosphorus and soluble reactive phosphorus

The basic SARIMA models for weekly streamflow, SS
and PP for 1982–2002 water years and for 1992–2007
water years were (1,0,2)(1,0,1), which had one
autoregressive, two moving average, one seasonal
autoregressive and one seasonal moving average parameters
Hydrol. Process. 28, 5624–5636 (2014)
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(Table II). The basic SARIMAmodels for daily streamflow
and SS were (1,0,4)(1,0,1) and (2,0,2)(1,0,1), respectively
(Table S2). For weekly SRP, the basic SARIMA time series
model for 1982–2002 water years and 1992–2007 water
years could be expressed as (2,0,0)(1,0,1) (Table II).
Rainfall at lag 0 (Prain_lag0) was the dominant variable

for weekly streamflow, SS, PP and SRP. Soil water × soil
water at lag 0 (SW2_lag0) was the second relatively
import variable for streamflow, SS and PP. For daily
streamflow and SS time series, SW2_lag0 was the
dominant variable, and Rainfall at lag 1 (Prain_lag1) was
the second relatively import variable (Supplement). For
weekly SRP, solar radiation at lag 0 (Rn_lag0) was the
second relatively important variable. A third relatively
important variable for weekly SS and PP was maximum
temperature at lag 0 (Tmax_lag0). Precipitation ×CDD5 at
lag 0 (PCDD5_lag0) and surface runoff at lag 1 (Qse_lag1)
were the third relatively important variables for weekly
streamflow and SRP, respectively (Table II).
Table III shows the changes of RMSE and AIC of

univariate and multivariate weekly streamflow, SS, PP
and SRP time series models for 1982–2002 and
1993–2007 water years. The RMSE and AIC of the
univariate streamflow time series model for 1982–2002
water years was 0.95 and 2931.16, respectively. Three
Table III. (a) Weekly Streamflow (SF), (b) weekly suspended sedi
reactive phosphorus multivariate seasonal autoregressive integrated m

water y

1982–20

Variables added RMSE

(a) Weekly SF

Model 0 No predictor 0.95
Model 1 Rainfall lag0 0.58
Model 2 Soil water × soil water lag0 0.50
Model 3 Precipitation ×CDD5 lag0 0.49

(b) Weekly SS

Model 0 No predictor 4.67
Model 1 Rainfall lag0 3.03
Model 2 Soil water × soil water lag0 2.59
Model 3 Maximum temperature lag0 2.52

(c) Weekly PP

Model 0 No predictor 3.23
Model 1 Rainfall lag0 2.12
Model 2 Soil water × soil water lag0 1.84
Model 3 Maximum temperature lag0 1.79

(d) Weekly SRP

Model 0 No predictor 2.68
Model 1 Rainfall lag0 1.92
Model 2 Solar radiation lag0 1.91
Model 3 Surface runoff lag1 1.82

RMSE, root mean square error; AIC, Akaike’s information criterion; SF, stre
reactive phosphorus.

Copyright © 2013 John Wiley & Sons, Ltd.
environmental variables contributed significantly to the
weekly streamflow time series model. When Prain_lag0
was included, the RMSE and AIC were lowered to 0.58
and 2437.98, respectively. By including SW2_lag0, the
RMSE improved to 0.498, and AIC decreased to 2260.99.
By also including PCDD5_lag0, both RMSE and AIC
improved a small yet significant amount (Table III(a)).
Comparing all environmental variables for SS in
1982–2002 water years, Prain_lag0 was relatively more
important than the other variables, and it decreased the
RMSE from 4.67 to 3.04 and AIC from 4577.19 to
4131.23. When SW2_lag0 was included in the SS model,
RMSE and AIC further decreased to 2.59 and 3990.93,
respectively. In addition to Prain_lag0 and SW2_lag0,
Model 3 further included Tmax_lag0 and only slightly
decreased the RMSE and AIC to 2.52 and 3953.67,
respectively (Table III(b)).
When Prain_lag0, SW

2_lag0 and Tmax_lag0 (Table II)
were added into the weekly PP model one by one, the
RMSE and AIC decreased from 3.23 and 4198.01 to 1.79
and 3584.19, respectively (Table III(c)). The best one-
variable model (Model 1) for weekly SRP time series was
Prain_lag0 with an RMSE and AIC of 1.92 and 3734.58,
respectively. The best two variable model (Model 2)
included Prain_lag0 and Rn_lag0 with RMSE and AIC of
ment, (c) weekly particulate phosphorus and (d) weekly soluble
oving average model diagnostics for 1983–2002 and 1993–2007
ears

02 1993–2007

AIC RMSE AIC

2931.15 1.04 2270.21
2437.98 0.58 1828.62
2260.99 0.49 1694.99
2226.54 0.48 1669.98

4577.19 5.12 3518.12
4131.23 3.16 3151.64
3990.93 2.18 3064.54
3953.67 2.75 3049.50

4198.01 3.63 3256.10
3757.58 2.22 2896.18
3612.86 1.96 2771.89
3584.19 1.91 2747.43

4051.89 3.24 3223.95
3734.58 2.42 2968.91
3665.71 2.31 2909.37
3625.37 2.18 2866.26

amflow; SS, suspended sediment; PP, particulate phosphorus; SRP, soluble

Hydrol. Process. 28, 5624–5636 (2014)
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1.91 and 3665.71, respectively. Model 3 included
Prain_lag0, Rn_lag0 and Qse_lag1 and had RMSE and
AIC of 1.82 and 3625.37, respectively. Similar results
were found for 1993–2007 water years. RMSE and AIC
decreased when relatively important variables were
included in each hydrologic response time series model
(Table III(d)).
SW2_lag0 and Prain_lag1 were top two dominant

variable for daily streamflow and SS time series (Table S2).
When the two variables were included in Model 2 for
daily streamflow and SS, the AIC decreased to 11543.54
and 13 547.22, respectively. Similar results were found for
Figure 2. Model performance of streamflow seasonal autoregressive integrate
(b) hind casting (1983–1992 water years) without and with predictors. Two-pr

fit simulations with two predictors. Grey line with circles rep

Copyright © 2013 John Wiley & Sons, Ltd.
RMSE, which decreased to 0.31 and 0.41 for daily
streamflow and SS, respectively (Table S3).
Model performance with the dominant variables

Figures 2–5 show forecasting (2003–2007) and hind
casting (1983–1992) validation of weekly streamflow, SS,
PP and SRP, respectively. Table IV shows the goodness-
of-fit measures for the forecasting during the validation
using d and RMSE. The d (RMSE) was 0.46 (1.15), 0.30
(2.49), 0.29 (2.06) and 0.34 (2.04) for streamflow, SS, PP
and SRP, respectively, before adding predictors. The d
d moving average model for (a) forecasting (2003–2007 water years) and
edictor model includes Prain_lag0 and SW

2_lag0. Solid line represents best-
resents observation. Grey area is 95% confidence intervals
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(RMSE) of predictions with predictors significantly
improved to 0.85 (0.81), 0.79 (1.95), 0.80 (1.58) and
0.69 (1.68) for streamflow, SS, PP and SRP, respectively,
when three predictors were added into the models. As
shown in Table IV, the results were similar when the
model was used in a hind casting mode.
DISCUSSION

Answers to focus questions

Our results show that watershed scale streamflow had
three dominant variables including Prain_lag0, SW

2_lag0
and PCDD5_lag0. Prain_lag0 and SW2_lag0, and Prain_lag0
Figure 3. As in Figure 2 but for suspended sediment. T

Copyright © 2013 John Wiley & Sons, Ltd.
and SW2_lag0were the top three dominant variables driving
SS and PP. The dominant variables driving watershed scale
SRP were Prain_lag0, Rn_lag0 and Qse_lag1. When the
number of identified dominant variables is a measure of
model complexity, our results suggest that the parsimonious
hydrologic models could well represent streamflow, SS, PP
and SRP at the watershed scale in forecasting (2003–2007)
and hind casting (1983–1992) validation periods.
Dominant variables for streamflow, suspended sediment,
particulate phosphorus and soluble reactive phosphorus

For weekly streamflow, SS and PP, Prain_lag0 and
SW2_lag0 were the top two common dominant variables.
wo-predictor model includes Prain_lag0 and SW2_lag0

Hydrol. Process. 28, 5624–5636 (2014)
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It is notable that modelled surface runoff did not improve
predictions of SS and PP, and yet surface runoff is widely
accepted as a proxy for the energy associated with
sediment and phosphorus transport (Hairsine and Rose,
1992; Knighton, 1998) and is widely used as such in
models (Beasley et al., 1980; Laflen et al., 1991;
Williams, 1975; Wischmeier and Smith, 1965). Theory
on the role of surface runoff as a proxy for sediment
transport is firmly grounded at the plot scale, but this
theory does not easily scale up to the watershed due to
internal heterogeneity of sinks and sources. The added
uncertainty of modelling surface runoff as a means of
modelling sediment transport is supported by our results
and suggests that watershed scale models need improved
Figure 4. As in Figure 2 but for particulate phosphorus. T

Copyright © 2013 John Wiley & Sons, Ltd.
methods for representing sediment transport capacity
rather than relying on plot-scale soil detachment logic
(Lane et al., 1997).
It is well known that most phosphorus moves in

particulate form, attached to the sediment (Bottcher et al.,
1981; David and Gentry, 2000; Hart et al., 2004;
Haygarth and Sharpley, 2000; Prairie and Kalff, 1986;
Sonzogni et al., 1982). The identical dominant variables
for SS and PP suggest that dominant variables controlling
sediment are useful to predict the PP. The results also
support the assumption made by many water quality
models such as SWAT (Arnold et al., 1998) and
AnnAGNPS (Bingner et al., 2011), that PP is predictable
from SS.
wo-predictor model includes Prain_lag0 and SW2_lag0
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As shown in Table IV, model performance was
marginally improved when the third variable was added.
There were diminishing returns with adding additional
variables, even when they individually were significantly
correlated with the respective hydrologic flux. Increasing
model complexity neither made for better predictive
performance nor did it reduce prediction uncertainty, as
has been suggested by past researchers, e.g. Boyle et al.,
2001; Loague and Freeze, 1985 and Van Dijk, 2011.
Indeed, Paudel and Jawitz (2012) found that model
performance in predicting TP decreased as model
complexity increased. This unintended consequence of
added model complexity may be attributed to increased
Figure 5. As in Figure 2 but for soluble reactive phosphoru

Copyright © 2013 John Wiley & Sons, Ltd.
uncertainty related to a large number of variables and
non-uniqueness in the parameters (Schoups et al., 2008).
Effect of temporal resolution

Temporal resolution of hydrologic response had an effect
on the identified dominant variables. For the daily streamflow
and SS, SW2_lag0 and Prain_lag1 were the first and second
relatively import variables, respectively. However, rainfall
was relatively more important than soil water for weekly
streamflow and SS. Soil storage was relatively more
important for shorter time series, likely because dry days
could be reflected in daily time steps. This is consistent with
s. Two-predictor model includes Prain_lag0 and Rn_lag0

Hydrol. Process. 28, 5624–5636 (2014)



Table IV. Goodness-of-fit measures using d and root mean square error for time series model validations for forecasting (2003–2007
water years) and hind casting (1983–1992 water years)

2003–2007 water years 1983–1992 water years

No predictor 1 predictor 2 predictors 3 predictors No predictor 1 predictor 2 predictors 3 predictors

Streamflow d 0.46 0.78 0.85 0.85 0.42 0.73 0.83 0.85
RMSE 1.15 0.88 0.81 0.81 1.20 0.99 0.88 0.84

SS d 0.30 0.72 0.79 0.79 0.35 0.57 0.70 0.70
RMSE 2.49 2.00 1.90 1.95 2.44 2.00 1.84 1.83

PP d 0.29 0.72 0.80 0.80 0.35 0.69 0.79 0.80
RMSE 2.06 1.66 1.54 1.58 2.03 1.67 1.54 1.54

SRP d 0.34 0.63 0.64 0.69 0.39 0.61 0.66 0.70
RMSE 2.04 1.73 1.75 1.68 1.88 1.80 1.63 1.59

RMSE, root mean square error; SS, suspended sediment; PP, particulate phosphorus; SRP, soluble reactive phosphorus.
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previous studies that showed highermean soil moisture status
when longer temporal resolution precipitation data were used
(AbuBakar and Lu, 2011; Ishidaira et al., 2003).Many of the
continuous time watershed models are designed to simulate
hydrologic responses at daily or shorter time steps (Merritt
et al., 2003; Sudheer et al., 2007). However, continuous
water quality data are rarely available on daily time steps
except during intensive studies. The results in this study
suggest that greater attention should be made to use water
quality models with structures based on daily data because
model skill at an aggregated time step is no indication of
model veracity at shorter time steps.

The merits of long-term and detailed data

The 25-year long data set used in this study is indeed rare,
especially because sediment and phosphorous data are rarely
measured for more than a year or two in a given watershed.
This is problematic, as our results demonstrated and previous
studies pointed out that data used for model development and
calibration should be in sufficient detail to represent the
various real system phenomena including wet, dry and
average years experienced by a watershed (Duan et al.,
1992a; Duan et al., 1994; Richards, 2004; Sorooshian et al.,
1993). Moreover, long-term data are needed to reduce the
individual year variations in hydrologic responses that result
from extreme weather and other factors (Richards, 2004).
Hydrologic variables rarely exhibit stationary behaviour and
may contain long-term trends caused by global-scale climate
change, and by land-use changes at the local or regional scale
(Sivapalan et al., 2003b). By implication, without long-term
data, even slow response land-surface processes cannot be
detected (Gentine et al., 2012).
CONCLUSIONS

We have shown that rainfall and soil water storage are
sufficient for modelling streamflow, SS and PP. Among a
list of environmental drivers, flux variables or state
Copyright © 2013 John Wiley & Sons, Ltd.
variables, only three dominant variables were statistically
significant to each hydrologic response in Rock Creek
watershed. Other variables may be individually significant
to streamflow, SS, PP and SRP, but they were serially
correlated with the dominant variables. Consequently, as
model complexity increased, model performance did not
significantly improve. This suggests that complex models
for water quantity and quality should be simplified by
reformulating them to use just the dominant variables.
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