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[1] A quantitative model comparison methodology based on deviance information
criterion, a Bayesian measure of the trade-off between model complexity and goodness of
fit, is developed and demonstrated by comparing semiempirical transpiration models. This
methodology accounts for parameter and prediction uncertainties associated with such
models and facilitates objective selection of the simplest model, out of available
alternatives, which does not significantly compromise the ability to accurately model
observations. We use this methodology to compare various Jarvis canopy conductance
model configurations, embedded within a larger transpiration model, against canopy
transpiration measured by sap flux. The results indicate that descriptions of the
dependence of stomatal conductance on vapor pressure deficit, photosynthetic radiation,
and temperature, as well as the gradual variation in canopy conductance through
the season are essential in the transpiration model. Use of soil moisture was moderately
significant, but only when used with a hyperbolic vapor pressure deficit relationship.
Subtle differences in model quality could be clearly associated with small structural
changes through the use of this methodology. The results also indicate that increments in
model complexity are not always accompanied by improvements in model quality and
that such improvements are conditional on model structure. Possible application of
this methodology to compare complex semiempirical models of natural systems in general
is also discussed.
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1. Introduction

[2] Numerical models are often used to estimate or
predict responses of complex Earth systems under various
conditions, and to identify functional relationships between
measurable quantities that describe these conditions and
system response [Wainwright and Mulligan, 2004]. How-
ever, the interacting entities, processes, parameters, and
boundary conditions for most Earth systems are not com-
pletely known [Oreskes et al., 1994]. Moreover, such
systems are usually too complex to specify completely
within a mathematically and computationally tractable
model simply by including functional descriptions of all
the interacting entities. Therefore, in practice, realistic
descriptions of a system are often substituted with simpli-
fied and approximate descriptions, where some of the
parameters and mathematical functions in the model repre-
sent integrated effects of highly heterogeneous or nonlinear

underlying details [Beven, 1995; Grayson and Blöschl,
2001]. While such semiempirical models (subsequently
referred to simply as models in this paper) are not com-
pletely mechanistic, they are also not purely empirical,
because the model development process is guided by
fundamental theory, usually employing a combination of
theoretical, heuristic, and empirical approaches [Swartzman
and Kaluzny, 1987]. The process-based structure common
in such models facilitates the integration of knowledge and
information from diverse areas of research, which is essen-
tial for modeling complex Earth systems, and also makes
such models potentially more useful for making predictions
or testing process-based hypotheses compared to purely
empirical models [Box et al., 1978; Beven, 1989]. Hydro-
logical components of Earth system models often use this
semiempirical approach, especially at large spatial scales,
because of the above advantages [e.g., Sellers et al., 1986;
Band et al., 1991].
[3] Usually, the problem of modeling any particular

complex system may be addressed by using several differ-
ent semiempirical conceptualizations, each resulting in a
different model structure for the same system. These model
structures differ in terms of scientific hypotheses, assump-
tions regarding system functions, mathematical representa-
tion of interacting entities and processes, approximation and
aggregation techniques, etc. Consequently, different models
provide different estimates of system response, which may
lead to different predictions and inferences regarding system
functions [e.g., Pan et al., 1998; Cramer et al., 1999;
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Luckai and Larocque, 2002; Adams et al., 2004]. The
inability to identify a unique model structure (i.e., structural
uncertainty) out of the various possibilities is often taken
into account in model prediction and the estimate of
prediction uncertainty by using multiple models in an
ensemble in methodologies such as Bayesian Model Aver-
aging (BMA) [e.g., Neuman, 2003; Ye et al., 2004; Raftery
et al., 2005; Ajami et al., 2007; Vrugt and Robinson, 2007].
However, an important objective of using semiempirical
models in the analysis of complex Earth systems is to be
able to make inferences about system processes. Such
inferences may also be affected by structural uncertainty,
but would not benefit from an ensemble technique when
alternative model structures represent alternative process
representations or conflicting hypotheses. In this study, we
explore the possibility of addressing this problem through a
methodology of quantitative model comparison based on
observed data. This methodology uses Markov chain Monte
Carlo (MCMC) simulations for parameter estimation and
deviance information criterion (DIC) [Spiegelhalter et al.,
2002] as the model comparison metric. DIC is a statistical
model comparison metric, which provides a balance be-
tween model complexity and its fit to observed data within a
Bayesian framework [Bayes, 1763; Gelman et al., 1995].
DIC has been widely used to compare statistical models in
many different fields, including ecology and Earth sciences
[e.g., Cowles and Zimmerman, 2003; Cam et al., 2004;
Helser and Lai, 2004; Thogmartin et al., 2004; Manda and
Meyer, 2005]. However, the models compared in the exist-
ing studies are stochastic, while the models compared here
are originally formulated as deterministic models with
multiple embedded components. Therefore, so that the
effectiveness of this method might be better understood
before it is applied in a larger and more complex setting, the
scope of this analysis was restricted to the problem of
modeling canopy conductance, which is well studied but
not completely resolved in terms of structure [Baldocchi et
al., 1991; Leuning, 1995; Monteith, 1995] and parameter-
ization [Dekker et al., 2001; Ewers et al., 2001; Komatsu et
al., 2007]. Specifically, we compare multiple canopy con-
ductance models with respect to their ability to model the
rate of transpiration measured by sap flux. The compared
models employ different configurations of the stomatal
conductance model proposed by Jarvis [1976] (subsequently
referred to as the Jarvis model), but employ the same
transpiration model structure in other respects. The two
primary objectives of this analysis are (1) to quantitatively
evaluate various commonly used functional components of
the Jarvis model against transpiration data and (2) to
demonstrate and discuss the use of DIC for comparing
complex semiempirical models.

2. Overview of Model Comparison and Selection
Approaches: Rationale for Choosing DIC

[4] Two different but complementary approaches are
generally used for model comparison. The first approach
is to determine the level of compatibility between the
available knowledge of the system and the mathematical
structures of different models through a detailed theoretical
analysis. The second approach is to fit different models to
observed data and compare their performances quantitatively.

The two approaches provide different kinds of information,
both useful for the subsequent step of model selection.
[5] In the first approach, the mathematical and algorith-

mic structures of the models are analyzed in detail to
identify differences in terms of representation of entities
(e.g., levels of detail, aggregation) and processes (e.g.,
mathematical descriptions of functional dependencies).
These differences are then evaluated with respect to theo-
retical knowledge of the system to determine whether one
model should be considered a more accurate representation
of the system compared to the others. Sensitivity of system
responses to the identified differences may also be evaluated
by comparing outputs from different models. Examples of
this approach are widely available in the literature [e.g.,
Perruchoud and Fischlin, 1995; Tiktak and van Grinsven,
1995; Pan et al., 1998; Cramer et al., 1999; Adams et al.,
2004]. However, the success of this approach depends
largely on experience and knowledge of the system and
the models. Such a detailed structural analysis is often
impractical because of incomplete process knowledge at
the modeled scale, complexity of the models, and undocu-
mented programming details [Perruchoud and Fischlin,
1995; Tiktak and van Grinsven, 1995; Adams et al.,
2004]. Therefore, for most model comparison and selection
problems involving complex models, there is a need to
augment the above approach with the more straightforward
second approach, where a suitable metric is used to compare
the performance of models against observed data [Kros and
Warfvinge, 1995].
[6] The convenience of this second approach is that the

models may be treated as black boxes for model selection
purposes. The comparison metric provides a measure of
how well the observed data support various model config-
urations, and therefore, also provides an indirect evaluation
of different underlying hypotheses where available theoret-
ical knowledge is not sufficient to conclusively determine
the superiority of any particular model through structural
analysis alone. In this manner, the two approaches may be
combined within an objective development procedure for
complex process-based models. However, the success of the
second approach depends critically on the choice of the
model comparison metric. Often the comparison metric is
purely a quantitative measure of the goodness of fit, such as
the coefficient of determination, R2, calculated through
linear regression between model output and observed data
[e.g., Katul et al., 2000; van Wijk et al., 2000; Moriana et
al., 2002; Misson et al., 2004]. However, like the transpi-
ration models used here, semiempirical models are often
nonlinear, and all of the models included in a comparison
may not use the same predictor variables, therefore, the
most appropriate way to calculate R2 uniformly for all the
models is not always clear [Healy, 1984; Kvålseth, 1985;
Anderson-Sprecher, 1994; Mitchell, 1997]. Moreover, a
goodness of fit measure is affected by errors from several
sources other than inaccuracies in model structure, such as
inappropriate parameter values, measurement errors, and
natural variability in the data. Major differences in the
goodness of fit for different models are often due to differ-
ences in the accuracy of parameter values among models
[van Grinsven et al., 1995]. In order to minimize parame-
terization errors, optimized goodness of fit values are often
used for comparing models, where the parameter values for
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each model have been calibrated to available observations,
instead of using the same value for a conceptually related
parameter in all models.
[7] The difficulty of using the optimized goodness of fit

values for model comparison is that these values might
overestimate model performance. One of the reasons for the
overestimation is that the calibrated parameter values can
become configured to compensate for structural inadequa-
cies in the model or to explain part of the noise (e.g.,
measurement errors, natural variability) present in the
calibration data [Akaike, 1974; Forster, 2000; Gaganis
and Smith, 2001], a condition also known as ‘‘overfitting.’’
A complex model with a larger number of calibrated
parameters is generally more susceptible to overfitting,
compared to a simpler one, because the additional param-
eters provide more ways of adjusting the model output to
match the data. Consequently, model selection guided solely
by goodness of fit is expected to favor complex models over
simple ones [Akaike, 1974]. Another reason for the overes-
timation is that the optimized goodness of fit does not
explicitly account for the uncertainties in calibrated param-
eter values, as it is calculated at the optimized parameter
values [Marshall et al., 2005]. Many recent studies show
that the uncertainties in calibrated parameter values are
considerable for semiempirical hydrologic models [e.g.,
Beven and Binley, 1992; Gupta et al., 1998; Kuczera and
Parent, 1998; Krzysztofowicz, 1999; Bates and Campbell,
2001; Thiemann et al., 2001; Samanta and Mackay, 2003;
Vrugt et al., 2003b;Montanari and Brath, 2004; Samanta et
al., 2007], and therefore, indicate the need to account for its
effect on model comparison.
[8] Because of the above reasons, a methodology adopted

for comparative analysis models should provide a balance
between model performance and model complexity, while
accounting for the uncertainties, so that reliable inferences
may be obtained. Therefore, selection of an appropriate
comparison metric is a complex issue that requires careful
consideration of characteristics of the models being com-
pared, goal of the comparison, as well as its consistency
with the method used for parameter estimation [Ward,
2008]. Several methodologies have recently been proposed
for comparing semiempirical hydrologic models, some of
which are based on classical statistics [e.g., Foglia et al.,
2007], others on Bayesian statistics [e.g., van der Perk,
1997; Marshall et al., 2005; Vrugt et al., 2003a]. These
methodologies use diverse techniques, e.g., cross validation
and MCMC, and metrics, e.g., Akaike Information Criterion
(AIC) [Akaike, 1974], Bayes Information Criterion (BIC)
[Schwarz, 1978], and Bayes factor [Kass and Raftery,
1995]. For this study, we adopt a Bayesian modeling
framework based on MCMC (Section 3.3). The primary
motivations for adopting a Bayesian approach, over other
important approaches used for uncertainty estimation in
hydrologic modeling, such as, the Generalized Likelihood
Uncertainty Estimation procedure (GLUE) [Beven and
Binley, 1992], and the Pareto optimality approach [Gupta
et al., 1998], are explained in detail by Samanta et al.
[2007], the most important reasons being probabilistic
interpretation of the uncertainties, and availability of pow-
erful computational techniques that makes it possible to
analyze very complex models.

[9] For this analysis, MCMC simulation technique, which
is a Bayesian method, was used for parameter estimation.
Therefore, commonly used model comparison metrics that
use maximum likelihood estimates for parameters, e.g.,
AIC and BIC, were not considered to be appropriate,
because the maximum likelihood values necessary for
calculating such metrics may not be correctly and consis-
tently identified for all models through MCMC. Bayes
factor represents an attractive choice for comparing models
within a Bayesian framework [Marshall et al., 2005; Ward,
2008]. However, the use of Bayes factor requires that all of
the candidate models be specified at the start of the
comparison with their prior probabilities assigned, which
is difficult because of the numerous modeling possibilities
available for any complex natural system [Marshall et al.,
2005]. This is not necessary for using DIC, and therefore,
was not done for this analysis. DIC offers an attractive
alternative because it is not only consistent with a Bayesian
approach, but also simple to calculate along with the usual
MCMC steps without increasing the computational burden
significantly. Unlike Bayes factor, which assumes that a
true model exists and it is included in the compared model
set [Burnham and Anderson, 2002], DIC only requires that
the models be reasonable approximations of the true model.
These transpiration models are expected to be reasonable
for these data on the basis of the results obtained by
Samanta et al. [2007], but none of them may be considered
as true models because of inherent simplifications and
approximations. DIC was selected for comparing the
models in this analysis on the basis of the above consid-
erations. However, properties of model comparison metrics
and their applicability in various situations are subjects of
active research, and therefore, our choice is not intended to
imply that DIC is the only metric that is suitable for
comparing complex semiempirical models. A brief descrip-
tion of DIC and the methodology for its computation are
described in Sections 3.1 and 3.3, respectively.

3. Methodology

3.1. Deviance Information Criterion

[10] DIC was developed as a generalization of AIC
within a Bayesian framework for comparing models of
arbitrary complexity, all of which need not be structurally
related [Spiegelhalter et al., 2002]. We briefly describe DIC
below, focusing on the aspects necessary for its application
in this analysis, while referring to the work by Spiegelhalter
et al. [2002] for its derivation and various statistical
properties. DIC is based on a deviance statistic, D(q), which
is related to the residual information in the data [Kullback
and Leibler, 1951], and defined as:

D qð Þ ¼ �2 log p Y jqð Þ½ � þ 2 log f Yð Þ½ �; ð1Þ

where Y is the observed data, q is the parameter vector for
the model, p(Yjq) is the likelihood function defined by the
model, and f (Y) is a standardizing term. The value of f (Y) is
the likelihood of the saturated model, which may be
calculated by defining a saturated model for the data as
shown through examples by Spiegelhalter et al. [2002].
Because the value of f (Y) depends only on Y, it remains the
same for all the compared models. Therefore, the f (Y) terms
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cancel out when calculating the DIC difference between two
models, and therefore, its value does not influence the
model comparison, which is based only on differences in
DIC. For computational simplicity, we assume f (Y) to be
equal to one for this analysis as recommended by
Spiegelhalter et al. [2002]. DIC accounts for the posterior
distribution of D(q) by using the posterior mean deviance,
D qð Þ, as the Bayesian measure of fit or ‘‘adequacy’’ of the
model, instead of using the optimized measure of fit.
Spiegelhalter et al. [2002] provide an information theoretic
argument in favor of using the difference between the
posterior mean deviance and the deviance at the posterior
parameter estimates as an estimate of the reduction in
uncertainty due to parameter estimation, i.e., the degree of
overfitting, in a Bayesian context. This quantity, termed pD,
is considered in DIC to be the measure of model complexity
or the effective number of parameters. Spiegelhalter et al.
[2002] also analytically investigate the formal properties of
pD for various statistical models with useful examples.
However, its algebraic forms are not necessary for its use, as
pD can be obtained directly using samples from an MCMC
sequence (see Section 3.3 for details) by using the equation:

pD ¼ D qð Þ � D ~q
� �

; ð2Þ

where ~q is the posterior estimate of q (e.g., posterior mean,
median, or mode), and D(~q) is the deviance at ~q. From the
above definitions of fit and complexity, D qð Þ is penalized by
pD to define DIC as:

DIC ¼ D qð Þ þ pD ¼ 2D qð Þ � D ~q
� �

: ð3Þ

[11] For model selection, DIC is minimized across candi-
date models, as a lower DIC value identifies a better model.
However, the significance of a specific magnitude of DIC
difference is difficult to determine analytically [Spiegelhalter
et al., 2002]. For the purposes of the present analysis, we
consider that a DIC difference of less than three is not
significant, between three and seven is moderately sig-
nificant, and greater than seven is highly significant. These
significance levels are based on the levels of empirical
support in AIC differences recommended by Burnham and
Anderson [2002]. These are also recommended by
Spiegelhalter et al. [2002] for use with DIC on the basis
of their experience and conceptual similarities between AIC
and DIC.

3.2. Transpiration Model and Canopy Conductance
Submodel Configurations

[12] The transpiration models used in this study have
identical structures in all respects other than the use of
different canopy conductance submodels, thereby providing
a stable model structural context within which the canopy
conductance submodels could be evaluated. The transpira-
tion models are based on the Penman-Monteith equation
[Monteith, 1965], which uses canopy conductance as a
parameter, and calculates the rate of transpiration per unit
ground area on the basis of energy balance and mass
transfer. The basic structure of the transpiration model used
here is described in more detail by Samanta et al. [2007].
Each transpiration model uses a different submodel
embedded within it for calculating the canopy conductance,

which differ in terms of structure, parameters, and variables,
as described below in more detail.
[13] The canopy conductance submodels use various

configurations of the Jarvis model to calculate stomatal
conductance. The leaf area index, necessary to convert
stomatal conductance to canopy conductance, is either held
constant over time or adjusted from day to day using a
semiempirical function described later in this section. The
Jarvis model provides a general functional form describing
the relationship between canopy surface conductance per
unit leaf area and measurable environmental variables (e.g.,
vapor pressure deficit, incident photosynthetically active
radiation) that affect this conductance. The effect of any
particular environmental variable on the conductance is
taken to be independent of the others, which provides a
simple yet flexible method for modeling the response of
canopy conductance to environmental conditions. The sto-
matal conductance per unit leaf area, gS, is calculated as a
fraction of the highest possible conductance for fully
developed leaves per unit leaf area, gSmax, with the fraction
representing the overall constraining effect of environmen-
tal conditions on gSmax. Under the assumption that the effect
of each environmental variable on stomatal conductance is
independent of the others, the effect of an environmental
variable, zj, can be described as a function, fj(zj), of zj alone.
The functions, fj(zj), also called constraint functions, are
defined in such a way that fj(zj) assumes a dimensionless
value between zero and one for all reasonable zj values.
Therefore, the combined effect of m different environmental
variables on gS is expressed in the general form of the Jarvis
model as:

gS ¼ gSmax

Ym
j¼1

fj zj
� �

; ð4Þ

with its specific configuration depending on the set of
environmental variables used and the mathematical for-
mulations of the corresponding constraint functions.
[14] The Jarvis model configurations compared in this

study use constraint functions for vapor pressure deficit
within the canopy, Dc (kPa), average photosynthetic photon
flux density, Qp (mmol m�2 s�1), air temperature within the
canopy, Tc (�C), and soil water potential, Ys (MPa), in
various combinations to calculate gS by scaling gSmax,
which is a calibrated parameter for all the models used here.
The constraint functions and the associated parameters are
shown in Table 1, along with the range of values for each
variable in the data used. Two alternative forms of
constraint functions are used to describe the effect of Dc

on gS, one is a linear function [Jarvis, 1976] and the other is
a hyperbolic function [Lohammar et al., 1980], with
sensitivity parameters d and dh, respectively. The constraint
functions for Qp, Tc, and Ys are based on functions
commonly used for such purposes [Jarvis, 1976; Lhomme,
2001; Nishida et al., 2003]. The light response of gS is
determined by the value of the calibrated parameter A. The
temperature response of gS is determined by three calibrated
parameters, Topt, Tlo, and Thi, representing the optimal,
lowest, and highest temperatures for transpiration, respec-
tively. The response of gS to Ys is determined by the
calibrated parameter Y0, which represents the minimum soil
water potential necessary for transpiration.
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[15] In all the models, the canopy is subdivided into two
classes of leaves, one sunlit and the other shaded. The
surface conductance for each class is calculated as the
product of the corresponding values of gS and single sided
leaf area index for the class, Lcdoy. The two conductances are
then combined in parallel to obtain the total surface vapor
conductance of the canopy. The applicable values of Qp

used for calculating gS for the two classes of leaves are
modeled from observed incident radiation using the
approach described by Spitters et al. [1986]. Lcdoy values
are calculated using the following equation, which assumes
a spherical distribution of leaves within the canopy:

Lcdoy ¼
1�e

�KbLdoy

Kb
; for sunlit class

Ldoy � 1�e
�KbLdoy

Kb
; for shaded class

(
; ð5Þ

where Kb is the canopy extinction coefficient for beam
radiation for the current zenith angle, and Ldoy is the current
leaf area index for the entire canopy [Campbell and
Norman, 1998]. In some of the models, Ldoy is held
constant at an observed single sided leaf area index, Lobs,
and in the others, Ldoy is adjusted on the basis of the ordinal
day of year (DOY). This adjustment function is used as a
simple semiempirical technique of accounting for the
combined effect of leaf area dynamics and many other
processes that affect the maximum canopy conductance
gradually through the growing season (e.g., leaf aging, and
changes in leaf, sapwood, and root areas). As identified
through a detailed analysis of a transpiration model of the
type used here, such a function is necessary to account for
the gradual change in transpiration through the season,
which is not otherwise accounted for in the model [Samanta
et al., 2007]. The usefulness of including this function is
further tested through model comparison in the present
analysis. The Ldoy adjustment function is based on fitted
transpiration values, lfdoy, obtained by fitting a second-
degree polynomial function of DOY to a large set of
observed transpiration data described in Section 4. The
adjusted value of Ldoy is calculated from lfdoy values by:

Ldoy ¼ Lobs 1� lfscl 1� lfdoy

lfmax

� �� �
; ð6Þ

where lfmax is the maximum value of lfdoy during the entire
period, and lfscl is a leaf area scale factor estimated from
data, which determines the rate of change of Ldoy with
respect to lfdoy.
[16] Each canopy conductance submodel used in this

analysis represent a specific combination of the above
functions, and therefore, the comparison might also be
considered as indicative of the relative importance of
including each environmental variable in the Jarvis model
using a specific functional form, within the context of the
overall transpiration model and the data used in the analysis.
For ease of reference, the transpiration models are desig-
nated by strings of letters that indicate the functions present
in their canopy conductance submodels, using the letters L,
H, Q, T, W, and P. The letter L indicates the linear form of
the constraint function for Dc is in use, while the letter H
indicates the use of the hyperbolic form. The letters Q, T,
and W indicate the uses of constraint functions for Qp, Tc,
and Ys, respectively. The letter P indicates the use of
adjusted Ldoy. When a particular function is not used, the
corresponding letter is dropped from the designation. This
comparison includes the two most complex models possible
within the above family of models, viz., LQTWP and
HQTWP, and nine other models derived from these two by
removing one constraint function at a time. Therefore, the
contribution of each of the above functions could be
evaluated by comparing specific model pairs. The model
LQP, which was used previously for a detailed analysis of
the same data [Samanta et al., 2007], and its hyperbolic
analog, HQP, are also included in this comparison as
convenient reference models.

3.3. MCMC Simulation, Estimation of Deviance, and
DIC Calculation

[17] The transpiration models described in the previous
section are deterministic, where each model uses an input
sequence of environmental measurements, x, and parameter
vector, b, to calculate an output sequence of canopy
transpiration rates per unit ground area, Ecanopy(x, b). The
elements of b are parameters directly associated with the
canopy conductance submodel used, which are estimated
from a sequence of measured half-hourly canopy transpira-
tion rate, E, through MCMC simulations. Other parameters

Table 1. Environmental Variables, Vapor Pressure Deficit Within Canopy (Dc), Average Photosynthetic Photon

Flux Density (Qp), Air Temperature Within Canopy (Tc), and Soil Water Potential (Ys)
a

Variable Range of Values Constraint Function Parameter

Dc (kPa) 0.60 to 2.45 1 � d Dc d (kPa�1)
Dc (kPa) As above (1 + dh Dc)

�1 dh (kPa
�1)

Qp (mmol m�2 s�1) 202.78 to 1981.70
Qp

QpþAð Þ A (mmol m�2 s�1)

Tc (�C) 13.07 to 32.70
Tc�Tloð Þ
Topt�Tloð Þ [

Thi�Tcð Þ
Thi�Toptð Þ]

Thi�Toptð Þ
Topt�Tloð Þ Topt, Tlo, and Thi (�C)

Ys (MPa) �0.0554 to�0.0029 1 � yS

y0
Y0 (MPa)

aThe environmental variables, vapor pressure deficit within canopy (Dc), average photosynthetic photon flux density (Qp),
air temperature within canopy (Tc), and soil water potential (Ys), were used to describe the response of stomatal conductance to
the environment with the Jarvis model constraint functions shown in Table 1. Different model configurations used different
combinations of variables and constraint functions as described in the text. Note that only one of the two constraint functions
for Dc can be used in one model. Two more parameters, gSmax, the highest possible conductance for fully developed leaves per
unit leaf area, and s2, the error variance, were also estimated from data for all models, in addition to the parameters shown in
the fourth column.
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associated with the transpiration model were held constant
at reasonable values described by Samanta et al. [2007],
and therefore, could be regarded as integral parts of the
invariant component of the transpiration model for the
purposes of this analysis. The sequences x and E have
equal number of elements, n, and the corresponding
elements, xi and Ei, respectively, are temporally synchro-
nized with subscript i (1 to n) in the temporal order of
acquisition. These data are described in more detail in
Section 4.
[18] A detailed analysis the model LQP [Samanta et al.,

2007] shows that the residuals for models of the type used
in this study are approximately normal, without signs of
heteroscedasticity, but not strictly independent. However,
for semiempirical model building, we prefer to address this
lack of independence in the residuals by progressively
refining the models through the use of semiempirical
components. Within this context, the normal error model
can serve as a consistent basis for evaluating such models
under fairly general conditions [Kuczera, 1983]. Although
the use of a different error model would be warranted in
case a gross violation of the normal error assumption is
noticed or required because of process-based reasons. On
the basis of the evidence and the principle described above,
the likelihood functions necessary for a Bayesian analysis of
the deterministic transpiration models are formulated here
with the assumption that the errors are independent and
normally distributed with a constant but unknown variance,
s2. The generic form of the likelihood function in this case
is expressed by:

p Ejb;s2
� �

/ s�n
Yn
i¼1

exp � 1

2s2
Ei � Ecanopy xi;bð Þ
	 
2� �

; ð7Þ

where Ecanopy(xi, b) is the modeled transpiration rate
corresponding to Ei, calculated by the deterministic
transpiration model with input xi, and parameter b.
Substituting p(Yjq) in equation 1 with p(Ejb, s2) above,
D(q) for these models may be expressed as:

D qð Þ ¼ �2 log p Ejb;s2
� �	 


¼ 2n log sð Þ þ
Xn
i¼1

Ei � Ecanopy xi;bð Þ
	 
2

s2
; ð8Þ

assuming the value of f (Y) to be one (i.e., 2 log [f (Y)] = 0)
for model comparison purposes [Spiegelhalter et al., 2002].
The joint posterior distributions for the models are derived
from the likelihood function (equation 7) using noninfor-
mative prior distributions of the form:

p b;s2
� �

/ 1

s2
; ð9Þ

which assumes that b is distributed uniformly within a
specified multidimensional interval, and log(s) is distrib-
uted uniformly [Box and Tiao, 1973; Gelman et al., 1995].
The prior intervals for the parameters are generally dictated
by the requirement that gS should be nonnegative for all
reasonable input values [Samanta et al., 2007]. Applying
Bayes’ rule with the above forms of prior distributions and

likelihood functions, the joint posterior distributions for the
models are of the form:

p b;s2jE
� �

/ s� nþ2ð Þ
Yn
i¼1

exp � 1

2s2
Ei � Ecanopy xi; bð Þ
	 
2� �

:

ð10Þ

A Markov chain Monte Carlo (MCMC) simulation method
based on the Metropolis algorithm [Metropolis and Ulam,
1949] was used, with the additional calculation of D(q) at
each iterative step, to simulate parameter samples from the
joint posterior distribution. Detailed description of the
algorithm may be found in texts on Bayesian statistics [e.g.,
Gelman et al., 1995], as well as in the hydrologic literature
[e.g., Kuczera and Parent, 1998; Vrugt et al., 2003b;
Samanta et al., 2007]. The methodology is briefly described
below, with an emphasis on the details specific to the
present application.
[19] In MCMC simulation, draws from the joint posterior

distribution are iteratively simulated in the form of a chain
or sequence. First a candidate parameter value is randomly
generated from a distribution called the proposal distribu-
tion or the candidate-generating density. Next, the decision
to accept or reject the candidate parameter value as a sample
in the sequence is made on the basis of the ratio of posterior
density at the candidate parameter value to that at the
current parameter value. This process is carried out long
enough for the chain to converge to a stationary distribution
and provide a reasonable number, typically hundreds or
even thousands, of samples from the posterior distribution
after the chain has converged.
[20] The multivariate normal proposal distributions used

in this study used an adaptive approach, similar to that
described by Gelman et al. [1995], in order to achieve
reasonable acceptance rates, defined as the proportion of
generated candidate parameter values that are accepted. The
variance matrices of the proposal distributions were
initialized on the basis of samples from preliminary
simulations. During the first half of an MCMC run, the
variance matrix was updated on the basis of recent
iterations, if the acceptance rate since the last update was
not between 0.2 and 0.3. The variance matrix was not
adjusted further during the second half. Chain convergence
was assessed quantitatively by using the potential scale
reduction factor,

ffiffiffî
R

p
[Gelman and Rubin, 1992; Gelman et

al., 1995], and visually by plotting traces of sampled
parameter values against iterations [Kass et al., 1998]. In
order to use

ffiffiffî
R

p
as a convergence diagnostic, four independent

MCMC sequences were run for each model. Each sequence
started at different randomly generated values for b and s.
The adopted technique of running each chain for 200,000
iterations, and discarding the first 100,000 iterations as the
‘‘burn-in’’ period, resulted in

ffiffiffî
R

p
values of 1.003 or less for

all models. These values are considerably lower than the
value of 1.2 suggested by Gelman et al. [1995] as evidence
of convergence. The final 100,000 iterations, constituting
the second half of each sequence, were subsampled
systematically at a gap of 50 iterations to obtain the
posterior samples of b, s2, and D(q), used in this analysis.
The subsampling is not strictly necessary, as discussed by
Geyer [1992], but was done here in order to reduce
autocorrelation among the samples [Samanta et al., 2007].
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[21] For DIC calculations, D qð Þ was calculated by taking
the average of the posterior samples of D(q), calculated at
each iteration during the MCMC simulations. For each
model, D qð Þ values from individual chains corresponding to
that model were compared to confirm that they do not differ
by more than 0.5, so that the model comparison is not
greatly affected by random Monte Carlo sampling errors
[Spiegelhalter et al., 2002]. The posterior parameter
estimate, ~q, required for calculating D(~q) and pD, may be
obtained using a standard estimator, such as the mean,
median, or mode of the posterior samples of b and s2.
However, as discussed by Spiegelhalter et al. [2002], use of
different estimators may sometimes lead to different pD
values for the same model, and a negative pD value either
indicates that the estimator used is not appropriate or that
there is a conflict between the prior and the data.
Spiegelhalter et al. [2002] also show that, in some cases,
use of median as the estimator, in comparison to the mean,
may lead to a closer approximation to an invariant pD value,
which is less influenced by the prior data conflict. Although
the posterior mean is the most commonly used estimator, it
did not result in positive pD values for all of the models in
this case, possibly because of the high asymmetry in the
posterior distributions of certain parameters and the strong
interdependence between certain parameters (see Section 5).
However, the use of posterior median resulted in positive pD
values for all the models. Therefore, to ensure consistency
across models, the posterior median values were used to
calculate the DIC values reported here. For the remainder of
this paper, ~q and ~b refer to parameter vectors consisting of
the medians of posterior samples. The values of D(~q) for
each model are calculated through equation 8 by setting q
equal to the corresponding ~q value.

4. Data

[22] The data used for this study were collected as part of
the Chequamegon Ecosystem-Atmosphere Study (ChEAS)
[Bakwin et al., 1998; Davis et al., 2003], a collaborative
research effort that maintains multiple data collection sites
located in and around the Chequamegon-Nicolet National
Forest in Northern Wisconsin, USA. Nearly all of the data,
with the exceptions noted below, are from two of the above
sites, viz., the Willow Creek site [Cook et al., 2004; Desai et
al., 2005] and the Hay Creek site [Ewers et al., 2002, 2007a,
2007b]. These two sites are a little over 21 km apart and have
similar sandy loam soils. The forests at both sites consist of
upland hardwoods dominated by sugar maple (Acer
saccharum Marsh.) and basswood (Tilia americana L.).
[23] The modeled transpiration rates (mm s�1) are aver-

age half-hourly values for eight sugar maple trees at the Hay
Creek site, obtained between 9:00 A.M. to 6:00 P.M.
Central Standard Time (CST) from 5 May to 19 September
2001, DOY 125 and 262, respectively. The transpiration
values were calculated from sap flux and sapwood area per
unit ground area measurements using methodologies de-
scribed by Oren et al. [1998] and Ewers et al. [2002]. The
value of Lobs is 4.6, calculated from litter-fall data
collected in 2001 [Ewers et al., 2007a]. Each element of
the model input vector, xi, consists of half-hourly
measurements of incident photosynthetic photon flux
density, Qp (mmol m�2 s�1), wind speed above canopy
(m s�1), air temperature above canopy (�C), vapor pressure

deficit above canopy (kPa), atmospheric pressure (kPa),
ground heat flux at 7.5 cm soil depth (W m�2), volumetric
soil moisture content 10 cm below soil surface, w,
midcanopy air temperature, Tc (�C), and midcanopy vapor
pressure deficit, Dc (kPa). The average canopy height of
the sugar maple trees at this site was 18.6 m. The above-
canopy measurements were made at 29.6 m elevation and
the midcanopy measurements were made at two thirds of
canopy height. Out of the above input variables, Dc and Tc
were measured at the Hay Creek site, and the others were
measured at the Willow Creek site. About 10% of the final
input data were obtained from measurements made at the
WLEF TV eddy flux tower in Chequamegon National
Forest, less than 10 km away from the measurement sites,
so that large gaps in the input data, possibly due to
equipment malfunctions in the field, may be avoided. The
measured w values were used to calculate Ys using the
following equation:

ys ¼ aw�b; ð11Þ

where a and b are experimentally determined parameters,
which were fixed at the values of �3.6189 
 10�5 MPa
and 4.9, respectively, for the sandy loam soils at the sites
[Clapp and Hornberger, 1978]. Available volumetric soil
moisture measurements at depths other than 10 cm (viz.,
5 cm, 20 cm, 50 cm, and 1 m) show strong linear
correlation to w, and therefore, the use of additional
measurements or the average is not expected to signifi-
cantly affect the fit of the model to transpiration data and
alter the inference of this model comparison. However, the
assumption that the soil moisture at Hay Creek is the same
as that at Willow Creek introduces additional uncertainty in
this model input, which could not be avoided because of
nonavailability of soil moisture data at the Hay Creek site.
[24] The sequence of available transpiration data, consist-

ing of 2579 half-hourly values, is shown in Figure 1 (both
filled and open circles). This entire sequence was used to
obtain the lfdoy values through local polynomial regression
(loess) fit (the superimposed line in Figure 1) following the
technique described by Samanta et al. [2007]. However,
input data were available only for 1899 transpiration values
in the above sequence. Out of these 1899 measurements,
708 data points corresponding to above-canopy vapor
pressure deficit less than 0.6 kPa were discarded because
of the potential for large errors in the transpiration estimates
[Ewers and Oren, 2000]. Moreover, the process of
evaporation of intercepted precipitation or dew at the leaf
surface was not incorporated in the model for the sake of
simplicity. Therefore, 182 additional data points, coincident
with precipitation or temperature inversions, were removed
from the data, as the omitted evaporation process could be
important at these points. Finally, an additional 37 data
points corresponding to very low incident photosynthetic
photon flux density, less than 200 mmol m�2 s�1, were
removed from the data. The data eliminated by this last
condition are measurements made on a few of the observed
days after 4:00 P.M. The number of elements, n, remaining
in the sequences E and x is 972 after the above elimination
process (the filled circles in Figure 1). The transpiration
values remaining in E range between 3.973 
 10�7 and
5.971 
 10�5 mm s�1. The ranges of values for the
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variables used in the constraint function are shown in
Table 1. Among these variables, the values for Dc, Qp, and
Tc, cover relatively wide ranges. However, the minimum
value of Ys in these data, �0.0554 MPa, is considerably
higher than the wilting point (approximately �1.5 MPa),
indicating that moisture stress was unlikely to have been
encountered during the data collection period. Note that the
measurement errors associated with x are not explicitly
modeled in this analysis. However, as the measurements
were conducted over a relatively small area, we expect them
to be small compared to the prediction errors, and therefore,
neglect them to avoid additional analytical complexities.

5. Results

[25] The model comparison results are summarized in
Table 2, showing DIC and pD values for all the models,
listed in the order of increasing DIC. The model HQTWP
has the best DIC value of �21783.1, which is 4.1 lower
than that of HQTP, the model with the next lowest DIC
value. This DIC difference is only moderately significant
according to the criterion used, and therefore, the evidence
of superiority of HQTWP over HQTP is not overwhelming
in these data. However, most other models are well
separated from HQTWP in terms of DIC, enabling clear-
cut inferences regarding the effects of individual canopy
conductance model functions on the quality of the
transpiration model.
[26] The degree to which DIC is affected by each of the

functional modifications (Section 3.2) changes significantly
from function to function, implying that these functional
components significantly differ in terms of their contribu-
tions toward modeling these data. The impact of P (tempo-

ral trend in effective leaf area index) on DIC is the largest.
When the model HQTWP is simplified to HQTW, and
LQTWP is simplified to LQTW, DIC increases by 516.7,
and 533.0, respectively. The second largest degradation, a
DIC increment of 357.8, occurs when H, the hyperbolic
dependence of gS on Dc, is removed from the model

Figure 1. Plot of half-hourly transpiration rates measured by sap flux, superimposed with the local
polynomial regression (loess) fit of transpiration rates to the ordinal DOY described in the text.

Table 2. Summary of Model Comparison Resultsa

Model
Designationb pD DIC

DIC Change With
Respect to HQTWP

HQTWP 5.6 �21783.1 -
HQTP 5.6 �21779.0 4.1
HQP 5.0 �21710.8 72.3
HQWP 5.0 �21710.1 73.0
LQTP 5.9 �21699.0 84.1
LQTWP 6.2 �21698.4 84.7
HTWP 4.6 �21685.4 97.7
LQP 5.1 �21673.2 109.9
LQWP 5.3 �21671.6 111.5
LTWP 4.9 �21593.9 189.2
QTWP 5.6 �21425.3 357.8
HQTW 0.5 �21266.4 516.7
LQTW 3.5 �21165.4 617.7

aModels are listed in the order of descending acceptability according to
deviance information criterion (DIC), the model comparison metric. The
effective number of parameters, pD, and DIC increment with respect to
HQTWP for each model are shown in the second and fourth columns,
respectively.

bIndicates functions included in the model with L for linear constraint for
vapor pressure deficit within the canopy (Dc), H for hyperbolic constraint
for Dc, Q for constraint for average photosynthetic photon flux density (Qp),
T for constraint for air temperature within the canopy (Tc), W for constraint
for soil water potential (Ys), and P for day-to-day leaf area adjustment.
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HQTWP, in contrast, the corresponding DIC increment due
to the removal of the linear dependence, L, from LQTWP is
only 273.1. Therefore, in terms of DIC, H is a significantly
more useful function than L. Removing Q (the relationship
between photosynthetic radiation and canopy conductance)
increases DIC by 104.5 (with H in the model) or 97.7 (with
L in the model). The contributions from T (the relationship
between temperature and canopy conductance) are also
highly significant, but in all cases lower than the
contributions from L, H, Q, and P. The biggest contribution
from W (the relationship between soil water potential and
canopy conductance) is only moderately significant (a DIC
reduction of 4.1) and occurs with the model HQTWP.
[27] From the results, the degree to which a particular

functional modification affects DIC appears to be condi-
tional on the overall structure of the model. For example,
the removal of W from LQTWP decreases DIC by 0.6, a
very insignificant amount, while the same modification to
HQTWP reduces DIC by 4.1. Therefore, the inference
regarding W is sensitive to the form of the dependence of
gS on Dc used in the model. Although the inferences
regarding the other functions do not change here depending
on model structure, the DIC differences are highly
significant for other functions also. For example, the
removal of T increases DIC by 73.0 or by 26.8, respectively,
depending on whether the hyperbolic or the linear relation-
ship between gS and Dc is used. DIC changes associated
with Q also show significant differences depending on the
model used. The functions H, T, and W also appear to
reinforce the contributions of each other. Each of these
changes made individually to LQP results in DIC changes
of �37.6, �25.8, and +1.6, respectively, while making all
of them together results in a change of �109.9, a
significantly larger gain than the sum of the individual
changes. Possible reasons and implications of this depen-
dence on model development are discussed further in
Section 6.
[28] Except for the models LQP and HQP, the effective

number of parameters (Table 2), pD, is less than the number
of estimated parameters, which is often used as the measure
of model complexity [Akaike, 1974]. The two-dimensional
contour plots for the posterior distribution of HTQP
parameters (Figure 2) show considerable interdependence
among parameters. In general, similar patterns of parameter
interdependence are noticeable for all the models, with
small variations from model to model. The parameter
interdependence common in these models might be the
reason behind the reduction in effective dimensionality
[Spiegelhalter et al., 2002]. Parameter independence in
semiempirical models may be difficult to achieve through
parameter transformations without prior knowledge about
such dependencies [Raftery et al., 1995]. Regardless, the
results indicate the importance of accounting for these
dependencies in the inferences, particularly where the D qð Þ
difference between models is small. The use of pD provides
a simple method of doing so.
[29] As can be seen in the posterior histograms for models

HQTWP, LQTWP, and HQWP (Figures 3, 4, and 5,
respectively), many model parameters have nearly symmet-
ric posterior distributions. However, Topt, Tlo, Thi, and Y0

have highly asymmetric posterior distributions, indicating
that the posterior mean may not be a good estimator for

these parameters. This asymmetry in the posterior distribu-
tions is likely to be responsible for the negative pD values
for a few models using these parameters, when they are
calculated using the posterior mean. For our analysis, use of
the posterior median values led to reasonably consistent pD
values for the compared models, with the possible
exceptions of HQTW and LQTW (Table 2). However, the
apparent discrepancies are inconsequential for model
selection in this case, because of the extremely large
differences between the DIC values for either of these
models and those of the others. Considering these facts,
DIC appears to provide a valuable tool for making
inferences among these models.
[30] As can be seen from the examples of posterior

parameter histograms (Figures 3, 4, and 5), and the exam-
ples of ~b with the 95% posterior intervals (Table 3),
considerable uncertainties are associated with the parameter
estimates, particularly with those of Topt, Tlo, and Thi, and
Y0. Moreover, the posterior parameter distributions and the
uncertainties appear to be sensitive to model structure. For
example, the distribution for Y0 is highly asymmetric for
HQTWP, but less so for HQWP, and the distribution for gSmax

for LQTWP shows less variability compared to that for
HQTWP. This evidence of high parameter uncertainty, and
its sensitivity to model structure, supports the need to
account for parameter uncertainties in model comparison, as
done here.
[31] A few general observations about the parameter

estimates are as follows. The estimates of gSmax for different
models show an increasing tendency with the number of
included constraint functions, which is expected from the
Jarvis model structure of multiplicative constraint functions.
Uses of H are associated with high estimates of gSmax and
Tlo. The models that include T have slightly lower lfscl
estimates than those without T, but the estimates of lfscl are
significantly different from zero, in fact, close to one for all
models. Estimates of some of the parameters (e.g., gSmax, d,
dh, Tlo) change appreciably from one model structure to
another, while the estimates of others (e.g., lfscl, A) are
similar across models. Therefore, a conceptually equivalent
parameter, such as gSmax, is not numerically equivalent in all
the models. Implications of the above results for model
parameterization are discussed in Section 6.

6. Discussion of Results

[32] The results show that improvements in the quality of
the transpiration model obtained by the inclusions of
constraint functions with vapor pressure deficit (Dc),
photosynthetic radiation (Qp), and air temperature within
the canopy (Tc) in the Jarvis model are highly significant. Of
these three variables, Dc has the biggest impact on model
performance and Tc the least. Evidence in favor of using the
constraint function for soil water potential (Ys) in these data
is moderately significant at best. The relative importance of
the environmental variables, determined here through the
use of DIC, is consistent with widely held concepts
regarding the use of environmental variables for modeling
of stomatal conductance, on the basis of theoretical,
experimental, and parameter sensitivity analyses [e.g.,
Baldocchi et al., 1991; Leuning, 1995; Monteith, 1995;
Lhomme, 2001], as well as data analyses from ChEAS sites
[Ewers et al., 2002; Cook et al., 2004; Desai et al., 2005;
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Ewers et al., 2007a; 2007b;Mackay et al., 2007]. Therefore,
DIC appears to be a reasonable metric for comparing
conceptual transpiration models of the form used here, and
provides the additional benefit of quantitative estimates of
changes in model quality associated with specific changes
in model structure. The additional information obtained
through such an analysis is not only useful for clearly
identifying nonessential model components, but also for
identifying possible avenues for improving the model
structure and the estimates of the parameters, when

considered together with the characteristics of the data set
used in the evaluation.
[33] Very large reductions in DIC with the inclusions of P

indicate that a functional description of the gradual trend in
the transpiration data (Figure 1) is essential in the model.
Because the estimates of lfscl are close to one and
significantly different from zero for all compared models,
the gradual variations in the environmental variables used
here for modeling gS are not sufficient for modeling this
trend without P. Although inclusions of H and T are

Figure 2. Two-dimensional contour plots drawn from the posterior parameter samples for model HQTP
showing (a) dh, the parameter determining the dependence of stomatal conductance on vapor pressure
deficit within the canopy (Dc) in the hyperbolic form of the constraint function, against gSmax, the highest
possible conductance for fully developed leaves per unit leaf area; (b) lfscl, the leaf area scale parameter,
against A, the parameter determining the light response of stomatal conductance; (c) Thi against Tlo; and
(d) Topt against Tlo, where Topt, Tlo, and Thi are the optimal, lowest, and highest temperatures for
transpiration, respectively. HQTP includes hyperbolic constraint function for Dc, constraint functions for
average photosynthetic photon flux density (Qp), air temperature within the canopy (Tc), and day-to-day
leaf area adjustment. The contours are equidistant in terms of frequency count differences and connect
points of equal frequency counts summed over quadrats. The plus symbols indicate median values.
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generally associated with slightly lower estimates of lfscl,
which may suggest that a small part of this trend might be
explained by gradual variations in Dc and Tc through the
season, considering the 95% posterior intervals of the lfscl
estimates (Table 3), the differences do not appear to be
significant. While P provides a useful semiempirical method
for modeling the transpiration trend through day-to-day
adjustment of leaf area, the method requires transpiration
data to be available for its use. Moreover, this trend in
transpiration is likely to be the combined effect of gradual

changes in both leaf area and stomatal conductance over a
growing season, processes that are not physically described
in P. Therefore, replacing P with functions that utilize
conceptual or physically based approaches to model leaf
phenology and other causes of long-term variation in gvc
[e.g., Kikuzawa, 1995; Wilson et al., 2000; Gratani and
Ghia, 2002; Brodribb and Holbrook, 2003] would improve
the general applicability, and perhaps also the quality, of the
transpiration model. However, inclusion of the above
processes would increase the complexity of the transpiration

Figure 3. Histograms of the marginal posterior parameter distributions for HQTWP, which includes the
hyperbolic constraint function for vapor pressure deficit within the canopy (Dc), constraint functions for
average photosynthetic photon flux density (Qp), air temperature within the canopy (Tc), and soil water
potential (Ys), and the day-to-day leaf area adjustment function. The parameter gSmax is the highest
possible conductance for fully developed leaves per unit leaf area; dh describes the dependence of
stomatal conductance on Dc; A determines the light response of stomatal conductance; Topt, Tlo, and Thi
are the optimal, lowest, and highest temperatures for transpiration, respectively; Y0 is the minimum soil
water potential for transpiration; and lfscl is leaf area scale parameter. Dashed lines indicate posterior
median values.
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model, as well as its data requirement. Therefore, the benefit
of including such processes would need to be balanced with
the associated costs.
[34] The low to moderate significance of W, and the

lower significance of T, compared to those of H, L, and
Q, appear to be related to the nature of the data used in this
evaluation, besides their values in modeling canopy con-
ductance in general. In the case of W, the small effect on
DIC may be partially explained by the fact that the values of
w are not less than 20% in these data. Therefore, conditions

where soil water availability would limit transpiration were
not likely to have been encountered at the site during this
period [Mackay et al., 2007]. Similarly, the values of Tc in
the data are between 13�C and 33�C, with the majority
above 20�C, and therefore, do not represent conditions that
impose severe temperature limitations on transpiration,
because the temperature response of gS is fairly broad near
the optimum temperature [Leuning, 1995]. The above
results are also reasonably consistent with the lack of
relationship between surface fluxes and soil moisture or

Figure 4. Histograms of the marginal posterior distributions of the parameters for LQTWP, which
includes the linear constraint function for vapor pressure deficit within the canopy (Dc), constraint
functions for average photosynthetic photon flux density (Qp), air temperature within the canopy (Tc), and
soil water potential (Ys), and the day-to-day leaf area adjustment function. The parameter gSmax is the
highest possible conductance for fully developed leaves per unit leaf area; d describes the dependence of
stomatal conductance on Dc; A determines the light response of stomatal conductance; Topt, Tlo, and Thi
are the optimal, lowest, and highest temperatures for transpiration, respectively; Y0 is the minimum soil
water potential for transpiration; and lfscl is leaf area scale parameter. Dashed lines indicate posterior
median values.
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temperature found by other analyses of surface flux data
from the ChEAS sites, except under relatively rare drought
conditions in this region [Ewers et al., 2002; Cook et al.,
2004; Desai et al., 2005; Mackay et al., 2007]. Therefore,
the estimates of contribution of the processes obtained
through this DIC-based model comparison appear to reflect

well the site conditions and characteristics embedded in the
data. However, the environmental variables, and conse-
quently the corresponding constraint functions, might be
expected to assume different levels of significance under
different conditions or at different sites (e.g., W or T might
become more valuable for modeling transpiration during a

Table 3. Posterior Estimates of Canopy Conductance Submodel Parameters for a Few of the Compared Modelsa

Parameter (Units) HQTWPb HQTPb HQPb LQTWPb LQPb

gSmax (mol m�2 s�1) 1.81 (0.74, 2.89) 1.61 (0.63, 2.81) 0.20 (0.17, 0.26) 0.14 (0.12, 0.16) 0.10 (0.09, 0.11)
d or dh (kPa

�1) 11.77 (4.58, 18.84) 10.69 (4.02, 18.91) 1.32 (0.97, 1.86) 0.24 (0.23, 0.26) 0.22 (0.20, 0.23)
A (mmol m�2 s�1) 85.3 (62.7, 113.2) 85.3 (62.7, 113.5) 85.6 (62.4, 113.8) 93.9 (68.7, 124.5) 91.3 (65.9, 121.3)
Topt (�C) 46.3 (39.7, 49.3) 46.3 (39.4, 49.3) - 45.4 (37.9, 49.3) -
Tlo (�C) �3.0 (�11.05, 2.4) �3.5 (�12.3, 2.1) - �14.8 (�19.7, �6.7) -
Thi (�C) 59.6 (50.4, 85.3) 59.7 (50.4, 85.9) - 65.4 (51.0, 87.2) -
Y0 (MPa) �0.74 (�1.84, �0.29) - - �1.24 (�1.94, �0.49) -
lfscl (-) 1.00 (0.95, 1.05) 1.00 (0.95, 1.05) 1.07 (1.02, 1.11) 1.03 (0.98, 1.08) 1.07 (1.02, 1.11)

aMedian values are shown to illustrate the sensitivity of parameter values to model structure discussed in the text. The 95% posterior intervals are shown
within parenthesis. The values shown are rounded off to facilitate presentation. The parameter gSmax is the highest possible conductance for fully developed
leaves per unit leaf area; d and dh describe the dependence of stomatal conductance on vapor pressure deficit within the canopy (Dc) in the linear and
hyperbolic forms of the constraint function, respectively; A determines the light response of stomatal conductance; Topt, Tlo, and Thi are the optimal, lowest,
and highest temperatures for transpiration, respectively; Y0 is the minimum soil water potential for transpiration; and lfscl is leaf area scale parameter for
day-to-day leaf area adjustment.

bIndicates functions included in the model with L for linear constraint for Dc, H for hyperbolic constraint for Dc, Q for constraint for average
photosynthetic photon flux density (Qp), T for constraint for air temperature within the canopy (Tc), W for constraint for soil water potential (Ys), and P for
day-to-day leaf area adjustment.

Figure 5. Histograms of the marginal posterior distributions of the parameters for HQWP, which
includes the hyperbolic constraint function for vapor pressure deficit within the canopy (Dc), constraint
functions for average photosynthetic photon flux density (Qp), and soil water potential (Ys), and the day-
to-day leaf area adjustment function. The parameter gSmax is the highest possible conductance for fully
developed leaves per unit leaf area, dh describes the dependence of stomatal conductance on Dc, A
determines the light response of stomatal conductance, Y0 is the minimum soil water potential for
transpiration, and lfscl is leaf area scale parameter. Dashed lines indicate posterior median values.
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severe drought, or during freezing conditions, respectively).
Therefore, analyses of multiple data sets following a similar
methodology would be useful to estimate the significance of
such differences on the modeling of transpiration. However,
the pattern of diminishing improvements in model quality
with the addition of constraint functions suggests that
further extensions or modifications to the Jarvis model (e.
g., through the uses of alternative forms of constraint
functions, alternative environmental variables, such as leaf
water potential instead of Ys, or additional environmental
variables, such as ambient CO2 concentration) may be of
small benefit within the context of transpiration models of
the form used in this analysis.
[35] The results also show that the contributions of

constraint functions may, in some cases, be conditional on
the overall structure of the model, in addition to data and
system characteristics. This dependence is most apparent for
the inclusions of W and T, and strong enough to change the
inference regarding the value of W (Section 5). Possible
reasons for the dependence here are the negative correlation
between Tc and w, and the high positive correlation between
Tc and Dc. However, such correlations between environ-
mental variables are to be expected, and therefore, the
possibility that the contribution of an individual model
component is dependent on the rest of the model structure
should be taken into account for model comparison.
[36] On the basis of the foregoing results and discussions,

increased model complexity is not always accompanied by a
significant improvement in model quality and the extent of
improvement achieved by additional functional complexity
is not easily predictable. These improvements may also be
subtle and detectable only when the rest of the model
structure is of requisite quality, which is also an unknown.
Therefore, a modification or an increment in complexity
that appears to be of insignificant benefit with one model
structure may assume a higher significance with another
model with structural differences that are not obviously
related to the modification being tested. For example, it
appears from the results that modeling soil moisture avail-
ability in greater detail [e.g., Noilhan and Planton, 1989]
would not be of value in the model presented here, but the
possibility that such a component could become valuable,
when commensurate details are added to other parts of the
model (e. g., accounting for storage effects in the sap flow
through the stem [e.g., Kumagai, 2001], representing the
plant canopy in greater detail [e.g., Raulier et al., 1999],
modeling canopy conductance in terms of photosynthesis
[e.g., Collatz et al., 1991]), cannot be ruled out. In other
words, inferences regarding the value of a model compo-
nent, which in the case of semiempirical models can also be
regarded as a test for the hypotheses underlying the model
component being tested, are applicable only within the
larger context of the knowledge and hypotheses already
embedded within the model. An interesting consequence of
the above is that an advancement of process knowledge in
one discipline may not only be useful by itself, but may also
render knowledge or hypotheses in other disciplines more
useful for modeling aggregated responses of Earth systems.
However, it may be impossible to determine a priori
whether a model structure has the requisite quality for
testing a particular hypothesis. Therefore, the balanced
modeling approach recommended by Grayson and Blöschl

[2001], where different model components are developed
and evaluated in concert, should be preferred over the
approach of describing only a few model components in as
much detail as possible, particularly where the models are to
be used to evaluate the significance of individual processes
in modeling natural systems responses at large scales. The
iterative model building approach suggested by Box [2001],
along with the collection of appropriate data for objective
evaluation of the benefits of increasing model complexity,
would be useful for the development of such balanced
models. On the basis of the results obtained here, DIC
appears to serve well as a useful metric for the evaluation
step in such model development cycles because of its
abilities to deal with complex model structure, account for
parameter uncertainty and interdependence common in
Earth system models, and detect subtle changes in model
quality.
[37] In addition to the selection of an appropriate model

structure, estimation of parameters is also important for
using a model to estimate or predict system response. The
results indicate that sufficient information regarding all the
parameters may not be available in the data being modeled,
even when the model components associated with such
parameters contribute positively to model quality. This lack
of information could be addressed within the Bayesian
framework through the use of informative priors, which
incorporate information regarding parameters from various
independent sources. For conceptual models, informative
priors might be specified with the additional requirements of
not contradicting known physical relationships, where such
knowledge is available [Raftery et al., 1995]. Direct
measurements, exploiting the physical relationships em-
bedded in such models, might also be useful for specifying
informative priors, although the practical difficulties of
doing so are evident from the sensitivity of parameter
estimates to model structure seen in the results. As
suggested by Monteith [1995], this difficulty may be
alleviated if measurements intended for determining para-
meter values are made following experimental protocols
designed with their future use in models into consideration.
How such measurements and process knowledge might be
used together in this way for improving model quality are
interesting subjects for further research.

7. Conclusions

[38] According to the results of this model comparison
study, DIC is capable of detecting subtle model improve-
ments that result from small structural changes in complex
semiempirical models. The need to account for uncertainties
in goodness of fit, parameter uncertainty, and the effect of
parameter interdependence on the estimate of model com-
plexity, is also clearly indicated. While the specific infer-
ences of this analysis regarding the use of the Jarvis model
may not be universally applicable, this study provides an
example of how this quantitative model comparison proce-
dure can be used, along with theoretical considerations, to
identify structural modifications that are valuable and sup-
ported by available observations. In conclusion, this meth-
odology provides a promising technique, which is generally
applicable to deterministic Earth system models composed
of multiple process-based components that can lead to
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significant improvements in modeling Earth system
responses with further experimentation and research.
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