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Abstract

We examined physiological parameter tradeoffs in modeling stomatal control of transpiration from a number of forest species.

Measurements of sapflux, micrometeorology, and leaf area index were made in stands representing 85% of the forest ecosystems

around the WLEF eddy flux tower in northern Wisconsin. A Jarvis-based canopy conductance model was used to simulate canopy

transpiration (EC) for five tree species from these stands. They consisted of conifers and deciduous species in both upland and

wetland locations. Parameter estimation was used to assess the tradeoffs between physiological parameters used in the calculation of

stomatal conductance. These tradeoffs were then evaluated against current theory on stomatal regulation of leaf water potential. The

results show that the best simulations of EC were obtained with values of maximum stomatal conductance (gSmax) and stomatal
sensitivity to vapor pressure deficit (d) that closely followed this hydraulic theory. The model predictions reveal a large variation in
the strategies used to regulate water potential among species. Aspen showed the greatest tendency towards efficiency, indicating that

it has high EC under low vapor pressure deficit (D) conditions, but is susceptible to rapid EC decline at moderate to high D. Other
species showed more conservative water use. The results indicate that inter-specific differences in dynamic response to D can produce
large spatial variation in EC under typical environmental conditions.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Spatially variable canopy transpiration is a major
component in distributed simulation models of land

surface processes. There is currently very little obser-

vational data to directly support large-scale simulation

of canopy transpiration from forests. Nevertheless,

many large-scale models operating at watershed, re-

gional and global scale [1,3,6,19,24,25,46,57,59,63,72,73]

[others] simulate transpiration using some form of the

Penman–Monteith (P–M) combination equation [49]
and one of several empirical models of stomatal con-

ductance [5,34,43]. Assuming that these models correctly

describe the biophysical mechanisms (or surrogates) of

transpiration, a major task for land surface modelers is

to develop and apply indirect methods to improve model

parameterization. The data needed for this parameter-

ization can come from in situ monitoring and/or remote
sensing techniques. In situ flux measurements can be

used to improve estimates of model parameters

[9,31,67], but these may be difficult to apply spatially [8].

The parameters obtained in the process of matching

model results to measurements may be too specific to the

data used. Remote sensing data can provide important

proxy information for conditioning parameter selection

on spatial variables [26,27,52,56], and for testing spa-
tially distributed mechanisms in models of forest water

fluxes [44]. In situ measurements are essential for im-

proving and testing process models.

In this paper, in situ measurements of sap flux and

micrometeorological variables are used to parameterize

the stomatal physiology of a model of canopy transpi-

ration applied to several forest stands with multiple tree

species. The motivating question for this paper is, to
what extent can physiologically meaningful parameter

values be resolved in the process of simulating stomatal
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conductance for estimating daily transpiration? If pa-

rameter estimates are to be reliably applied beyond

individual forest stands, then it is important that inter-

species differences in parameter values be directly related

to differences in stomatal physiology. By accounting for
these differences, then more reliable surface resistance

parameterizations may be realized in heterogeneous

forested landscapes.

The widely used P–M model of canopy transpiration

has the form:

EC ¼
DRn þ Cpqa Dra

qwk D þ c 1þ rC
ra

� �� � ; ð1Þ

where EC is canopy transpiration (m s�1), D is the slope

of the saturation vapor pressure–temperature curve

(mbar �C�1), Rn is canopy net radiation (Wm�2), Cp is
specific heat capacity of air (J kg�1 �C�1), qa is the den-
sity of air (kgm�3), D is vapor pressure deficit from

canopy to air (mbar), ra is the bulk vegetation aero-
dynamic resistance (sm�1), qw is the density of water
(kgm�3), k is the latent heat of evaporation (J kg�1), c is
the psychrometric constant (mbar �C�1), and rC is can-
opy resistance (sm�1). Aerodynamic resistance, ra, is
affected by canopy properties and the flow of air

through and above the canopy. Canopy resistance, rC, is
affected by the environmental (extrinsic) and physio-

logical (intrinsic) conditions of the leaf stomata. There

are two distinct approaches to building models of

stomatal conductance: Ball–Berry [5,42] and Jarvis

[34,43]. Ball–Berry models have the form:

gS ¼ m½ðAnhS=cSÞ� þ b; ð2Þ
where m and b are empirical constants, An is net pho-
tosynthetic rate, hS is relative humidity at the leaf sur-
face, and cS is CO2 mole fraction at the leaf surface.

Ball–Berry models do a good job of estimating carbon

assimilation by explicitly accounting for the coupled

assimilation––conductance response using biochemical

models [20,21] parameterized by species [74]. Jarvis-type

models have the general form:

gS ¼ gSmax �
Y

fi; ð3Þ

where gSmax is a theoretical maximum stomatal con-

ductance under optimal environmental and leaf condi-

tions. A series of functions of environmental factors (fi)

are applied to reduce actual leaf level stomatal con-

ductance from the optimal level. For instance, one

function considers the stomatal sensitivity, d, to D. The
gSmax parameter can vary widely among and within

species [38,17] and d is widely believed to increase with
gSmax [34,35,48,50,53,61]. When vapor pressure gradients
are low, the conditions favor stomatal control by as-

similation rate, but as D increases stomata close to re-

duce water loss [5,50,61,75]. The advantage of the Jarvis

model for hydrologic processes is that it directly ad-

dresses plant response to D, which means it works best
when the rate of water loss is high and hence hydro-

logically significant. Furthermore, recent developments

in plant hydraulic theory have been successfully com-
bined with Jarvis models [18,53].

Eq. (3) and its parameters are surrogates for pro-

cesses occurring throughout the soil-plant atmosphere

continuum. In the absence of stomatal control, a high

rate of water loss can lead to a rapid decline in leaf water

potential, which increases the risk of hydraulic failure in

the plant [18,53,68]. This can be expressed in terms of a

supply function through the soil-plant continuum,
which has been derived from the steady-state assump-

tion and Darcy�s law [18,68,69]:

GS ¼ KL=DðWS � WL � hqwgÞ; ð4Þ
where GS is canopy average stomatal conductance, KL is
leaf-specific hydraulic conductance, WS and WL are bulk

soil and leaf water potentials, and hqwg is the gravita-
tional potential for a tree of height h. KL declines with
water potential due to soil drying, cavitation in the

xylem, and other factors. This results in a feedback on

water loss, because the water potential needed to sustain

increasing EC per unit leaf area (L) produces a decline in
KL. If the maximum safe transpiration rate is exceeded

then runaway cavitation ensues. This refers to KL being
driven to zero causing hydraulic failure and possible
plant mortality [70]. Eq. (4) also captures the well-known

fact that GS is inversely proportional to D [34,48]. Fur-
thermore, GS is sensitive to increasing D in proportion

to some maximum conductance, gSmax, or its proxy
[53]:

GS ¼ GSref � m � lnD; ð5Þ
where GSref is a substitute for gSmax defined at D ¼ 1 kPa

and m ¼ dGS=d lnD is the sensitivity of stomatal con-

ductance to increasing D. The chosen form of Eq. (5)

provides a linear relationship between the reference

conductance and sensitivity of stomatal conductance to

D. Based on a large amount of porometry and sap flux
data, Oren et al. [53] have shown that m 	 0:6 GSref
applies universally to all species that regulate leaf water

potential to just prevent runaway cavitation.

The goal of this paper is to assess whether a canopy

model based on the Jarvis approach can be meaningfully

parameterized to capture the stomatal regulation of leaf

water potential such that it obeys the hydraulic theory

presented above. We begin by introducing a diurnal

land surface process model and a method of automated
parameter estimation to generate sets of physiologically

acceptable model-parameter combinations among a

number of dominant forest species in northern Wis-

consin. We first determine consistent parameter values

from a fuzzy logic approach, calibrate the model against

transpiration estimated with sap flux from five tree
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species to find optimal sets of parameter values, and

then analyze these best sets to detect physiological

tradeoffs and differences among tree species. The phys-

iological tradeoffs are described in terms of current un-

derstanding in plant–water relations, as a theoretical
framework for improving the scalability of species-based

transpiration models for incorporation into large-scale

land surface models of heterogeneous forests.

2. Methods

2.1. Site description

The study was conducted in northern Wisconsin, near

Park Falls (45.94 �N, 90.27 �W). The study area is a 12-
km2 region centered on a 447-m tall communications

tower (WLEF tower) instrumented to measure energy,

water and carbon exchange between the forest landscape
and the atmosphere [4]. The tower and surrounding area

is located in the Chequamegon-Nicolet National Forest.

The area is situated in the Northern Highlands physio-

graphic province, a southern extension of the Canadian

Shield. The bedrock is comprised of Precambrian meta-

morphic and igneous rock overlain by 8–90 m of glacial

and glaciofluvial material. The topography is slightly

rolling with a range of 45 m. The growing season is short
and the winters are long and cold. Mean annual July and

January temperatures are 19 and �12 �C, respectively.
The forested vegetation reflects the glacial topogra-

phy [22,23] and history of forest management activities

[11]. Red pine (Pinus resinosa Ait) and Jack pine (Pinus

banksiana Lamb) dominate areas of excessively drained

glacial outwash. Northern hardwood forests, comprised

of sugar maple (Acer saccharum Marsh), red maple
(Acer rubrum L.), green ash (Fraxinus americana), yel-

low birch (Betula alleghaniensis Britton) and basswood

(Tilia americana L.), occur on the finer textured mo-

raines and drumlins. Intermediate sites support a wide

variety of broad-leaf deciduous tree species, such as

quaking aspen (Populus tremuloides Michx), bigtooth

aspen (Populus grandidentata Michx), paper birch (Be-

tula papyrifera Marsh), red maple, and red and white
pine (Pinus strobus). Poorly drained lowland sites are

dominated by white cedar (Thuja occidentalis L.), bal-

sam fir (Abies balsamea(L.) Mill), white spruce (Picea

glauca), black spruce (Picea mariana), tamarack (Larix

laricina), and speckled alder (Alnus regosa). Within the

study area leaf area, L, during summer of year 2000,
averaged 3.6 m2 m�2. Most of the forests had L values in
the range of 3.5–4.0 m2 m�2 [11].

2.2. Stand-level measurements

Five primary species were selected for intensive study

including red pine, sugar maple, trembling aspen, white

cedar, and speckled alder. These species represent over

80% of the tree basal area [11] and about 85% of land

surface area [45] around the WLEF tower. The average

LAI for each stand was 3.6 m2 m�2 and did not change

significantly throughout the measurement period [15].
Granier-type sap flux sensors [30] were used to record sap

flow in the hydroactive xylem of selected trees in each

stand. Sap flux measurements were taken from June 22

through August 15, 2000 on all species except alder. Sap

flux for alder was recorded using a Kucera-type sensor

[17] from July 25 through August 15, 2000. Measure-

ments were recorded every 15 s and then combined to

produce 30 min averages. Sap flux was scaled from point
measurements using circumferential and radial trends

and sapwood area determined from stem cores [15].

Daily sap flux was summed from 05:00 to 05:00 in order

to account for nighttime recharge [55]. Stand EC was
determined by multiplying individual tree sap flux by the

ratio of sapwood area to unit ground area [15].

Temperature and relative humidity were recorded in

each stand. Photosynthetically active radiation (PAR)
was recorded above the cedar stand. Additional mea-

surements were recorded at the WLEF tower and at

micrometeorological stations in mixed hardwood, red

pine, and alder stands surrounding the WLEF tower.

Measurements at these additional sites included wind

speed, temperature, precipitation, soil moisture, and

relative humidity.

2.3. The TREES model

2.3.1. Model overview

The terrestrial regional ecosystem exchange simulator

(TREES) is an integrated hydrology and ecosystem

model (Fig. 1; Table 1). Portions of the model are taken

from RHESSys [44,46], including (1) daily soil water
accounting, (2) inter-annual carbon balance, and (3)

daily nutrient dynamics. Added to these is a new

mechanistic diurnal canopy model for photosynthesis

and transpiration [2]. The added mechanistic detail al-

lows TREES to be parsimonious with the detailed di-

urnal meteorological, sap flux, eddy covariance, and soil

moisture data that is being collected around the WLEF

eddy flux tower in northern Wisconsin and at other in-
tensive observational sites. In addition, TREES sup-

ports dividing the canopy into layers when more

detailed canopy structure, micrometeorology and

chemistry data are available. For this study we did not

make detailed vertical canopy measurements to justify

all these mechanisms, and so TREES was operated in a

‘‘big leaf’’ mode, which uses only a single canopy layer

and a Jarvis [34] type canopy conductance model.

2.3.2. Canopy transpiration model parameters

EC is calculated using P–M (Eq. (1)). Canopy ab-

sorbed radiation was calculated using the Beer–Lambert
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law to attenuate incoming short-wave radiation through

the canopy

Qa ¼ QSð1� aCÞð1� e�kLÞ; ð6Þ
where QS is the incoming short-wave radiation (Wm�2),
aC is the canopy albedo, and k is the light extinction
coefficient. The light extinction coefficient is calculated

diurnally (at the frequency of meteorological inputs)

based on a general ellipsoidal leaf angle distribution

(LAD) [12]:

kðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ tan2 w

p
xþ 1:77ðxþ 1:182Þ�0:0733

ð7Þ

where w is the zenith angle of the sun and x is the ratio of
average projected areas of canopy elements on hori-

zontal and vertical surfaces. We applied Eq. (7) with
x ¼ 1, which meant that kðwÞ was more specifically a
spherical LAD. Spherical LAD is often assumed when

detailed measurements of LAD are not available [12].

TREES calculates canopy aerodynamic resistance

using a logarithmic wind speed profile [51]:

ra ¼
ln½ðz� d=z0Þ�

j2u
; ð8Þ

where z0 is the surface roughness (¼ 0:1h), h is the mean
tree height (m), d is the zero plane displacement

(¼ 0:65h), j is the von Karman constant (¼ 0:4), and u
is wind speed at height z (m). Wind speed data was not
available directly above each canopy, but was available

at 2 m above the ground in each of the ecosystem types

(pine, aspen, northern hardwood, and wetland). We

used a profile of canopy wind speed [12] to extrapolate

wind speed measurements from below the canopy to the
top of the canopy:

ub ¼ u � ea�ðz=h�1Þ; ð9Þ

where ub is wind speed at the measurement height below
the canopy and a is a wind attenuation coefficient that
varies according to canopy architecture [29]. Ra was then
calculated from u.
Canopy level stomatal resistance is determined as:

rC ¼ 1

gSL
; ð10Þ

where gS is the leaf-level stomatal conductance (m s�1)
determined from a multiple constraint function (see also

Eq. (3)):

gS ¼ gSmax � f1ðDÞ � f2ðWLÞ � f3ðQÞ ð11Þ
where with f1ðDÞ calculated as

f1ðDÞ ¼ 1� d � D; ð12Þ

Fig. 1. This is a flow diagram for the TREES. It identifies three primary temporal scales of operation. Diurnal processes are those that operate sub-

daily. They include canopy conductance, transpiration and photosynthesis, as well as evaporation from the ground (snowpack or littoral zone). Daily

processes are those that deal with water storage and flux in the soil, mineralization of nitrogen, soil CO2 flux, and nitrate leaching. Carbon allocation

processes are maintained at daily-to-annual time intervals depending on the requirements and type of ecosystem. Explanations for the individual

terms are given in Table 1.
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where d [(kPa)�1] is sensitivity of stomatal conductance
to D. From the earlier discussion it is implied that Eq.

(12) is only a surrogate for stomatal response to the rate

of water loss from the canopy, which is a function of D.
f2(WL) is a function of soil water availability. Predawn

leaf water potential modifies maximum stomatal con-
ductance as:

f2ðWLÞ ¼ 1

�
� WL � WM

WSC � WM

�
; ð13Þ

where WM is leaf water potential at stomatal closure

(MPa), and WSC is minimum leaf water potential (MPa)

under well-watered conditions. Predawn leaf water

Table 1

Descriptions and relevant references for the symbols in Fig. 1

Module Symbol Description Source

Atmosphere U Wind speed (m s�1) Measured; [12]

D Vapor pressure deficit (kPa) Measured

QK Short-wave radiation (KJm�2 s�1) PAR/0.47

QL Long-wave radiation ðKJm�2 s�1Þ [12]

P Precipitation Measured

PAR Photosynthetically active radiation ðKJm�2 s�1Þ Measured

½CO2� CO2 concentration (PPM) Measured

Tair Air temperature (�C) Measured

Canopy TC Canopy temperature (�C) Measured/computed

gS Stomatal conductance (ms�1) [34]

gb Boundary layer conductance (ms�1) [13]

ga Aerodynamic conductance (ms�1) [49]

EW Canopy evaporation (m) [34]

EC Canopy transpiration (m) [34]

Snowpack hsnow Snow water equivalent (m)

Tsnow Snow temperature (C)

QS Snowmelt from shortwave radiation (m)

QL Snowmelt from longwave radiation (m)

QR Snowmelt from rain-on-snow (m)

QLE Snowmelt from latent heat flux (m)

QH Snowmelt from sensible heat flux (m)

Litter hlitter Litter water content (m)

ETlitter Litter evaporation (m)

Unsaturatedsoil h Soil water content (–) Measured

/ Porosity (–) [14]

wðhÞ Soil water potential (kPa) [14]

KðhÞ Hydraulic conductivity (ms�1) [14]

x Capillary rise (m) [28]

Saturated soil S Soil saturation deficit (m) [65]

qb Saturated throughflow (m) [65]

qs Runoff from saturated areas (m) [65]

Aboveground Cleaf Leaf carbon (kgCha�1) [44]

L Leaf area index [11]

½N � Leaf N concentration (kgNkgC�1) [42]

A Assimilation rate (gC s�1) [20,21]

Cstem Stem carbon (kgCha�1) [44]

Rleaf Leaf growth and maintenance respiration (kgCha�1) [54]

Rstem Stem growth and maintenance respiration (kgCha�1) [54]

Fast soil pool Nfast Fast soil nitrogen pool (kgNha�1) [44]

Cfast Fast soil carbon pool (kgCha�1) [44]

CO2 Fast soil respiration (kgCha�1) [44]

Belowground and Slow

soil pool

Croot Root carbon (kgCha�1) [44]

Rroot Root growth and maintenance respiration (kgCha�1) [58]

RL Rooting length (m) [44]

Cslow Slow soil carbon pool (kgCha�1) [44]

Nslow Slow soil nitrogen pool (kgNha�1) [44]

Tsoil Soil temperature (�C) [44]

CO2 Slow soil respiration (kgCha�1) [44]

Nloss Nitrogen loss (kgNha�1) [44]

Components related to the present study are in bold. The line separating module, Saturated soil, from module, Aboveground, is the division between

hydrologic and ecosystem components of TREES.
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potential is assumed to be equal to soil water potential

calculated as:

WL ¼ We

h
/

� 	�b

; ð14Þ

where We is the air entry water potential (kPa), h is the
predawn soil water content (m3 m�3), b is the Brooks
and Corey [10] soil pore space connectivity parameter,

and / is the soil porosity (m3 m�3) [14]. The radiation

reduction modifier is calculated as:

f3ðQÞ ¼ min
Qrl
Qmin

; 1

� �
; ð15Þ

where Qrl is absorbed radiation per leaf area

(kJm�2 L�1) and Qmin is the minimum threshold radia-

tion (kJm�2 L�1) for gs.

2.4. Model parameterization

To analyze the sensitivity of the parameters of our

canopy model we used a parameter estimation frame-
work [59] that is based on a number of approaches that

have been proposed for hydrologic models [9,31,39,

41,66,67,71]. The solutions proposed to account for this

uncertainty often accept a set of parameter combi-

nations selected from among many simulations using

some form of Monte Carlo sampling. A set of retained

parameter combinations allows for ambiguity (or non-

specificity) in the selection of model parameters. This
non-specificity arises because parameters are often sur-

rogates for something that has not been measured or is

poorly known [7,8]. This can result in similar flux esti-

mates using different combinations of poorly condi-

tioned parameter values.

We combined Monte Carlo sampling and measures

of uncertainty derived from information processing [62].

One information-theoretic expression of non-specificity
is the Hartley function [32]:

HðAÞ ¼ log2 jAj; ð16Þ
which relates a finite set A to its cardinality jAj. If A
represents a set of selected combinations of simulation
model plus parameter set (henceforth called a ‘‘model’’),

then a higher jAj in proportion to the size of the popu-
lation of models implies a greater non-specificity in pa-

rameter estimation. For example, if 1000 parameter

combinations are generated and 900 are determined to

give acceptable model results, then this solution set has

greater non-specificity than if only 10 model-parameter

combinations are retained. Without further condi-
tioning of the parameters we are forced to accept a wide

variation in parameter values, which are unreliable for

extending model simulations in space and time.

When the acceptable set of models is considered a

fuzzy set [76], F , within the domain, X , of all feasible
models, uncertainty related to the cardinality of F can

be expressed as a fuzzy logic measure of the non-speci-

ficity of F [33,40]:

UðF Þ ¼
Z hðF Þ

0

log2 j
aF jda þ ð1� hðF ÞÞ log2 jX j; ð17Þ

where UðF Þ is the U -uncertainty associated with F , jaF j
is the cardinality of an a-cut of F (i.e. the number of

members that remain in the set if all members with a

membership grade less than a are removed from F ), hðF Þ
is the height of F (or maximum value of membership

grade in F ), and jX j is the cardinality of the universal set
(i.e. the model population). A numerical solution to Eq.

(17) is given by

UðrÞ ¼
Xn
i¼2

ðr1 � riþ1Þ log2 iþ ð1� r1Þ log2 n; ð18Þ

where r is the ordered possibility distribution [77] de-
rived from the fuzzy set F and rnþ1 is assumed to be 0.
Fig. 2 shows a series of hypothetical relationships be-

tween f ðxiÞ and jaF j, as well as the physical meaning of
the a-cut. At an a-cut of 0.6 the three relationships
shown yield very different cardinalities. Relations that

are skewed towards the low end, and thus have only a

few high f ðxiÞ models, are better than relations having
too many high f ðxiÞ values. The ideal is to have a single
model with f ðxiÞ ¼ 1:0 and all other models with

f ðxiÞ ¼ 0:0. This gives a cardinality of 1.0 for the fuzzy
set and a cardinality of 1 for the fuzzy set and a cardi-

nality of 1 for the restricted (or crisp) set. The more
usual case is one in which the cardinality of the fuzzy set

is greater than 1.0.

The key is to objectively define the a-cut needed to
form the restricted set from the fuzzy set. Initially, this

a-cut should be selected with caution. On the one hand,
it may be possible that useful information in the fuzzy

set may be lost if an arbitrarily high a-cut is selected. On

Fig. 2. These hypothetical distribution functions illustrate how card-

inality of a candidate set of models varies by value obtained from a

measure of goodness-of-fit. At a given level (or -cut) a low cardinality

indicates a high level of specificity in the set of candidate models.

A high cardinality indicates a high level of non-specificity.
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the other hand, an arbitrarily low a-cut may include too
many models that are of poor quality. An arbitrarily

high a-cut may also admit a false sense of specificity in
the model system. An objective way to extract the full

information content of a fuzzy set is to apply the prin-
ciple of uncertainty invariance [40], which transforms

a fuzzy set into a restricted set that approximates

the respective fuzzy set by virtue of having the same

U -uncertainty. The principle of uncertainty variance ob-
jectively determines where to apply the a-cut by mini-
mizing jUðrÞ � log2 kj such that the kth element of the
ordered possibility distribution is location of the cut.

This approach can be demonstrated by applying it to a
simple fuzzy set. Consider the ordered fuzzy set

F ¼ f0:9; 0:8; 0:8; 0:7; 0:6; 0:4; 0:1; 0:1g. jaF j is the sum of

fuzzy memberships in the set (¼4.4) and UðrÞ ¼ 2:2. The
size of the restricted set is determined by equating the U -
uncertainty of the fuzzy set (Eq. (18)) to the Hartley

function (Eq. (16)) for the desired crisp set. The value of

k (5 in this example) is the required cardinality of the
retained model set, which means that the top five models
in F are retained and the a-cut is placed at 0.6. Note that
the models are no longer ranked within the restricted set.

This is based on the assumption that all the information

obtainable from a particular objective function has been

extracted in constructing the restricted set. No further

ranking is allowed within this set based on the same

objective function. An advantage of this approach is

that the threshold position is repeatable from the data
and not subject to interpretation or modification as the

goals of a modeling exercise change. A disadvantage of

the approach is that it is na€ııve, in that it does not con-
sider intuition about the physical system, which is an

essential part of parameter estimation. However, once

we have objectively established the extent of parameter

values from the information content of the fuzzy set,

then we can proceed to make successively higher a-cuts
given additional knowledge.

TREES parameter estimation was conducted for each

species as described in Ahl et al. [2]. The range for each

parameter was adjusted after initial simulations to

maximize the number of parameter values selected over

the range for each respective parameter. This involved

executing the model and comparing simulation output

to sap flux EC. In this way, we were able to select the
most sensitive parameters and their value ranges for

each species. The parameters and their ranges were Qmin
(30–790) [57], gSmax (0.4–5) [38], d (0.07–0.74) [34], a
(0.5–4.0) [47], and for alder only, ra (1–200) [37]. For
each species, 15,000 simulations were performed with

random parameter values within the ranges defined for

each parameter. Simulations were run at 30-min time-

steps using 30-min average micrometeorological data
collected for each stand type, and EC was output on a
daily timestep. Each simulation set was evaluated using

a linear regression analysis of the form:

ÊEC ¼ b0 þ b1 � EC; ð19Þ
where b0 and b1 are regression coefficients referred to as
the intercept and slope, respectively, ÊEC is the simulation
estimate of EC (mm day�1). Simulation results were

evaluated using the regression coefficients and the co-

efficient of determination calculated as

R2 ¼
PN

i¼1ðEC � ECÞðÊEC � ÊECÞPN
i¼1ðEC � ECÞ

2
h i0:5 PN

i¼1ðÊEC � ÊECÞ
2

h i0:5
8><
>:

9>=
>;

2

:

ð20Þ
To evaluate all three criteria, b0, b1 and R2, simulta-
neously we combined them into a single index, as fol-

lows [2]:

f ðxiÞ ¼ I ¼ 1�max w1ðb0
h�

� 0Þ2 þ w2ðb1 � 1Þ2

þ w3ð1� R2Þ2
i0:5

; 0

�
; ð21Þ

where I describes the relative deviation of the regression
parameters and R2 from an ideal model (I ¼ 1) and

w1 þ w2 þ w3 ¼ 1 are weighting factors. A model was

considered to be a good predictor of transpiration when

its respective regression with sap flux data had an in-
tercept near 0, a slope near 1, and a high R2. For this
study, w1 ¼ w2 ¼ w3 as we did not want to give prefer-
ential weight to any one criteria for the goodness-of-fit.

It was assumed that models that yield high I-values were
likely to be the best predictors of transpiration.

3. Results and discussion

3.1. Stand-level parameter estimation

Fig. 3 shows the calibrated TREES canopy transpi-

ration for each of the five species simulated for the

‘‘optimal’’ model (i.e., highest I score, Eq. (21)). There is
a large variation of EC among species, but given that this
represents a continuous simulation over a two-month
period the model performs well for all stands. Transpi-

ration showed a marked increase in the second half of

the summer for red pine [15], which lowered the per-

formance of the model for this species. By handling

different parameter sets for the first and second halves of

the data period, Ahl [2] showed an improved model fit to

the measurements (Fig. 3, ‘‘Red Pine Split Model’’). A

number of factors could explain such a time trend in
transpiration for the red pine. Referring to Eq. (4), the

trend could be explained by a change in KL, which may
be caused by increased biochemical activity in new fo-

liage, changes in hydraulic properties within the trees, or

some combination of factors. We have found no envi-

ronmental factors that explain this result [15]. Without
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further data we can only speculate on a mechanism to

explain the trend. For this reason we do not present

parameter analysis for the split model for red pine.

Fig. 4 shows cumulative possibility distribution

functions for each of the five species. The aspen shows

the closest to a normal distribution, while the others are

closer to an uniform distribution. With the exception of
cedar all distributions show a pronounced tail at the

high membership values. This tail shows, that, while

there are potentially many good models, there are rela-

tively few exceptionally good ones. As such, it is ac-

ceptable to explore making higher a-cuts, than those
calculated completely objectively by minimizing

jUðrÞ � log2 kj. Table 2 summarizes the results of ap-
plying Eqs. (18)–(21), using three a-cuts determined (1)
by minimizing jUðrÞ � log2kj, (2) from the top 1000

models, and (3) from the top 100 models for each spe-

cies. Red pine and cedar show relatively high hðF Þ and
jaF j with the objective a-cuts obtained using the princi-
ple of uncertainty invariance. This indicates that these

stands are influenced by tradeoffs among the para-

meters, which make it difficult to objectively restrict the

solution set. Fig. 5 shows the corresponding combina-
tions of gSmax and d. The objective selection of a-cut for
cedar and sugar maple show a very definite clustering

with respect to these parameters. For maple, cedar, and

red pine, a saturating curve describes the relationship

between gSmax and d. A similar, but somewhat more

scattered, pattern exists for the aspen gSmax and d cluster.
Alder shows little or no relationship between these pa-

rameters.
These differences in responses among species may be

partly explained in terms of whole canopy coupling

with the atmosphere. Different canopies can be classi-

fied in terms of degree of coupling. Jarvis and

McNaughton [36] defined this with a coupling coeffi-

cient, X, which varied from one (low boundary-layer

conductance, gb, in proportion to gS) to zero (high gb,
in proportion to gS). Red pine and cedar would be

expected to have low X values, as red pine is a plan-
tation with well-spaced crowns and the cedar has well-

spaced, individual crowns emerging above an alder

under-story. The maple stand also shows a tight clus-

tering with respect to gSmax and d, which would support
it having low X. This may be explained in part by the
fact that it was thinned less than ten years prior to this

study. Aspen and alder appear to have higher X as

evidenced by their more poorly formed clusters. The
alder are relatively short trees with broad leaves, are

sitting in water, and therefore are influenced by free

evaporation from the forest floor and low wind speed

in the canopy. Aspen has a relatively open canopy, but

it also has high gSmax, which means that gb may be
small in proportion to gS.
Within each stand we retained the restricted sets of

100 models, which were then sorted by Qmin. We selected
ten models from each of low, medium and high Qmin
(Fig. 6). Red pine and cedar show well-defined light

saturation, as indicated by the clustering of high Qmin
values on the saturating part of their respective curves.

Maple shows a moderate amount of clustering by Qmin
but aspen and alder show only a slight organization by

light. Species with well-defined light saturation curves

clearly exhibit high parameter non-specificity. A reduc-
tion in gS can be achieved with an increase in either
or Qmin. Without further conditioning to reduce these

Fig. 3. TREES canopy transpiration for five major northern Wisconsin forest species. The results are from the model with the highest I (see Eq. (21)).
The red pine transpiration showed a seasonal trend [15] and so a split model is provided in which parameter values are allowed to differ between the

first half of the summer and the second half.
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parameter tradeoffs it is not possible to reliably para-

meterize the canopy physiological controls on water

fluxes at even the forest stand level.

3.2. Physiologic interpretation of parameter tradeoffs

The results thus far suggest that the parameter
tradeoffs (gSmax versus d) seen in the simulations indicate
that the Jarvis-type model captures stomatal regulation

of water potential. However, other factors may con-

tribute to this apparent physically consistent behavior of

the parameters. There may be just enough degree of

freedom in our choice of parameters to allow for an

acceptable fit to the sap flux EC. In other words, we
cannot yet state that TREES captures the processes any

more than a multivariate statistical approach would. To

assign a direct physical interpretation to the apparent

relationships between gSmax and d (Fig. 5), we translated
these parameters into GSref and dGS=d lnD, respectively,
as expressed by the tree hydraulic equations (Eqs. (4)

and (5)). The gSmax parameter is implicitly assumed to
represent a theoretical optimal value that could be ob-

tained under ideal conditions. From Eq. (12) it follows

that gs ¼ gSmax if and only if D ¼ 0 kPa. It is not possible

to measure gs at D ¼ 0 kPa, and so we transformed gSmax
into GSref [17] as follows:

Fig. 4. Shown are possibility distributions (Eq. (18)) for the 15,000 simulations for each of the five tree species.

Table 2

Summary of U -uncertainty parameters for each tree species type, determined from among 15,000 simulations per stand

Species hðF Þ UðF Þ jaF j a-cut a-cut jaF j ¼ 1000 a-cut jaF j ¼ 100

Alder 0.909 10.651 1608 0.603 0.638 0.752

Aspen 0.918 11.639 3190 0.575 0.689 0.820

Cedar 0.976 11.871 3745 0.641 0.851 0.939

Red pine 0.979 11.841 3759 0.683 0.826 0.928

Sugar maple 0.946 11.310 2539 0.680 0.759 0.855
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GSref ¼ gSmaxð1� dÞ ð22Þ
and converted d to dGS=d lnD as follows:

dGS=d lnD ¼ gSmax � dd=d lnD; ð23Þ
which was calculated by determining the slope between

D ¼ 0:6 kPa and D ¼ 1:4 kPa. We chose the lower D on
the grounds that this represents a threshold above which

errors in many of the measurements (including D and

sap flux) drop to 15% or less [16].

Fig. 7 shows the results for the best 100 models for

the respective stands. All stands fall on or near the
theoretical 0.6 line predicted to occur if stomata are

regulating water potential to just prevent runaway cav-

itation [53]. Aspen shows a bias towards falling below

this line, which would suggest that not all models within

its cluster follow the theory. The red pine cluster also

falls a moderate distance below the theoretical line. The

cedar and sugar maple clusters have steeper slopes, and

so they tend to have higher than expected dGS=d lnD
with increasing GSref . One explanation for this, is, that
parameter tradeoffs with Qmin are producing conditions
that are not physically reasonable. For example, high

Qmin tends to occur on the saturating or high end of the
versus gSmax curves. Fig. 8 shows more restricted clusters
selected based on ten Qmin values that envelope the op-
timal model for each species, determined by sorting the

top 100 models by Qmin. All optimal models, with
the exception of red pine, fall on or near the 0.6 line, and

the clusters converge to this line. Furthermore, ensem-

bles of 30 models grouped by Qmin also strongly fit the
0.6 line, as shown in the inset figure in Fig. 8. The con-

vergence of model parameters to small clusters sitting on

or near the theoretical line supports the claim that the
TREES model is resolving inter-specific differences in

Fig. 5. Shown is stomatal sensitivity to vapor pressure deficit versus maximum stomatal conductance for different tree species in northern Wisconsin.

Light gray circles represent models retained using the principal of uncertainty invariance. The open circles are the best 1000 models, and the closed

circles are the best 100 models. Axes are shown with different ranges to highlight the distribution of parameter values for each species.
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hydraulic control on canopy transpiration rather than

simply being over parameterized. This claim is not fully

supported in the case of red pine. One possibility is that

red pine has a lower set point for leaf water potential,

and so its stomata do not work as hard to regulate water

potentials under the relatively moderate D that typically
occurs in northern Wisconsin. This could also be at-

tributed to the time trend observed in the red pine

transpiration data [15], since a seasonal trend in the

water potential set point is one of a number of physio-

logical changes that can theoretically occur (see Eq. (4)).

Oren et al. [53] found that species falling below the

theoretical m 	 0:6 GSref line do not regulate their water
potentials; they include desert species, which have low
minimum water potentials. This adaptive behavior does

not appear to explain the red pine response, as the slope

of the red pine cluster in Fig. 7 is nearly parallel to the

theoretical line. Another possibility it that the red pine

parameter values are compromised by the unexplained

seasonal trend in transpiration [15]. Further data on

seasonal trends is needed to resolve this issue.

We currently do not have a robust means of evalu-

ating Qmin. In the present analysis, Qmin appears to be
useful for narrowing the range of gSmax and d parameters
to those that most closely follow the regulation of water

potential. For the species with obvious saturating curves

(red pine, cedar, Fig. 6), Qmin allows for the rejection of
the saturating portion of the curve. In all species, the

final range of gSmax and parameters are from low-to-

moderate values from among the top 100 models in each

species. Since water fluxes are low when Qmin is expected
to have the greatest affect on stomatal conductance, an

increase in this parameter would be costly in terms of

reduced carbon gain with only a marginal reduction in

Fig. 6. This figure shows subsets of the clusters shown in Fig. 4, obtained by sorting the top 100 models in each species by the light threshold

parameter. The plots show the tradeoffs between d and gSmax for the models with the lowest ten, middle ten, and highest ten light threshold values.
Axes are shown with different ranges among species to highlight parameter clusters for each species.
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water loss. Consider, for instance, the red pine, which

shows a pronounced light saturation (see Fig. 6). The

optimal model and the models that cluster around it are

obtained from the upper end of the lower cluster of Qmin.
This can be explained by looking at the relative values

for the optimal parameters in comparison to the safe

and efficient parameter sets (Table 3). Both gSmax and
Qmin are reduced for the optimal simulation, indicating

that the light saturation is forcing TREES to contradict

hydraulic theory. This indicates that models falling

within the saturating portion of the gSmax–d curve (Fig.
6), and hence falling off the 0.6-line, can be considered

artifacts of over-parameterization. The alder is much

more sensitive to light within the operating conditions

allowed by the hydraulic theory, as evidenced by the fact

that its cluster (see Fig. 8) spans a relatively wide range

Fig. 7. The plots shown in this figure were derived by converting the model input of gSmax to GSref at D ¼ 1 kPa using a reduction of d, and then
determining the rate of decline of GS with lnD by taking GS at D ¼ 2 (i.e. using a reduction of d). Each point represents a model (TREES plus
parameter set) and the 100 models with the highest calibration fit to the sap flux are plotted. The 0.6 line was determined by Oren et al. [53] to hold for

most species that have stomatal regulation of leaf water potential.

Fig. 8. The points shown in this figure are a subset of the points in Fig. 7. Subsets of models were selected by clustering them by light threshold. The

larger, open dots represent the model with the highest calibrated fit to the sap flux data. The inset plot shows ensemble (30 models grouped by light

threshold) averages with the bars showing average deviation from the average. The 0.6 line was determined by Oren et al. [53] to hold for most species

that have stomatal regulation of leaf water potential.
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of GSref and its optimal Qmin is well below the values for
the respective safe and efficient models. This is consis-

tent with the analysis of diurnal sap flux in alder, which

shows a more significant response to Q than to D [15].
There is a clear tradeoff between gSmax and d param-

eters, which means that, within the same set of data, it is

possible to have different strategies to reduce transpi-

ration. Daily transpiration can be reduced either by re-
ducing gSmax or increasing d. To interpret these results in
terms of their physiological significance we refer to Eqs.

(4) and (5). To prevent runaway cavitation a plant either

needs to have a low set point for its leaf water potential,

which requires a high structural integrity of its cell walls

(or low vulnerability to cavitation), or it must safeguard

against high leaf water potentials by closing stomata. It

has been shown that species regulating their water po-
tentials do so by following a universal relationship (Eq.

(5)) between GSref (and also gSmax) and sensitivity to D
[53] (also d). Where a species lies along the universal line
(m 	 0:6 GSref ) may be determined from knowledge of its
vulnerability to cavitation [15]. On one hand, the ‘‘effi-

ciency’’ associated with a high gSmax comes at a cost, as
high KL per unit L is needed to meet the high demand for
water, and this makes the plant vulnerable to hydraulic
failure [18]. All other components of the hydraulic

equation (Eq. (4)) being equal, aspen appears to be at

greater risk of hydraulic failure than the other species in

this study, as it operates with high stomatal conductance

under optimal conditions. On the other hand, the

‘‘safety’’ associated with a low GSref means the plant can
have a lower KL per unit L. While this reduces its vul-
nerability to hydraulic failure when water is limiting or
atmospheric demand for water is high [18] it also com-

promises the photosynthetic capacity when water supply

exceeds demand. Cedar is the most extreme example of

this latter strategy. The other species lie between the

safety and efficiency extremes observed by cedar and

aspen, respectively.

The physiological significance of these observations

can also be considered in terms of carbon gain and plant

growth. Species operating with high gSmax (e.g., aspen)
are better able to take advantage of optimal environ-

mental conditions to maximize CO2 gain than species
operating with low gSmax (e.g., cedar). In our study sites,
aspen is a fast-growing species with a high rate of carbon

uptake and a relatively short life-span. Cedar is a rela-

tively slow-growing species, but is relatively long-lived.

Their contrasting physiologies have important implica-

tions for land surface process modeling of water and

carbon storage and flux, from short to long timescales,

across a heterogeneous landscape. The safety versus ef-
ficiency tradeoffs embodied by Eq. (5) provides a direct

physical connection between model parameterization

and the physiological functioning of cohorts of vegeta-

tion types. As such, this model could be considered

complimentary to the traditional land surface param-

eterization schemes based on biome classification coupled

with remote sensing [60,64,78]. Parameterization of the

variability in canopy physiology among species could
then amount to mapping the land surface into positions

along the continuum between safe and efficient strat-

egies. This could greatly simplify the task of parame-

terizing for species-specific functioning at large scales.

Among species differences in physiological response

to D, in particular, would be expected to produce a wide
range of spatial variability in transpiration in a hetero-

geneous forest landscape, such as exists around the
WLEF tower. The spatial variations are expected to be

smallest at low D, when transpiration rates are small,
and possibly of minor significance for catchment scale

Table 3

Parameter adjustments made for the physiological tradeoffs between safety and efficiency of gas exchange, as well optimal models

Species Model Qmin (kJm�2 30 min�1) gSmax (mm s�1) d (kPa)�1 aa (–)

Alder Safety 241.0 0.70 0.430 119.6

Efficiency 165.6 1.60 0.444 15.2

Optimal 39.0 0.79 0.415 50.7

Aspen Safety 33.2 2.10 0.230 1.0

Efficiency 73.9 3.00 0.437 1.4

Optimal 47.5 2.70 0.400 1.9

Cedar Safety 46.5 0.23 0.259 0.9

Efficiency 143.1 0.47 0.430 2.0

Optimal 92.7 0.30 0.341 2.3

Red pine Safety 58.7 0.60 0.156 4.4

Efficiency 193.8 1.40 0.348 3.6

Optimal 110.0 0.83 0.304 1.3

Sugar maple Safety 44.1 0.50 0.348 1.2

Efficiency 69.0 1.10 0.474 2.3

Optimal 32.5 0.70 0.385 2.4

a For alder the a parameter was replaced with a ra, (sm�1) as the wind speed data was corrupt for the understory wetland.
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hydrologic modeling. The greatest spatial variations in

transpiration would be at intermediate levels of D,
during which time inter-species differences in strategies

for regulating leaf water potential would have the most

pronounced effect. As D is increased from low values,
the aspen and red pine would have proportionally the

highest increases in EC. Alder would provide a moderate
increase in flux, but cedar and sugar maple would not

increase as much due to their low stomatal conductance.

Aspen, with the highest EC, would also show the greatest
decline at the highest levels of D. This follows from the

argument that stomatal closure would more than offset

the increased evaporative demand, as first suggested by
Jarvis [35] and shown empirically by Pataki et al. [54].

Given its high stomatal conductance and sensitivity to

D, the aspen trees we measured operate with low safety
margins for hydraulic failure [18]. The implications of

these dynamics for land surface process models that use

aggregate biomes rather than species-specific details are

significant. Biome type models may capture the spatial

variability of water fluxes when evaporative demand is
low and also when the vegetation is stressed. However, it

is in the transition between these states where differential

responses to vapor pressure deficits are most pro-

nounced among species, and much of the growing sea-

son for vegetation in temperate climates is characterized

by moderate vapor pressure deficits.

4. Conclusions

The Jarvis-based canopy conductance model in

TREES is able to accurately simulate daily transpiration

for a range of tree species. More importantly, the
tradeoffs found between maximum stomatal conduc-

tance and stomatal sensitivity to vapor pressure deficit

are consistent with theory on the regulation of leaf water

potential. Differences in canopy coupling among species

did not preclude finding hydraulically consistent pa-

rameter combinations, owing to the fact that model

behavior over a long period is less sensitive to coupling

than would be expected for shorter periods of time, such
as for diurnal simulations. Among-species differences in

strategies for regulating leaf water potential would result

in large inter-species differences in dynamic response to

changing environmental conditions. The implication is

that land surface process models that ignore these dif-

ferences may under predict the spatial and temporal

variability of transpiration. While these differences may

not be large when considered at regional to global
scales, they may dominate the dynamic response at

scales of flux towers and catchments. Furthermore, the

non-linearity of the dynamic responses would not cancel

out over time, and so large biases may be possible. Our

results indicate that species-specific knowledge can be

assimilated to improved model logic. The improved

model could be applied beyond the stand if the universal

scaling of stomatal regulation of leaf water potential can

be developed into a proxy for the species-specific details

and combined with existing land surface parameteriza-

tion schemes.
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