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Abstract

Ecosystem models are routinely used to estimate net primary production (NPP) from the stand to global scales. Complex ecosystem

models, implemented at small scales (<10 km2), are impractical at global scales and, therefore, require simplifying logic based on key

ecological first principles and model drivers derived from remotely sensed data. There is a need for an improved understanding of the

factors that influence the variability of NPP model estimates at different scales so we can improve the accuracy of NPP estimates at the

global scale. The objective of this study was to examine the effects of using leaf area index (LAI) and three different aggregated land

cover classification products– two factors derived from remotely sensed data and strongly affect NPP estimates– in a light use efficiency

(LUE) model to estimate NPP in a heterogeneous temperate forest landscape in northern Wisconsin, USA. Three separate land cover

classifications were derived from three different remote sensors with spatial resolutions of 15, 30, and 1000 m. Average modeled net

primary production (NPP) ranged from 402 gC m�2 year�1 (15 m data) to 431 gC m�2 year�1 (1000 m data), for a maximum

difference of 7%. Almost 50% of the difference was attributed each to LAI estimates and land cover classifications between the fine and

coarse scale NPP estimate. Results from this study suggest that ecosystem models that use biome-level land cover classifications with

associated LUE coefficients may be used to model NPP in heterogeneous land cover areas dominated by cover types with similar NPP.

However, more research is needed to examine scaling errors in other heterogeneous areas and NPP errors associated with deriving LAI

estimates.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Net primary production (NPP) is an important proxy for

the metabolism of the biosphere, and therefore warrants

accurate assessment. Model estimates of global NPP, the

annual net uptake of carbon from the atmosphere, range
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from 40 to 80 PgC year�1, indicating a large uncertainty

(Cramer et al., 1999). Running et al. (1999) suggested the

variation of three factors deserve further study in the context

of using remote sensing to derive spatial estimates of NPP:

1) spatial resolution 2) land cover and 3) light use efficiency

(LUE) estimates. An improved understanding is needed of

how each of these factors and their interaction affect NPP

estimates derived from ecosystem models.

In this paper we examine the influence of aggregated

land cover information with estimates of leaf area index

(LAI) to estimate NPP using a LUE model. For LUE models
ment 97 (2005) 1 – 14
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(Monteith, 1972, 1977), NPP is a function of absorbed

photosynthetically active radiation (APAR) and a LUE

coefficient (e) such that:

NPP ¼ eAPAR ð1Þ

The LUE model is widely used to estimate NPP at large

scales because it is conceptually simple and can be directly

parameterized with remote sensing data (Bartelink et al.,

1997; Choudhury, 2001; Coops et al., 1998; Franklin et al.,

1997; Goetz & Prince, 1998; Gower et al., 1999; Landsberg

& Gower, 1997; Medlyn, 1998; Running et al., 1994).

LAI, leaf area per unit ground area, is an important input

to many simulation models that estimate the exchange of

mass and energy between the terrestrial ecosystem and the

atmosphere (Gower et al., 1999). LAI is correlated

(r2=0.55�0.97) to vegetation indices (VI) derived from

remotely sensed data (Fassnacht et al., 1997; Running et al.,

1986; Spanner et al., 1994). However, there is considerable

variation in estimating LAI from a VI due to several

biophysical factors, including species differences and sensor

characteristics (Turner et al., 1999).

A method for calculating APAR from LAI involves

determining the fraction of absorbed light ( fAPAR) from the

following:

fAPAR ¼ 1� e �k LAIð Þ ð2Þ

where k is the light extinction coefficient describing the

fraction of light intercepted by a leaf or canopy given the

leaf distribution and sun angle (Campbell & Norman, 1998).

Alternatively, APAR can be estimated empirically from a

VI. Myneni and Williams (1994) concluded that fAPAR was

approximately equal to the normalized difference vegetation

index (NDVI). Reliable estimates of LAI and fAPAR are

essential to model biogeochemical cycles and the effects of

vegetation characteristics need to be quantified in scaling

and validation efforts (Milne & Cohen, 1999).

Detailed models of ecosystem processes are often

implemented over large areas in which direct measurements

of many vegetation parameters are not feasible. Examples of

models of this type are SiB2 (Sellers et al., 1996), IBIS

(Foley et al., 1996), and BIOME-BGC (Running & Hunt,

1993). A key requirement for these models is vegetation

type or land cover, which can be derived from the remotely

sensed data (Thomlinson et al., 1999). The International

Geosphere-Biosphere Program (IGBP) land cover scheme is

a coarse scale classification that uses biome descriptions

(e.g., deciduous broadleaf forest) such that each tree species

can be composited into a biome-level IGBP class. Thom-

linson et al. (1999) noted that ambiguities of translating

between schemes arise because of the natural variability on

the ground, which cannot be categorized into one general-

ized class type.

Many studies have examined the effects of aggregating

spatial resolution from small grain size (high resolution) to

large grain size (low resolution), and how it may affect
various ecosystem processes (Benson & MacKenzie, 1995;

He et al., 2002; Turner et al., 2000). Turner et al. (1996)

showed that the accuracy of estimating NPP from remotely

sensed data was inversely correlated to sensor resolution.

They showed a 10% increase in simulated NPP values as

sensor resolution aggregated from 1 to 50 km in Oregon.

Discrepancy may be reduced by taking into account the

vegetation present within coarse pixels. Turner et al. (1996)

suggested that issues related to mixed pixels at the MODIS

(250–500 m) scale need to be addressed. Reich et al. (1999)

examined the effects of reduced pixel resolution on

estimates of NPP by applying a modal filter to a fine scale

(25 m grid) classification similar to the site-specific scheme

described above. The NPP estimate was only 5% greater for

a 1000 m resolution grid than a 25 m grid. Reich et al.

(1999) suggested that as scale increases, the patchy nature of

a heterogeneous landscape disappears with a proportionate

impact to NPP. The study demonstrated the need to

understand how grain size affects NPP estimates. Our study

used existing data (e.g., land cover classification) derived

from multiple sensor types rather than a neighborhood

function (i.e. majority filter) to simulate varying resolution.

The objectives of this study were to determine the

aggregation effects of using different land cover classifica-

tion and LAI data on estimating NPP. We hypothesized that

estimates of NPP would differ significantly among different

land cover and leaf area spatial scales. We used three

different land cover products that encompass a range in

scale of vegetation classification scheme derived from high

and low resolution remote sensors. In addition, we used

three different LAI maps derived from three different

methods. Differences in estimates of average NPP using a

LUE model are presented and discussed.
2. Methods

2.1. Study site

The study area is an Earth Observing System (EOS)

Validation site (http://landval.gsfc.nasa.gov/) centered on a

447-m tall communications tower (WLEF tower;

45.9450-N, 90.2733-W) in northern Wisconsin, USA. The

topography is slightly rolling with an elevation difference of

45 m between highest and lowest elevations. The climate is

cool, temperate continental, with mean air temperatures

ranging from �12 to 19 -C for January and July,

respectively. Average precipitation is 811 mm/year for this

region (Barish & Meloy, 2000).

Much of northern Wisconsin, including the study area,

was logged in the late 1800s–early 1900s and a heteroge-

neous mixture of forest cover types has regrown, reflecting a

combination of complex glacial history and forest manage-

ment (Fassnacht & Gower, 1997). Outwash, pitted outwash,

and moraines comprise almost 63% of the geomorphic

landform for this study site. Red pine plantations (Pinus

http://landval.gsfc.nasa.gov/


Table 1

Summary of the primary data sets used in this study

Data Year collected Reference

Micrometeorological 2000 Davis et al., 2003

PAR

Air temperature

Soil moisture

Leaf area index 2000 Burrows et al., 2002

Plot tree inventory 1998 Burrows et al., 2002

Light use efficiency 2000 Ahl et al., 2004

Land cover

WISCLAND 1993, 1994 Lillesand et al., 1998

ATLAS 1998 This study

MODIS 2000 GES, 2005
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resinosa Ait.) dominate well drained glacial outwash.

Northern hardwood species occur on fine textured moraines

and include sugar maple (Acer saccharum Marsh.) and

basswood (Tilia americana L.) primarily. Trembling aspen

(Populus tremuloides Michx.) and balsam fir (Abies

balsamea (L.) Mill.) dominate intermediate sites in this

area. Poorly drained lowland organic soils (peat) comprise

approximately 30% of the area and are dominated by

speckled alder (Alnus rugosa DuRoi), white cedar (Thuja
Fig. 1. Northern Wisconsin, USA, site location with 312 plot locations used as a
occidentalis L.), and tamarack (Larix laricina DuRoi), with

some balsam fir and black spruce (Picea mariana Mill.)

throughout. Wetland grass, shrub and open water commun-

ities comprise less than 10% of the area.

An extensive field survey grid of 312 plots was

established to estimate the spatial variability of leaf area

index (LAI), land cover, and NPP for an area covering

approximately 3.2�4.2 km (Burrows et al., 2002, 2003).

LAI from these plot data ranged from 1.0 to 8.0 m2 m�2,

and averaged 3.6 (Burrows et al., 2002).

2.2. Research design

Several diverse datasets were used in this research (Table

1). LAI data were collected at 205 of the 312 plots (Fig. 1)

in 2000 and used to derive LAI maps. Land cover data were

collected at 277 plots in 1998 and used for assessing the

accuracy of land cover classifications. The effects of

aggregated land cover information and spatial LAI data on

landscape NPP estimates were evaluated using a LUE

model among nine NPP estimation scenarios (Fig. 2). The

approach to estimate NPP was to partition the site by land

cover class. Three land cover maps were developed
source for LAI mapping and to assess land cover classification accuracy.
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Fig. 2. Conceptual diagram showing methodology for producing the nine different net primary production (NPP) maps in this study. Land cover is represented

by three products: ATLAS, WISCLAND, MODIS. LAI is represented by three products: Average, Krige, Co-Krige with Remote Sensing. NPP is derived for

each combination using a land cover specific light use efficiency (LUE) coefficient.
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separately using the Airborne Terrestrial Land Applications

Sensor (ATLAS), Landsat, and MODIS sensors (Table 1).

The spatial resolution of ATLAS, Landsat, and MODIS in

this study were 15 m, 30 m, and 1 km, respectively. The

ATLAS and Landsat were classified using a site-specific

classification scheme. The MODIS data were classified

using the IGBP scheme (Table 2). Within each land cover

class, LAI was estimated separately using 1) the mean LAI

value for the class determined from the field data, 2) a

kriged estimate of LAI, and 3) a co-kriged estimate of LAI.

The two kriged LAI maps were created separately using

field based LAI measurements. One LAI map was created

using kriging constrained by the ATLAS land cover

classification (Burrows et al., 2002). The second LAI map
Table 2

Adaptation of the site-specific and IGBP classification schemes (Thomlin-

son et al., 1999) used in this study with corresponding light use efficiency

(LUE) and average leaf area index (LAI) values

Site-specific LUEa LAIb IGBP LUE LAI

Aspen 0.51 4.0 Deciduous broadleaf 0.53 3.9

Forested wetland 0.41 4.1 Mixed 0.42 4.1

Northern hardwood 0.56 3.8 Deciduous broadleaf 0.53 3.9

Red pine 0.50 5.1 Evergreen needleleaf 0.41 4.5

Upland conifer 0.35 3.8 Evergreen needleleaf 0.41 4.5

Open wetlandc 0.27 2.7 Wetland 0.27 2.7

Grass/shrubc 0.30 1.0 Grassland 0.3 1.0

Croplandc 3.0 3.5 Cropland 3.0 3.5

LUE (gC MJ�1) and hemispherical LAI (m2 leaf area m�2 ground area)

values for the IGBP classes represent the mean of corresponding site-

specific values.
a LUE values of forest cover types taken from Ahl et al. (2004).
b LAI values of cover types except cropland taken from Burrows et al.

(2002).
c LuE values taken from Gower et al. (1999).
was created using co-kriging with the ATLAS land cover

classification and imagery from ATLAS and Landsat. The

nine NPP maps were created from an LUE model by pairing

each of three land cover maps with each of three methods

for representing LAI. The LUE coefficient was also

partitioned by land cover class for each scenario using

mean coefficient values for each class taken from Ahl et al.

(2004). The mean NPP for the nine scenarios were tested for

significant differences against the highest resolution map

NPP estimate.

2.3. Field data

A detailed description of the systematic plot design and

inventory can be found in Burrows et al. (2002). All trees

greater than 2.5 cm diameter at breast height (1.37 m) were

identified using variable radius plots at each of the 277

plots. Each plot was assigned a site-specific class that could

be collapsed into a IGBP land cover type (Table 2). Ahl et

al. (2004) summarized the criteria used to assign plot data to

a land cover class.

LAI was measured at each plot using a Li-Cor LAI-2000

Plant Canopy Analyzer (Li-Cor Inc., Lincoln, NE). Standard

field measurement methods were used (Gower & Norman,

1991). Details of the measurements and methods used are

described in Burrows et al. (2002). The average LAI was

calculated for each land cover type and classification

scheme (Table 2).

Prior to remote sensing image acquisition, eight 6�6 m

ground targets were established in the WLEF study area for

image georectification. Coordinates for the targets were

determined using an Ashtech GG-24 Surveyor (Magellan

Inc., Sunnyvale, CA) Global Positioning System (GPS).
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Additional ground control points (GCPs) were collected

with the GPS throughout the study area at features

recognizable on the imagery. These features consisted

primarily of road intersections. The relative accuracy of

the GCPs, determined from a local survey benchmark, was

T50 cm.

2.4. Micrometeorological measurements

Micrometeorological data (photosynthetically active

radiation (PAR), wind speed, temperature, precipitation,

soil moisture, and relative humidity) were recorded every 15

min at the WLEF tower and hourly averaged data were

stored (Table 1). Diurnal PAR were summed to derive a

daily value. Gaps in the data were filled with PAR data

collected at another site approximately 10 km away (Ewers

et al., 2002). Temperature, soil moisture and understory

PAR were available at three additional sites within 2.5 km of

the WLEF tower located in stands dominated by mixed

hardwoods, red pine, alder/cedar respectively (Fig. 1).

2.5. Imagery collection and preprocessing

Airborne multispectral data were collected using the

ATLAS sensor (Brannon et al., 1994) on September 10,

1998 (Figs. 3 and 4a). ATLAS is a 14 channel sensor with

6 of the channels similar in spectral bandwidth to the

Thematic Mapper (TM) and the Enhanced Thematic

Mapper (ETM+) onboard the Landsat satellites. Data were

collected at two different altitudes to produce nominal

ground resolutions of 3 and 15 m respectively. All images

were collected from 11:00 to 13:00 (CST) on a clear day.

The images were georeferenced with ERDAS Imagine

software (ERDAS Inc., 2000, Atlanta) using GCPs and a

second order polynomial to relate the image coordinates to

the GCP coordinates Tone pixel. The images were
a)  ATLAS 15m 1998 b) Landsat5 TM

0            1
K

Fig. 3. Representative leaf-on imagery for the study site from a) ATLAS, b) Lands

The circular clearing in the middle of the ATLAS and TM images is the location
resampled using a cubic convolution method. Other

resampling methods (e.g., nearest neighbor) were exam-

ined but did not produce more accurate results.

2.6. Image classification procedure

The 15 m resolution ATLAS data were chosen for the

classification because the entire study site was contained

within one swath of the flight line, which eliminated the

need to combine multiple flight lines and reduced the errors

associated with aircraft distortion. A semi-automated

classification using a subset of the red, near-infrared, and

mid-infrared bands and NDVI was employed (Lillesand &

Keifer, 2000). To reduce misclassification of forested

wetlands, wetlands were separated in the imagery from

uplands using the Wisconsin DNR wetland survey (Lille-

sand et al., 1998; Sader et al., 1995).

We used hybrid image classification techniques (Bauer

et al., 1994; Lillesand & Keifer, 2000; Stuckens et al.,

2000) to classify the ATLAS imagery using the site-

specific classification scheme (Table 2). A post classifica-

tion contextual procedure was applied to remove the ‘‘salt

and pepper’’ effect and assign each pixel a majority land

cover of the classes surrounding it (Stuckens et al., 2000).

To assist in refining the wetland/upland delineation further,

soils data (U.S. Forest Service, Dave Hoppe, unpublished

data) were used to identify potential wetland areas not

identified on existing wetland maps. Several field visits

provided additional information on potential classification

errors, which were corrected using on-screen digitizing.

2.7. WISCLAND data

We used the WISCLAND land cover product (Lillesand

et al., 1998) to represent a land cover classification derived

from the Landsat satellite (Figs. 4b and 5b). We chose this
 30m 1994 c) MODIS 500m 2001 

ilometers 

at TM, and c) MODIS with spatial resolution and year of imagery indicated.

of the WLEF communications tower.



Fig. 5. MODIS land cover classification product obtained through GES

Data and Information Services Center (2005).

Fig. 4. Land cover classifications from a) ATLAS and b) WISCLAND land cover product (Lillesand et al., 1998).
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product for three reasons: 1) it represents a publicly

available product at a site-specific classification level, 2)

other Landsat imagery at the time of analysis were unusable

because of excessive clouds or haze, and 3) it was an

independently derived land cover product. The WISC-

LAND product was based on early 1990’s imagery, but

the WISCLAND classification was similar to the site-

specific classification scheme.

2.8. MODIS imagery and data

MODIS imagery (MOD09) was obtained on July 13,

2001 encompassing study site (Fig. 4c). MODIS is a 36

channel sensor divided among three spatial resolutions: 250,

500, and 1000 m. The spectral bandwidth of the bands

primarily used for land-based applications are only slightly

different from that of Landsat ETM+. The 500 m resolution

image was subset for the study area and classified using the

IGBP scheme and the same classification techniques

described for ATLAS data.

The MODIS 1 km land cover product (MOD12Q1)

was the coarsest scale in this study (Fig. 6) and was

obtained from the GES DISC (GES Data and Information

Services Center, 2005). These MODIS data were classi-

fied using the IGBP classification scheme. The classi-

fication should be viewed as preliminary and is still under

evaluation. At the time of this analysis, collection V004

was not available. However, subsequent analysis with

V004 data show that our classification of the 500 m data

and land cover product of MOD12 did not change.



                      a)                              b)

Leaf Area 
Index 

0

9.9 

Fig. 6. One-sided leaf area index (LAI) maps derived using a) kriging with land cover information and b) co-kriging with land cover and remote sensing

normalized difference vegetation index (NDVI) data. Mean, standard deviation, and range is 3.9, 0.9, and 0–8.8 for a) and 3.4, 0.9, and 0–9.6 for b).
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2.9. Land cover classification accuracy assessment

The ATLAS and WISCLAND land cover classifications

were compared to the inventory plots to perform the

accuracy assessment using standard techniques (Congalton,

1991; Lillesand & Keifer, 2000). An error matrix was

created from the plots and used to compute overall, user’s

and producer’s accuracy measures (Lillesand & Keifer,

2000).

We did not assess the accuracy of the MODIS products

because of the lack of variation within the site (i.e., the

entire site is labeled a mixed forest category). A qualitative

examination using the field inventory data revealed that

the 500 m and 1 km MODIS land cover products

represented the land cover of the site very well at that

scale. Only one MODIS product (1 km) was used in

subsequent analyses because the 500 m and 1 km

classifications were identical.

2.10. Spatial LAI

The coordinates of the field plots were determined from

a cyclic sampling design, which was implemented to

characterize the vegetation cover and LAI of a 13 km2

area centered on the WLEF Tower (Burrows et al., 2002)

(Fig. 1). The purpose for implementing the cyclic design

was to maximize the information available to subsequent

analyses concerning vegetation characteristics in this

heterogeneous landscape. The design optimized the loca-

tion of the plots so plot information such as LAI could be

used in geostatistical analyses such as spatial regression

and kriging, which also allowed for the incorporation of

covariates such as remotely sensed data and land cover

(Burrows et al., 2002; Cressie, 1993; Pinheiro & Bates,

2000).
The SAS/MIXED\ software (SAS Institute Inc., 2000)

was used to construct a map of LAI from the LAI plot

data and the ATLAS classification with a kriging function

(Burrows et al., 2002). Kriging uses a weighted average

function to predict values at new locations based on a

semivariogram and LAI measured at other locations

(Cressie, 1993). Each land cover type had a spherical

spatial covariance structure based on the LAI measure-

ments, which were specified for the kriging function in

SAS/MIXED\ (Burrows et al., 2002).

A second LAI map was created using the same

information and procedure just described but also incorpo-

rated information from the ATLAS imagery and Landsat

ETM+ imagery (Landsat imagery acquired October 6,

1999). This kriging procedure is refered to as co-kriging

(Cressie, 1993) and takes advantage of the LAI and imagery

observations at each plot. We first transformed the imagery

using a canonical components transformation to (i) reduce

the dimensionality of the data (i.e., the number of bands

used in processing) and (ii) help maximize LAI separability

among land cover classes (Jakubauskas, 1996; Lillesand &

Keifer, 2000). We used the first canonical variate in the co-

krige function. Jakubauskas (1996) showed that the first

canonical variate calculated from all Landsat reflectance

bands was correlated to LAI. The leaf-off Landsat imagery

was used because we assumed it might provide additional

LAI information for understory balsam fir present in many

trembling aspen stands at this site.

We did not assess quantitatively the accuracy of the two

LAI maps. We present them in this study as potential ways

to obtain a spatial estimate of LAI and are used here for

comparison purposes only. However, the range and

distribution of LAI in both maps appear reasonable

compared to the LAI from the plot data and LAI data

from Fassnacht et al. (1997).



Table 3

Error matrix for the ATLAS land cover classification with agreement statistics (overall accuracy=84%, kappa statistic=0.79)

Reference plots

Aspen Forested

wetland

Northern

hardwood

Red

pine

Upland

conifer

Open

wetland

Grass/shrub Urban Water Cropland Total Producer

accuracy (%)

User accuracy

(%)

Aspen 54 1 3 0 2 0 0 0 0 0 60 79 90

Forested wetland 7 85 6 0 0 1 0 0 0 0 99 93 85

Northern hardwood 4 1 58 1 1 0 0 0 0 0 65 81 89

Red pine 1 1 0 9 1 0 0 0 0 0 12 56 75

Upland conifer 1 2 4 6 5 0 0 0 0 0 18 55 27

Open wetland 0 1 0 0 0 11 0 0 0 0 12 91 91

Grass/shrub 1 0 0 0 0 0 10 0 0 0 11 100 90

Urban 0 0 0 0 0 0 0 0 0 0 0 * *

Water 0 0 0 0 0 0 0 0 0 0 0 * *

Cropland 0 0 0 0 0 0 0 0 0 0 0 * *

Total 68 91 71 16 9 12 10 0 0 0 277
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2.11. NPP

NPP for each combination of LAI and land cover

map (NPPXZ) was calculated using the following equation

(Fig. 2):

NPPXZ ¼ eX fAPAR PARGS ð3Þ

where X denotes the land cover map used, Z denotes the

LAI map used, eX is the land cover specific LUE factor

(Table 2), fAPAR was determined using Eq. (2) and the

LAI map where k =0.57, and PARGS represents a

growing season sum taken from Ahl et al. (2004).

PARGS was calculated from daily incident PAR by using

air and soil temperature constraints on photosynthesis. We

used a soil temperature (at 10 cm depth) and daily

minimum air temperature threshold of 0 -C to determine

the number of growing season days. Temperature

measurements were obtained from each of the three

micrometeorological stations (upland deciduous, upland

coniferous, lowland deciduous) and used according to the

dominant leaf habit (land cover type deciduous or

evergreen) and topographic position (upland or wetland).

For mixed stands, we determined the proportion of leaf
Table 4

Error matrix for the WISCLAND land cover classification with agreement statist

Reference plots

Aspen Forested

wetland

Northern

hardwood

Red

pine

Upland

conifer

Open

wetland

Gra

Aspen 25 14 17 0 4 0 2

Forested wetland 2 42 2 0 0 1 0

Northern hardwood 22 0 47 6 1 0 2

Red pine 0 1 1 10 0 0 0

Upland conifer 5 8 2 0 3 1 2

Open wetland 2 21 1 0 1 10 0

Grass/shrub 9 4 0 0 0 0 4

Urban 3 1 1 0 0 0 0

Water 0 0 0 0 0 0 0

Cropland 0 0 0 0 0 0 0

Total 68 91 71 16 9 12 10

Urban, water, and cropland were not sampled in the reference data but appear in
area for each leaf habit, and modified LAI accordingly.

The forested wetlands class contained 53% deciduous leaf

area (mostly speckled alder) and 47% evergreen (mostly

white cedar). The same procedure was used for the

mixed category in the IGBP classifications. The mixed

category consisted of 73% deciduous and 27% evergreen

leaf area. The spatial NPP maps were created using

ERDAS Imagine/Modeler\ software (ERDAS, Inc, 2000,

Atlanta) to process the input maps, LUE, and PAR data

using Eq. (3).

2.12. Statistical analyses

We generated a random sample of 2500 locations within

the site to compare mean NPP estimates. We chose 2500 as

the sample size to ensure an adequate number of points per

land cover class (Congalton, 1991). Using the random

locations, we extracted the NPP values from each NPP

map except for scenario MA, which was excluded from

analyses because it only contained one value. Statistical

analyses (F and t tests) were performed using SAS/

MIXED\ (SAS Institute Inc., 2000) to test overall site

mean NPP differences.
ics (overall accuracy=50%, kappa statistic=0.41)

ss/shrub Urban Water Cropland Total Producer

accuracy (%)

User accuracy

(%)

0 0 0 62 36 40

0 0 0 47 46 89

0 0 0 78 66 60

0 0 0 12 62 83

0 0 0 21 33 14

0 0 0 35 83 28

0 0 0 17 40 23

0 0 0 5 * *

0 0 0 0 * *

0 0 0 0 * *

0 0 0 277

the classification.
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3. Results

3.1. Vegetation classification

The ATLAS classification had an 84% overall accuracy

compared to the field inventory data (Fig. 5a, Table 3). Most
Fig. 7. Net primary production (NPP) maps derived using land cover specific light

and data used for each map, identified by the scenario label (AA, AK, AR. . .) ar

shown next to the scenario label. Differences among scenarios are described in T
vegetation classes had a producer’s and user’s accuracy

greater than 75%. The greatest discrepancy in the ATLAS

classification was that 38% of the upland conifer reference

plots were misclassified as red pine. Of the plots classified

as upland conifer, 39% were actually dominated by

deciduous species or were a forested wetland. Aggregating
use efficiency values and spatial leaf area index (LAI) maps. Methodology

e depicted in Fig. 2. The mean NPP (gC m�2 year�1) for the each map is

able 5.



Table 5

Net primary production (NPP) estimates for nine different scenarios in a 10 km2 study area

Scenario Sensor Sensor resolution (m) Mean NPP (gC m�2 year�1) Range % Difference

AA ATLAS 15 402 (86) 0–505 �0.3

AK ATLAS 15 419 (83)* 0–555 4.0

AR ATLAS 15 403 (86) 0–560 –

WA TM 30 388 (182)* 0–2603 �3.8

WK TM 30 424 (165)* 0–2780 5.2

WR TM 30 410 (164)* 0–2747 1.6

MA MODIS 1000 431 (0)a 431 6.8

MK MODIS 1000 426 (56)* 6–486 5.6

MR MODIS 1000 411 (55)* 2–487 1.8

Differences (%) are relative to scenario AR. Mean NPP followed by one standard deviation in (). Sensor indicates the remote sensing data used to derive the

land cover classification used to model NPP.
a Not tested due to lack of variance.

* Significantly different from AR at 95%.
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red pine and upland conifer classes increased the overall,

producer’s, and user’s accuracy to 86%, 84%, and 70%,

respectively.

The overall accuracy for the WISCLAND map (derived

from Landsat TM) was 50% (Fig. 5b, Table 4). Most

classes had a user’s and producer’s accuracy less than 67%.

The major misclassification problems were: 38% of the

plots classified as upland conifer were forested wetlands,

60% of the plots classified as open wetland were forested

wetlands, and almost 32% of the aspen plots were classified

as northern hardwood. It appears from the raw imagery that

some areas mapped as grass/shrub (53%) and barren

(<10%) are now aspen. The WISCLAND classification

identified several cropland pixels, but the inventory data

and on-site visits indicated there were no cropland in this

study area.

3.2. LAI and NPP

The mean LAI in 2000 calculated from all ground

measurements was 3.6 (Burrows et al., 2002). The kriged

and co-kriged LAI maps had a mean LAI of 3.9 and 3.4,

respectively (Fig. 7).

The mean NPP differed significantly ( p <0.001) among

all nine scenarios tested and ranged from 388 (WA) to 431

gC m�2 year�1 (MA) (Fig. 7, Table 5). Although all mean

NPP comparisons differed significantly from AR, except for

AA, the differences ranged only from �3.8% to 6.8%. The

largest variation occurred among the WISCLAND-based

scenarios because of the misclassification of cropland (high

LUE) in the data. The NPP variation due to the LAI maps

were apparent among the MODIS-based NPP maps.
4. Discussion

4.1. Effects of aggregation on land cover

Several studies have examined the effects of aggregat-

ing data from fine to coarse scales (Benson &

MacKenzie, 1995; He et al., 2002; Steyaert et al., 1997;
Townshend & Justice, 1988; Turner et al., 1996). We did

not aggregate land cover data using a neighborhood

function, however, the difference in classifications

between the smallest grain size (15 m) and largest grain

size (1000 m) in this study corroborates results found in

other studies. Benson and MacKenzie (1995) examined

the effects of increasing grain size from 20 m to 1.1 km

on lake parameters in northern Wisconsin and showed that

as grain size increased, the number of detectable lakes

decreased and the average detectable lake size increased.

In our study, the number of land cover types decreased as

grain increased from 15 to 1000 m. We applied a majority

filter, post analysis, to the ATLAS classification to

simulate a 1000 m classification, and the resultant

aggregated classification contained 78% forested wetland

and 22% northern hardwoods. Aggregated to the IGBP

biome scale using a majority rule, this area was classified

as mixed forest, similar to the MODIS classification used

in the analysis.

Classifying the 15 m ATLAS data was problematic

because canopy gaps and shadows created a ‘‘salt and

pepper’’ effect in the imagery. The effect was reduced in the

30 m imagery, where stands appeared more homogeneous.

Almost 27% of the error in the WISCLAND product was

attributed to the fact that some of the areas have changed

since the original imagery was acquired in the early 1990s.

If we account for change or succession (e.g., clearcutting,

regeneration, etc.), the overall agreement of the WISC-

LAND product improved to 77%. Thomlinson et al. (1999)

suggested that overall accuracy should not be less than 85%

when the land cover data will be used in validation

experiments involved with EOS products. We speculate

that achieving this minimum accuracy using Landsat data is

possible if several classification techniques are used (e.g.,

Bauer et al., 1994; Stuckens et al., 2000). This would also

suggest that spatial resolutions less than 30 m may not be

needed for classification purposes in this area. This study

highlights the growing need to classify vegetation types at

scales less than 1 km2 because most timber management

units in the Chequamegon-Nicolet National Forest are

smaller than this size.
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4.2. Effects of land cover aggregation on NPP estimates

Past studies have shown that spatial NPP estimates were

influenced significantly by grain size (e.g., Pierce &

Running, 1995; Reich et al., 1999; Turner et al., 1996;

Turner et al., 2002). Pierce and Running (1995) reported

that NPP increased 30% as grain size increased from fine to

coarse grain. They attributed the difference to using

averaged temperature data in the coarse grain analysis in

their mountainous study area. Nungesser et al. (1999)

reported that NPP increased by 27% as grain size increased

from 10 and 50 km2 for an area roughly comprising the

eastern half of the United States. They concluded that the

aggregation of forest types contributed to much of the

difference in NPP but also noted the coarse scale temper-

ature data contributed to the error. Turner et al. (2000) found

that total NPP decreased 12% when aggregating from 25 to

1000 m resolution. They attributed this difference to errors

in the land cover classification at different scales.

Our results that NPP was relatively insensitive to land

cover spatial scale is consistent with Reich et al. (1999) who

reported a 5% increase in NPP from 25 to 1000 m in

northern Minnesota. In our study, the NPP difference

between the finest grain (AR) and coarsest grain (MA)

scenario was only 7%. Accounting for spatial autocorrela-

tion in the 2500 random locations did not change the

estimate significantly. Although the NPP means differed

significantly in this study, the differences among the

estimates are low considering it is difficult to measure

NPP in the field within 20% (Nungesser et al., 1999). While

the spatial NPP estimates used in this study were partitioned

by land cover, the land cover was indexed to associated

LUE coefficients. More work is needed to incorporate the

effects of errors in field measurements and heterogeneity in

underlying physiologies (e.g., species stomatal conductance

rates) in scaling studies (Ahl et al., 2004; Mackay et al.,

2002).

Turner et al. (2000) suggested that scale dependant errors

would not be large where land cover types detectable by

remote sensing have similar NPP. We speculate that the fine

and coarse grain estimates of NPP in this study were similar

because almost 90% of the area is forested and that average

LUE may be representative of the entire area at the coarsest

scale. If the study area consisted of 25% water or urban, for

example, then the NPP difference between the fine and

coarse grain would be almost 30%. This scenario may not

be uncommon east of this study site, which has a high

density of lakes (i.e., Vilas County region). Benson and

Mackenzie (1995) suggested that the exclusion of many

small lakes from large grain data may be problematic for

ecosystem scaling studies. This suggests the need to use

species level spatial information in NPP and LUE validation

experiments and the need to test and optimize methods in

areas with different land cover gradients that may affect

mixed pixels (Reich et al., 1999; Turner et al., 2004).

Therefore, the results from this study should not be
extended to other areas in northern Wisconsin, but we

believe the framework of methodology used in this study is

applicable elsewhere.

The land cover classification process from remote

sensing data represents another source of uncertainty that

may contribute to NPP differences. Although the accuracy

of the ATLAS classification was only 84%, most of the class

confusion involved land cover with similar NPP. Therefore,

the overall effect of classification error on the NPP estimate

was minimal. Similarly, the effect of the low accuracy of the

WISCLAND classification on NPP estimates was offset by

the distribution of land cover with similar NPP. Addition-

ally, the commission error of agriculture (i.e., agriculture has

a high LUE coefficient) only comprised 5% of the total site

area, therefore having a minimal effect on the mean NPP.

We suggest that future studies incorporate classification

error in NPP estimates especially in NPP heterogeneous

areas.

4.3. Effects of LAI on NPP estimates

The three different methods for representing spatial LAI

had different effects on the landscape NPP estimates. The

decrease in the NPP estimate from MA to MR reflects the

variation in the LAI data because the land cover is constant

in each of those scenerios. The MA scenario is informative

as an aggregate LAI because it was derived from the

average LAI for the mixed land cover class. We resampled

the co-krige LAI map to 1000 m grain size and calculated

NPP based on the LUE coefficient for the mixed class. The

NPP estimate derived from the 1000 m resampled LAI was

409 gC m�2 year�1, or only 1% different from scenario AR

(Table 5). The mean NPP would be 416 gC m�2 year�1 if

we used the average LAI for the entire site with the ATLAS

land cover classification. Therefore, the LAI and the land

cover each account for almost 50% of the total difference

between the fine and coarse grain mean NPP estimate,

depending on how land cover (and the LUE coefficient) is

specified and how LAI is represented. Although we did not

assess the accuracy of the LAI maps, we speculate that the

co-kriged map may provide a better estimate of the variation

of LAI because of the NDVI information that was used. The

NDVI provided an additional spatial source of information

regarding the leaf area, which was absent from first krige

method. The difficulty with using NDVI (or other vegeta-

tion indices) alone is that LAI values greater than five in this

region are difficult to predict due to sensor saturation

(Fassnacht et al., 1997). The errors in field LAI data ranged

from 0.4 to 1.0 m2 m�2 (Burrows et al., 2002; Fassnacht et

al., 1997).

At the time of this writing the average LAI and FPAR for

this site derived from the Collection 4 (V004) MOD15 1 km

product were 5.5 m2 m�2 and 0.85, respectively. While

using the MOD15 LAI would overestimate relative NPP at

this site, use of FPAR directly would yield a NPP estimate

similar to the 1000 m resampled LAI. It is beyond the scope
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of this paper to discuss or validate the methods behind the

MOD15 products. We suggest that more work is needed to

explore how geostatistics may be used in combination with

field data and remote sensing to adjust for the variability in

LAI (Burrows et al., 2002).

4.4. Implications for validating and modeling NPP

MODIS data and process models will be used to estimate

global NPP of terrestrial ecosystems (Running et al., 1999).

This study shows that MODIS data may not capture the

heterogeneity of land cover in some areas, but the

implications for estimating NPP appear small for the region

examined in this study. Results from this study and others

(e.g., Nungesser et al., 1999; Turner et al., 2000) suggest

that scaling and validation experiments need to use a tiered

or stratified approach appropriate for the region of interest.

Additional studies may be essential to stratify regions on the

Earth for modeling purposes relative to the importance of

spatial resolution to that region (Turner et al., 2000; Turner

et al., 2004). The errors that can result from aggregating fine

scale land cover information may be reduced by using

partitioning (Rastetter et al., 1992) based on land cover

types. The validation of NPP at fine scales is still needed in

many areas in order to understand the underlying mecha-

nisms associated with ecosystem processes, particularly

where biophysical (e.g., land cover) or environmental (e.g.,

temperature) gradients exist. Dismissing the variability in

vegetation patterns can cause variability of estimates in

modeling atmospheric CO2 (Bonan, 1995). The effects of

spatial scale of data used in biogeochemical models may

also depend upon which ecosystem model is used because

models differ in their logic used to estimate NPP and the

sensitivity of NPP to resource availability (e.g., water and

nutrient availability).
5. Conclusions

Land cover information derived from remotely sensed

data is an important component used in estimating NPP

from local to global scales. The development of a variety of

remote sensing systems with different spatial resolutions

over the last several years has provided the opportunity to

study the effects of sensor resolution, or scale, on land

cover classifications and NPP estimates. More work is

needed to examine the causes of NPP variability and to

examine aggregation errors in other areas where land cover

heterogeneity exists. Significant findings from this study

include:

& Aggregating land cover information from fine to coarse

scale had a relatively minimal effect on estimating mean

NPP.

& LAI aggregation and partitioning based on land cover

had a relatively minimal effect on estimating mean NPP.
& In regions where the NPP is similar despite land cover

heterogeneity, it may be possible to estimate NPP reliably

using biome-level land cover data (¨1 km) and

associated LUE estimates without incurring large errors

(<10%).

Acknowledgements

This research was supported by a NASA EOS Validation

grant (NAG5-6457) to Gower, Norman, and Diak. Addi-

tional support was provided by a NASA Hydrology Grant

(NAG5-8554) to Mackay and McIntire-Stennis funding to

Gower and Mackay. The authors thank Peter Bakwin, Ken

Davis and Bruce Cook for use of micrometeorological data

at WLEF.
References

Ahl, D. E., Gower, S. T., Mackay, D. S., Burrows, S. N., Norman, J. M., &

Diak, G. (2004). Heterogeneity of light use efficiency in a northern

Wisconsin forest: Implications modeling net primary production with

remote sensing. Remote Sensing of Environment, 93, 168–178.

Barish, L. S., & Meloy, P. E. (2000). Wisconsin blue book 1999–2000.

Madison’ Wisconsin Legislative Reference Bureau.

Bartelink, H. H., Kramer, K., & Mohren, G. M. J. (1997). Applicability of

the radiation-use efficiency concept for simulating growth of forest

stands. Agricultural and Forest Meteorology, 88, 169–179.

Bauer, M. E., Burk, T. E., Ek, A. R., Coppin, P. R., Lime, S. D., Walsh,

T. A., et al. (1994). Satellite inventory of Minnesota forest resources.

Photogrammetric Engineering and Remote Sensing, 60, 287–298.

Benson, B. J., & MacKenzie, M. D. (1995). Effects of sensor spatial

resolution on landscape structure parameters. Landscape Ecology, 10,

113–120.

Bonan, G. B. (1995). Land atmosphere interactions for climate system

models—coupling biophysical, biogeochemical, and ecosystem dynam-

ical processes. Remote Sensing of Environment, 51, 57–73.

Brannon, D. P., Hill, C. L., Davis, B. A., & Birk, R. J. (1994). Commercial

remote sensing program. Photogrammetric Engineering and Remote

Sensing, 60, 317–330.

Burrows, S. N., Gower, S. T., Clayton, M. K., Mackay, D. S., Ahl, D. E.,

Norman, J. M., et al. (2002). Application of geostatistics to characterize

LAI for flux towers to landscapes. Ecosystems, 5, 667–679.

Burrows, S. N., Gower, S. T., Norman, J. M., Diak, G., Mackay, D. S., Ahl,

D. E., et al. (2003). Spatial variability of aboveground net primary

production for a forested landscape in northern Wisconsin. Canadian

Journal of Forest Research, 33, 2007–2018.

Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental

biophysics. New York, USA’ Springer-Verlag New York.

Choudhury, B. J. (2001). Estimating gross photosynthesis using satellite

and ancillary data: Approach and preliminary results. Remote Sensing of

Environment, 75, 1–21.

Congalton, R. G. (1991). A review of assessing the accuracy of

classifications of remotely sensed data. Remote Sensing of Environment,

37, 35–46.

Coops, N. C., Waring, R. H., & Landsberg, J. J. (1998). Assessing forest

productivity in Australia and New England using a physiologically-

based model driven with averaged monthly weather data and satellite-

derived estimates of canopy photosynthesis capacity. Forest Ecology

and Management, 104, 113–127.

Cramer, W., Kicklighter, D. W., Bondeau, A., Moore, B., Churkina, C.,

Nemry, B., Ruimy, A., & Schloss, A. L. (1999). Comparing global



D.E. Ahl et al. / Remote Sensing of Environment 97 (2005) 1–14 13
models of terrestrial net primary productivity (NPP): Overview and key

results. Global Change Biology, 5(Suppl. 1), 1–15.

Cressie, N. A. (1993). Statistics for spatial data. New York, New York’
John Wiley and Sons, Inc.

Davis, K. J., Bakwin, S., Yi, C., Berger, B. W., Zhao, C., Teclaw, R. M.,

et al. (2003). The annual cycles of CO2 and H2O exchange over a

northern mixed forest as observed from a very tall tower. Global

Change Biology, 9, 1278–1293.

Ewers, B. E., Mackay, D. S., Ahl, D. E., Burrows, S. N., Samanta, S. S., &

Gower, S. T. (2002). Tree species effects on stand transpiration in

northern Wisconsin. Water Resources Research, 38(7).

Fassnacht, K. S., & Gower, S. T. (1997). Interrelationships among

the edaphic and stand characteristics, leaf area index, and

aboveground net primary production of upland forest ecosystems

in north central Wisconsin. Canadian Journal of Forest Research, 27,

1058–1067.

Fassnacht, K. S., Gower, S. T., MacKenzie, M. D., Nordheim, E. V., &

Lillesand, T. M. (1997). Estimating leaf area index of north central

Wisconsin forests using the Landsat Thematic Mapper. Remote Sensing

of Environment, 61, 229–245.

Foley, J. A., Prentice, N., Ramankutty, N., Levis, S., Pollard, D., Sitch,

S., et al. (1996). An integrated biosphere model of land surface

processes, terrestrial carbon balance, and vegetation dynamics. Global

Biogeochemical Cycles, 10, 603–628.

Franklin, S. E., Lavigne, M. B., Deuling, M. J., Wulder, M. A., & E.R.

Hunt, J. (1997). Landsat TM derived forest covertypes for modelling

net primary production. Canadian Journal of Remote Sensing, 23,

243–251.

Goetz, S. J., & Prince, S. D. (1998). Variability in carbon exchange and

light utilization among boreal forest stands: Implications for remote

sensing of net primary production. Canadian Journal of Forest

Research, 28, 375–389.

Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and

indirect estimation of leaf area index, fapar, and net primary

production of terrestrial ecosystems. Remote Sensing of Environment,

70, 29–51.

Gower, S. T., & Norman, J. M. (1991). Rapid estimation of leaf area index

in conifer and broad-leaf plantations. Ecology, 72, 1896–1900.

GES Data and Information Services Center. (2005). Homepage

http://daac.gsfc.nasa.gov. Last accessed 1 June 2005.

He, H. S., Ventura, S. J., & Mladenoff, D. J. (2002). Effects of spatial

aggregation approaches on classified satellite imagery. International

Journal of Geographical Information Science, 16, 93–109.

Jakubauskas, M. E. (1996). Canonical correlation analysis of coniferous

forest spectral and biotic relations. International Journal of Remote

Sensing, 17, 2323–2332.

Landsberg, J. J., & Gower, S. T. (1997). Application of physiological

ecology to forest management. San Diego’ Academic Press.

Lillesand, T. J., Chipman, J., Nagel, D., Reese, H., Bobo, M., Goldman, R.

(1998). Upper Midwest Gap Analysis Program Image Processing

Protocol. Environmental Management Technical Center report

EMTC-98-G001, Environmental Management Technical Center, US

Geological Survey, Onalaska, Wisconsin.

Lillesand, T. M., & Keifer, R. W. (2000). Remote sensing and image

interpretation. New York’ John Wiley & Sons, Inc.

Mackay, D. S., Ahl, D. E., Ewers, B. E., Gower, S. T., Burrows, S. T.,

Samanta, S., et al. (2002). Effects of aggregated classifications of forest

composition on estimates of evapotranspiration in a northern Wisconsin

forest. Global Change Biology, 8, 1253–1265.

Medlyn, B. E. (1998). Physiological basis of the light use efficiency model.

Tree Physiology, 18, 167–176.

Milne, B. T., & Cohen, W. B. (1999). Multiscale assessment of binary

and continuous landcover variables for MODIS validation, map-

ping, and modeling applications. Remote Sensing of Environment, 70,

82–98.

Monteith, J. L. (1972). Solar radiation and productivity in tropical

ecosystems. Journal of Applied Ecology, 9, 747–766.
Monteith, J. L. (1977). Climate and the efficiency of crop production in

Britain. Philosophical Transactions of the Royal Society of London.

Series B, 281, 277–294.

Myneni, R. B., & Williams, D. L. (1994). On the relationship between

FAPAR and NDVI. Remote Sensing of Environment, 49, 200–211.

Nungesser, M. K., Joyce, L. A., & McGuire, A. D. (1999). Effects of spatial

aggregation on predictions of forest climate change response. Climate

Research, 11, 109–124.

Pierce, L. L., & Running, S. W. (1995). The effects of aggregating sub-grid

land surface variation on large-scale estimates of net primary produc-

tion. Landscape Ecology, 10, 239–253.

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-

PLUS. New York, New York’ Springer-Verlag New York, Inc.

Rastetter, E. B., King, A. W., Cosby, B. J., Hornberger, G. M., O’Neill, R.

V., & Hobbie, J. E. (1992). Aggregating fine-scale ecological knowl-

edge to model coarser-scale attributes of ecosystems. Ecological

Applications, 2, 55–70.

Reich, P. B., Turner, D. P., & Bolstad, P. (1999). An approach to spatially

distributed modeling of net primary production (NPP) at the landscape

scale and its application in validation of EOS NPP products. Remote

Sensing of Environment, 70, 69–81.

Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P.

S., & Hibbard, K. A. (1999). A global terrestrial monitoring network

integrating tower fluxes, flask sampling, ecosystem modeling and EOS

satellite data. Remote Sensing of Environment, 70, 108–127.

Running, S. W., & Hunt Jr., E. R. (1993). Generalization of a forest

ecosystem process model for other biomes, BIOME-BGC, and an

application for global-scale models. In J. R. Ehleringer & C. B. Field

(Eds.), Scaling physiological processes: Leaf to globe (pp. 141–158).

San Diego’ Academic Press.

Running, S. W., Justice, C. O., Solomonson, V., Hall, D., Barker, J.,

Kaufmann, Y. J., et al. (1994). Terrestrial remote sensing science and

algorithms planned for EOS/MODIS. International Journal of Remote

Sensing, 15, 3587–3620.

Running, S. W., Peterson, D. L., Spanner, M. A., & Teuber, K. B. (1986).

Remote sensing of coniferous forest leaf area. Ecology, 67, 273–276.

Sader, S. A., Ahl, D. E., & Liou, W. S. (1995). Accuracy of Landsat-TM

and GIS rule-based methods for forest wetland classification in Maine.

Remote Sensing of Environment, 53, 133–144.

SAS Institute Inc. (2000). Cary, South Carolina, USA.

Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A.,

Collatz, G. J., et al. (1996). A revised land-surface parameterization

(SiB2) for atmospheric GCMs: Part 2. The generation of global fields of

terrestrial biophysical parameters from satellite data. Journal of

Climate, 9, 706–737.

Spanner, M. A., Johnson, L., Miller, J., McCreight, R., Freemantle, J.,

Runyon, J., et al. (1994). Remote sensing of seasonal leaf area index

across the Oregon transect. Ecological Applications, 4, 258–271.

Steyaert, L. T., Hall, F. G., & Loveland, T. R. (1997). Land cover mapping,

fire regeneration, and scaling studies in the Canadian boreal forest with

1 km AVHRR and Landsat TM data. Journal of Geophysical Research,

102, 29581–29598.

Stuckens, J., Coppin, P. R., & Bauer, M. E. (2000). Integrating contextual

information with per-pixel classification for improved land cover

classification. Remote Sensing of Environment, 71, 282–296.

Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating

methodologies for scaling landcover classifications from site-specific to

global: Steps toward validating global map products. Remote Sensing of

Environment, 70, 16–28.

Townshend, J. R. C., & Justice, C. O. (1988). Selecting the spatial resolution

of satellite sensors required for global monitoring of land transforma-

tions. International Journal of Remote Sensing, 9, 187–236.

Turner, D. P., Cohen, W. B., & Kennedy, R. E. (2000). Alternative spatial

resolutions and estimation of carbon flux over a managed forest

landscape in Western Oregon. Landscape Ecology, 15, 441–452.

Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., & Briggs, J.

M. (1999). Relationships between leaf area index and Landsat TM

http://daac.gsfc.nasa.gov


D.E. Ahl et al. / Remote Sensing of Environment 97 (2005) 1–1414
spectral vegetation indices across three temperate zone sites. Remote

Sensing of Environment, 70, 52–68.

Turner, D. P., Dodson, R. D., & Marks, D. (1996). Comparison of

alternative spatial resolutions in the application of a spatially distributed

biogeochemical model over complex terrain. Ecological Modeling, 90,

53–67.
Turner, D. P., Gower, S. T., Cohen, W. B., Gregory, M., & Maiersperger, T.

K. (2002). Effects of spatial variability in light use efficiency on satellite-

based NPP monitoring. Remote Sensing of Environment, 80, 397–405.

Turner, D. P., Ollinger, S. V., & Kimball, J. S. (2004). Integrating remote

sensing and ecosystem process models for landscape-to region-scale

analysis of the carbon cycle. BioScience, 54, 573–584.


	The effects of aggregated land cover data on estimating NPP in northern Wisconsin
	Introduction
	Methods
	Study site
	Research design
	Field data
	Micrometeorological measurements
	Imagery collection and preprocessing
	Image classification procedure
	WISCLAND data
	MODIS imagery and data
	Land cover classification accuracy assessment
	Spatial LAI
	NPP
	Statistical analyses

	Results
	Vegetation classification
	LAI and NPP

	Discussion
	Effects of aggregation on land cover
	Effects of land cover aggregation on NPP estimates
	Effects of LAI on NPP estimates
	Implications for validating and modeling NPP

	Conclusions
	Acknowledgements
	References


