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[1] Recent developments in model calibration suggest that information obtained from
calibration is inherently uncertain in nature. Therefore identification of optimum
parameter values is often highly nonspecific. A calibration framework using fuzzy logic is
presented to deal with such uncertain information. An application of this technique to
calibrate the streamflow of a hydrologic submodel embedded within an ecosystem
simulation model demonstrates that objective estimates of parameter values and the range
of model output associated with a failure to identify a unique solution can be obtained with
suitable choices of objective functions. An iterative refinement in parameter estimates
through a process of elimination was possible by incorporating multiple objective
functions in calibration, thereby reducing the range of parameter values that capture the
streamflow response. It is shown that objective function tradeoffs can lead to suboptimal
solutions using the process of elimination without an automated procedure for
reevaluation. Owing to its computational simplicity and flexibility this framework could
be extended into a nonmonotonic system for automated parameter estimation. INDEX
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1. Introduction

[2] Most hydrological models are conceptual representa-
tions of ideal hydrological systems involving varying
degrees of simplifications. Application of such models
requires determination of appropriate parameter values
defined in the model. Even for highly physically based
models, it may be impossible to obtain direct measurements
for all of the required parameter values due to spatial
heterogeneity [Beven, 1989; Binley and Beven, 1991]. Some
of the required parameters may not even be directly meas-
urable in the form used in the model. However, it is
necessary to estimate applicable values for them in order
to utilize a hydrological model, and to draw useful con-
clusions regarding relationships that may exist between
model parameters and physical watershed characteristics
[Kuczera, 1983]. Values for such parameters are usually
estimated through a calibration process that matches simu-
lated hydrologic fluxes with a time series of observed
fluxes. In an automated calibration framework, this involves
selecting a model (parameters and structure) from the
feasible model-parameter space. Typically, a selection is
made based on the lowest degree of mismatch between

simulation and observations. However, output from hydro-
logical models with widely different parameter sets may
produce nearly equal levels of measured degree of fit,
making it difficult to select from among near optimal
parameter sets [Beven, 1993]. One reason for this nonunique
solution to the calibration exercise is that model parameters
can compensate for each other. Furthermore, the effects of
poor representation of processes within the model structure,
or lack of adequate data, can sometimes be compensated for
with an adjustment of parameters. For example, stream
discharge data represents an accumulation of spatially
variable fluxes into a single point value that cannot resolve
either the individual fluxes in space or their errors. As a
result, calibration using a different data set [Beven, 1993;
Melching, 1995] or a different set of objective functions for
evaluating model performance [Gupta et al., 1998] may
result in different optimal parameter sets for a model.
[3] Several calibration frameworks have been proposed

for simulation models in general and hydrological models in
particular, which recognize this uncertainty in calibrated
parameter values, and consequently in model results [Spear
and Hornberger, 1980; Klepper et al., 1991; Van Stratten
and Keesman, 1991; Beven and Binley, 1992; Gupta et al.,
1998; Kuczera and Parent, 1998]. The solutions proposed
to account for this uncertainty often accept a set of models
out of the model population instead of a single optimal
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model as the result of calibration. The idea that such a set is
representative of the uncertainty in parameter values has
been used in, e.g., Pareto optimal parameter sets [Gupta et
al., 1998]; equifinal parameter sets [Beven and Binley,
1992], and others. When the solution set is in the domain
of a finite model population (e.g., a parameter sampling
situation), then the cardinality (or number of members) of
the solution set can provide a measure of uncertainty in the
applicable parameter values.
[4] In this paper, we describe a method that determines

this cardinality by treating the solution set of models as a
fuzzy set [Zadeh, 1965]. This fuzzy set is transformed into a
crisp set of models from which parameter variability is
derived. The range of output from this crisp set of models is
then used to represent the consequence of imperfect param-
eter identification. The approach is presented first. We then
illustrate the technique with an application of the Regional
Hydro-Ecological Simulation System (RHESSys) [Mackay
and Band, 1997; Mackay, 2001] to a stream discharge data
set from the H. J. Andrews Long Term Ecological research
station.

2. Methods

2.1. Fuzzy Calibration Framework

[5] Comparison and subsequent selection of the optimum
model in a traditional automated calibration system is based
on the following premise:

xi; xj 2 M : f xið Þ > f xj
� �

) B xi; xj
� �

ð1Þ

B(xi, xj) means xi is a better model of the system than xj,
where xi and xj are two different models (i.e., structure plus
parameter set) in the discrete set of feasible models M, and f
is an objective function that is maximized for calibration.
This premise holds if the relative ranking of xi and xj is not
sensitive to a change in the definition of f or the calibration
data. For reasons discussed in the introduction, this
assumption is not strictly valid for most calibration
problems and a set of models must be accepted as the
solution to recognize the inherent uncertainty. Conse-
quently, the goal of calibration may be stated as that of
identifying this solution set.
[6] For a calibration process to be successful, some

amount of information regarding relative suitability of
models obtained from f must be independent of calibration
data or specific objective function. So, the value of f (xi)
would provide an estimate of the possibility that xi is an
acceptable model in relation to the other models in M. This
notion is used in the generalized likelihood uncertainty
estimation (GLUE) framework [Beven and Binley, 1992]
where f values are scaled to sum to one and interpreted as
the approximate likelihood of a model to be optimal. The
acceptable model (or equifinal) set is then defined by a
threshold value of f based on a statistical confidence limit.
However, in most cases the errors from a hydrologic model
do not display any fixed probabilistic properties. As a result,
the probabilistic interpretation of the scaled objective func-
tion value is too restrictive and using a threshold on the
objective function value to obtain the set of acceptable
models under this assumption may seem arbitrary [Gupta
et al., 1998].

[7] An alternative to setting such a threshold is proposed
by Franks et al. [1999] using a shaping function linked to
the assumed information content of the data. However, in
most cases, there is serial and cross correlation in the
residuals, so the scaling factor associated with the shaping
function needs to be determined empirically. In the present
analysis, such a technique is not used in order to assess the
information that can be obtained under a fuzzy set inter-
pretation of objective functions without distorting the
response surface.
[8] A set theoretic approach that represents parameter

uncertainty is by identifying a pareto optimal set [Yapo et
al., 1998; Gupta et al., 1998]. This pareto optimal set is
associated with trade offs involved in using different objec-
tive functions used for calibration. The objective functions
can differ in terms of formulation, e.g., DRMS, BIAS, and
NSC [Gupta et al., 1998], or in their use of independent
data streams, e.g., catchment runoff and ground water levels
[Beldring, 2002], peak flow and low flow RMSE [Madsen,
2000], subperiods of daily stream flow [Boyle et al., 2000],
and sensible heat, latent heat, ground temperature, and soil
moisture [Gupta et al., 1999]. Flexibility offered by this
framework allows theoretically similar treatment of all such
objective functions for construction of the pareto set. From
theoretical considerations, the pareto optimal set grows in
size with the number of objective functions used in cali-
bration if significant tradeoffs exist among them. Conse-
quently, a further manual step may be necessary for analysis
and elimination of solutions within the tradeoff range [Boyle
et al., 2000] or the pareto set may need to be collapsed by
using a suitably aggregated objective function [Madsen,
2000] depending on the application.
[9] An alternative interpretation is proposed here, in which

the set of acceptable models is considered a fuzzy set. The
boundary of the set of acceptable solutions to the calibration
problem is considered fuzzy or uncertain. In contrast to the
pareto set, the set of models representing uncertainty in the
proposed approach is progressively constrained as new
information is added in the form of additional objective
functions. To characterize the fuzzy set, f is interpreted as a
fuzzy membership grade function. In comparison, other
calibration techniques have used fuzzy logic in different
ways. For example, fuzzy disaggregation [Franks and Beven,
1997; Franks et al., 1998; Franks and Beven, 1999; Hankin
and Beven, 1998] uses a fuzzy measure, and the fuzzy logic
based modeling approach [See and Openshaw, 2000] uses a
fuzzy logic master model in a multimodel context.
[10] To reiterate, a set of models accepted as the solution

to a calibration problem can be considered an expression of
the inability to precisely identify a unique solution. This
uncertainty arises from the fact that it is known that the
model of interest belongs to the set of alternatives but
cannot be specifically identified. This type of uncertainty
is called nonspecificity and can be estimated by the Hartley
function [Hartley, 1928] in the context of crisp sets. The
Hartley function is a measure of the additional information
that is required to remove this nonspecificity. It is defined as

H Að Þ ¼ log2 jAj; ð2Þ

where H(A) is the Hartley function for a finite crisp set A
and jAj is its cardinality. The greater the cardinality of the
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retained model set in proportion to the model population,
the greater the nonspecificity in the model calibration.
When the acceptable set of models is considered a fuzzy set,
F, within the domain, X, of all feasible models, uncertainty
related to the cardinality of F is expressed as a measure of
the nonspecificity of F. One measure of nonspecificity in the
domain of fuzzy sets and closely related to the Hartley
function is the U uncertainty of subnormal fuzzy sets
proposed by Higashi and Klir [1982] and refined by Klir
and Wierman [1998]:

U Fð Þ ¼
Zh Fð Þ

0

log2 j
a
Fjdaþ 1� h Fð Þð Þ log2 jX j; ð3Þ

where U(F) is the U uncertainty associated with F, jaFj is
the cardinality of an a-cut of F (i.e., number of members
that remain in the set if all members with a membership
grade less than a are taken out of F ), h(F ) is the height of F
(maximum value of membership grade in F ), and jX j is the
cardinality of the universal set X (in this case, the model
population created by sampling the parameter space). An
approximate solution to equation 3 is

U rð Þ ¼
Xn
i¼2

ri � riþ1ð Þ log2 iþ 1� r1ð Þ log2 n; ð4Þ

where r is the ordered possibility distribution [Zadeh, 1978]
derived from the fuzzy set F, r1 = h(F), and rn + 1 is
assumed to be 0. In this context, the membership grade
function defining F plays the role of the possibility
distribution function, r, and the members within the set
are sorted in descending order of the membership grade
function. Figure 1 shows a series of hypothetical relation-
ships between the a-cut and jaFj. At an a-cut of 0.6 the
three relationships shown yield very different cardinalities.

Relations that are skewed towards the low end, and thus
have only a few high f (xi) models, are better than relations
having too many high f (xi) values. The ideal is to have a
single model with its respective f (xi) = 1.0 and all other
models have f (xi) = 0.0. This gives a cardinality of 1.0 for
the fuzzy set and a cardinality of one for the crisp set
indicating that the optimal solution can be clearly identified.
The more usual case is one in which the cardinality of the
fuzzy set is greater than 1.0.
[11] The shape of this curve, a-cut versus jaFj, provides a

basis for estimating the useful calibration information pro-
vided by the given objective function. The key is to
objectively define the a-cut and the cardinality of the model
set that must be retained as the solution to the calibration
based on the available information. One way to do this is to
use the principle of uncertainty invariance [Klir and Wier-
man, 1998], which forms a crisp set of acceptable models
that approximates the respective fuzzy sets by virtue of
having the same U uncertainty. Consider for example the
ordered fuzzy set F = {0.9, 0.8, 0.8, 0.7, 0.6, 0.4, 0.1, 0.1}.
The cardinality of F is the sum of fuzzy memberships in the
set, which in this case is 4.4 and the associated U uncertainty
is 2.2. To decide how many members must be retained given
this evidence, an integer, k, is calculated such that the value
of jU(r) � log2kj reaches a minimum. This is obtained by
equating the U uncertainty of the fuzzy set (equation 4) to
the Hartley function for the desired crisp set. The value of k
(5 in this example) is the required cardinality of the retained
model set, which means the top five models in F are retained
and the -cut is placed at 0.6. The parameter values associ-
ated with this crisp set (henceforth called the restricted set)
can fill all or part of the multidimensional parameter space
defined by the initial ranges or distributions used for
sampling. Figure 2a shows a possible way that a restricted
set might fill the parameter space for a two-parameter
system. Output from this restricted set is used to set upper
and lower limits on the model prediction, called a prediction
envelope. This envelope can in turn be compared to an
independent set of observations for verification. Character-
istics of the prediction envelope are summarized by its
average width and its ability to successfully contain obser-
vations during the evaluation period.
[12] Note that the models are no longer ranked within the

restricted set. This follows from the argument that the
objective function, once used to construct the restricted
set, can provide no further information that will allow
distinguishing among the member models even if some of
these models may be better [Gupta et al., 1998]. Further
distinctions among models will need new information either
in the form of additional objective functions or expert
knowledge. As such, multiple objective functions can be
combined by taking an intersection of the corresponding
restricted sets instead of a fuzzy set intersection prior to the
construction of restricted sets. The later method may result
in a calibration unduly influenced by only one objective
function if it is consistently poor for all models, because the
operation is defined as

fr xið Þ ¼ min f1 xið Þ; f2 xið Þ; . . . ; fn xið Þf g; ð5Þ

where fr(xi) is the membership grade in the intersection set
for model xi, and f1(xi) to fn(xi) are membership grades
corresponding to n different objective functions. As an

Figure 1. These hypothetical distribution functions illus-
trate how cardinality of a candidate set of models varies by
value obtained from a measure of goodness of fit. At a given
level (or a-cut), a low cardinality indicates a high level of
specificity in the set of candidate models. A high cardinality
indicates a high level of nonspecificity.
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example of crisp set intersection, if objective functions f1
and f2 are used to generate the crisp sets A1 and A2,

respectively, then the combined crisp set A12 is obtained by
A1 \ A2. A hypothetical outcome of combining two
objective functions in a two-parameter space is shown in
Figure 2b. A comparison of the cardinalities, jA1j, jA2j, and
jA12j, is useful in assessing additional calibration informa-
tion obtained by combining f1 and f2 instead of using any
one of these objective functions. One limitation of using
crisp set intersection is that the resulting set may be too
constrained because the restricted sets are only approxima-
tions of the original fuzzy sets. Therefore, caution must be
exercised while combining two objective functions due to
the existence of unacceptable tradeoffs or incompatibilities
arising due to definitions of these functions or deficiencies
in model structure.

2.2. Membership Grade Functions

[13] It is difficult to judge a priori the suitability of
objective functions for use as membership grade functions
(mF). Different objective functions evaluate different aspects
of fit between simulated and observed responses, and so the
process of restriction using crisp sets described above may
result in an unrealistically low estimate of parameter uncer-
tainty if deficiencies in the model structure prevent the
simulation of all these aspects simultaneously. A desirable
criterion is a direct mapping of f to mF, which is possible when

f is defined so that f(x)! [0, 1]. We examined two objective
function formulations widely used for hydrologic model
calibration purposes. They emphasize two important aspects
of the quality of fit between model output and observations.
The first is the coefficient of determination, defined as

R2 ¼

PN
i¼1

Oi � �Oð Þ Pi � �Pð Þ

PN
i¼1

Oi � �Oð Þ2
� �0:5 PN

i¼1

Pi � �Pð Þ2
� �0:5

8>>><
>>>:

9>>>=
>>>;

2

; ð6Þ

where N is the number of observations, Pi and are Oi are ith
simulated and observed values respectively, overbar stands
for the average for the calibration period. The second
objective function, fBIAS, is based on bias and defined as

BIAS ¼
XN
i¼1

jPi � Oij
Oi

; ð7Þ

fBIAS ¼
BIAS  1 ) 1� BIAS

BIAS > 1 ) 0

:

8<
: ð8Þ

This transformation allows for a straightforward mapping of
the information provided by bias in the simulated stream-
flow into membership grades. Although this technique

Figure 2. An example of a set of 500 simulations obtained by Monte Carlo sampling of two
hypothetical model parameters 1 and 2 (scaled from 0 to 1). (a) Using the uncertainty invariance
technique with a hypothetical objective function f1 we obtain a U uncertainty value of 7.935. Based on
this, 245 simulations are retained in the restricted set (open circles), the rest (crosses) are considered
inadequate simulators and rejected. The retained simulations are from a more limited region in parameter
space. (b) Two different objective functions f1 and f2 (with a restricted set cardinality of 159) are
combined by intersection of the corresponding restricted sets (open circles for f1, and triangles are for f2)
to construct a new restricted set of cardinality 62 (solid circles). The resulting set show improved
parameter definition for the model as the selected parameters in the new restricted set are from limited
region in the parameter space.
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collapses the high bias values, it retains proportional
differences in the region of interest, i.e., models with low
bias values.
[14] It has been demonstrated that improved calibration of

hydrologic models may be obtained by independently
calibrating on subperiods of a time series [Zhang and
Lindström, 1997; Boyle et al., 2000]. Subperiods may be
characterized by differences in specific processes that dom-
inate the hydrologic behavior of the watershed. We utilized
an approach similar to the one described by Boyle et al.
[2000] to partition the hydrograph based on recorded
precipitation and observed flow quantities. Each day was
classified in one of three categories or classes, F, P, and B,
following the logic described below:

FlowClass ¼
Oi > Ri ) ClassF

Oi  Ri ) ClassP

Ri ¼ 0 ) ClassB

;

8<
: ð9Þ

where Oi and Ri are observed streamflow and recorded
precipitation for ith day, respectively. Observations within
class F are during a period of rain on snow or snowmelt,
class P observations are mainly rainfall-runoff, and stream
flow during class B is dominated by base flow. The
usefulness of these objective functions individually and in
various combinations was evaluated in the context of this
framework by calibrating the hydrologic submodel within
RHESSys.

2.3. RHESSys Model

[15] RHESSys combines forest canopy gas exchange
processes, soil moisture balance, and lateral saturated
through flow within a common integrated spatial data and
simulation framework [Mackay and Band, 1997]. RHESSys
builds a hierarchical representation of watersheds. At the
top level of the hierarchy, the watershed is divided into
hillslope facets. At the next level, each hillslope facet is
subdivided into elevation zones for adiabatic adjustment of
air temperature. Each elevation zone is segmented into
hydrologically uniform patches defined on intervals of the
frequency distribution of the TOPMODEL topography and
soil transmissivity index (TSI ) [Beven and Kirkby, 1979;
Beven, 1986; Sivapalan et al., 1987; Quinn et al., 1995].
Complete details on the design and implementation of
RHESSys are provided in previous publications [Band et
al., 1993; Mackay and Band, 1997; Mackay, 2001]. For this
case study, we focus on the components that directly affect
basin outflow in RHESSys.

2.4. Model Parameterization

[16] The parameters that determine the behavior of the
model related to its hydrologic components were obtained
from previous applications of RHESSys in similar ecosys-
tems [e.g., Baron et al., 2000; Mackay and Band, 1997;
Watson et al., 1996; White et al., 1998; Mackay, 2001].
Because a Monte Carlo sampling strategy was used to
explore the parameter space, a careful selection of param-
eters was necessary to limit the number of simulation runs
for computational reasons. Although an efficient search
strategy (e.g., shuffled complex evolution [Duan et al.,
1992] would be able to locate acceptable parameters with
less computational burden, in the current method it is
necessary to approximate the entire response surface for

comparing the model population. A set of initial simulations
was carried out to determine the sensitivity of the stream
flow output of the model to different values of hydro-
logically relevant parameters. Guided by this analysis the
parameters, m, k, d, and Cpint were selected for calibration
(Table 1) and 10,000 model realizations were simulated
with random values for the selected parameters.

2.5. Study Site

[17] A data set available for H.J. Andrews Experimental
forest, Oregon, a long-term ecological research (LTER) site
was used for this study. A small catchment, WS 2 [U.S.
Department of Agriculture, 1986], within this basin was
selected for Monte Carlo simulations. Predominant land
cover for WS 2 is old growth conifer forest. WS 2 is a first
order catchment with an area of 60.3 hectares. The elevation
ranges from 548 m to 1070 m with a mean slope of 27.1
degrees. A 30-meter digital elevation model (USGS level 2)
was used to divide the catchment into six hillslope partitions.
Soils data was obtained from a 1964 survey. Daily stream
flow has been continuously recorded for this catchment for
over 40 years. There are various recommendations regarding
the length of data required for calibration. Yapo et al. [1996]
recommend using approximately eight years of representa-
tive data, while Sorooshian and Gupta [1995] suggest using
a data set at least 20 times the number of parameters to be
estimated noting that the marginal improvements may
become small after 500 to 1000 data points. In order to keep
the problem simpler, the later suggestion was adopted for the
simulation experiment using data from 1959 to 1965. The
first 638 days, up to the beginning of a water year, were
regarded as the time necessary for model spin up. Stream
flow observations for the next two water years, with 109,
232, and 389 days in classes F, P and B, respectively, were
used for calibration purposes. The same classes had 105,
231, and 394 days, respectively, for the two subsequent years
used for validation. Daily precipitation, minimum and max-
imum temperatures were obtained from a meteorological
station (CS2MET) located within WS 2. The mean annual
precipitation recorded at this station over the past 40 years is
224 cm.

3. Results and Discussion

3.1. Coefficient of Determination (R2) as Membership
Grade Function

[18] The first objective functions considered were Coef-
ficients of Determination (R2) (equation 4) taking the entire

Table 1. Parameters of RHESSys Used for Monte Carlo Sampling

During Calibrationa

Parameter Units Description Range

m TOPMODEL parameter 0.01 to 0.20
d m base flow adjustment

parameter
�1.0 to 6.0

Cpint m LAI�1 day�1 rate of interception of
incoming precipitation
by canopy

0.0001 to 0.001

k scale factor used for
scaling local K0

1.0 to 10.0

aThe values of all parameters were assumed to be uniformly distributed
for sampling purposes within the indicated range.
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calibration time series as a whole, and for each class of
observations (equation 9) considered separately. For the
whole time series data, the restricted set has a cardinality
of 4,955 and a corresponding a-cut value of 0.4807. The
resulting parameter spaces are shown in Figures 3a and 3b,
taking two parameters at a time. Parameters k and Cpint do
not show any pronounced influence on the R2 values, most
likely because of insensitivity [Yapo et al., 1996]. However,
R2 values are influenced by the selected value of the m
parameter because in RHESSys this parameter controls both
the sensitivity of the spatial distribution of the saturated

zone to topography and soil characteristics, and the
response of base flow to mean saturation deficit. The
parameter d allows for a direct adjustment of base flow,
which strongly influences R2 values at low values of m. The
prediction envelope (Figure 3c) based on the restricted set is
considerably narrower than the prediction envelope gener-
ated by the model population and is successful in rejecting
some of the models that generate extreme upper and lower
limits in the prediction envelope for the model population.
An overall improvement is achieved in the prediction
envelope using the restricted set. A comparison of the two

Figure 3. Parameter values corresponding to the restricted set using R2 for the calibration time series as
a whole are shown in Figures 3a and 3b. The values of parameters m and d (a) are more important in
determining R2 values compared to Cpint and k (b). The prediction envelope obtained using R2 values (c)
set a tighter limit on the predicted stream flow (solid lines) compared to the model population (shaded
line). These limits are shown for 1 year in the test period. The lower limit is essentially zero for the model
population and not depicted in the log scale. It can be seen that using R2 as objective function can obtain
a considerably narrower prediction envelope, particularly at the high and low ends of observations.
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prediction envelopes shows the greatest improvement for
peak flows. The average width of the modified prediction
envelope is considerably less for all classes (Table 2)
although a somewhat higher number of observations now
lie outside this interval. A 77% reduction in the average
width of the interval is achieved at the expense of losing
only 12% of observations from the prediction envelope.
However, the observations that lie outside tend to occur
together (for example between day 1386 and 1404 in Figure
3c indicating trends that may be due to a lack of flexibility
allowed by the four parameters selected for random sam-
pling. It may be possible to calibrate RHESSys to achieve a
better fit to these observations alone disregarding the others,
but the resulting parameters values may not be representa-
tive of long-term system behavior. Including such simula-
tions in the restricted set would result in a prediction
envelope that is apparently better in containing observations
at the cost of widening the prediction envelope. Moreover,
the parameters in the restricted set would include some
parameter combinations that are difficult to interpret.
Another possible reason for the loss of observations from
the prediction envelope could be that R2 for the time series
as a whole is not providing sufficient information regarding
parameter values at certain periods, as it may be dispropor-
tionately influenced by extreme values in the time series
[Legates and McCabe, 1999]. It is also noted that the
average width of the prediction envelope differs among
classes. For example, the average width of the prediction
envelope for class P observations (13.4 mm) is much higher
than that for class B (4.3mm). This is due to that fact that
stream discharge during low flow periods requires fewer
model components, leading to smaller errors. In addition,
the variability within class B is considerably less.
[19] This variability among classes prompted the use of

restricted sets for class-based R2 values as a possible way of
obtaining additional information from the same set of obser-
vations. Differences among restricted sets for classes F, P
and B, taken individually, are visible in the resulting param-
eter clusters (Figures 4a, 4b, and 4c, respectively) as well as
the prediction envelope characteristics (Table 2). The
restricted sets had cardinalities of 4232, 5472, and 6418

respectively. For class B many simulations provided high R2

values. A lack of precipitation for long periods at the study
site results in temporally autocorrelated observations in class
B, which reduces the number of independent observations in
this class. Consequently, the prediction envelopes for other
classes are poor when observations solely from this class are
used for calibration. These differences indicate that param-
eter estimates change depending on the class of data used for
calibration. Differences are also apparent in the constructed
prediction envelopes. Poor performance of the prediction
envelope for class F is possibly because parameters influenc-
ing snowmelt were not adjusted, as these did not show a
large influence during initial simulations (Section 2.3).
[20] Individually the restricted sets for class-based R2

values do not provide consistent improvement in the char-
acteristics of the prediction envelope. In spite of this, the
restricted set for combined class-based R2 values provides
some improvement over the overall R2 based restricted set.
The new restricted set retained about a third (cardinality
3586) of the model population. The corresponding param-
eter values are similar, but more clustered than parameters
retained by the overall R2 measure (Figure 4d). At this step
of refinement, the width of the uncertainty interval is
reduced by 17% at the cost of about 10% of observations
in the evaluation period. A comparison of the two prediction
envelopes (Figure 5) shows that, due to the rejection of
many models with lower m values, some of the spikes at the
upper bound of the envelope have been removed along with
a consistent removal of very low simulated stream flow
values. Most of the observations that now lie outside this
envelope are at the low end but still lie close to the lower
limit of predictions (e.g., between days 1459 and 1489).
This indicates that separate time subseries calibration can
result in tangible, although marginal improvement in the
current context.

3.2. Bias as Membership Grade Function

[21] We used fBIAS to evaluate the information that can be
gained by looking at the long-term bias in simulated
discharge. Values of fBIAS are reasonably well distributed
over the range [0,1], particularly for overall bias and class P,

Table 2. Summary of Properties of Prediction Envelopes for Different Objective Functionsa

Membership Grade Function
Cardinality Of
Restricted Set

Characteristics of Prediction Envelope for Test Period

Percent Observations Contained Average Width, mm

All Data Class F Class P Class B All Data Class F Class P Class B

None 10,000 95.3 87.5 97.0 96.4 34.7 23.7 82.8 9.5
R2 - all data 4,955 83.2 73.3 83.5 85.5 7.9 9.5 13.4 4.3
R2 - class F 4,232 73.3 62.9 75.3 74.9 7.4 8.7 13.0 3.9
R2 - class P 5,472 88.9 79.0 88.7 91.6 8.8 10.9 14.8 4.7
R2 - class B 6,418 83.6 73.3 86.1 84.8 9.2 10.1 17.3 4.3
R2 - Intersect of class F, P, and B 3,586 72.7 61.0 72.7 75.9 6.5 8.0 10.7 3.7
BIAS - all data 1,843 94.5 84.8 96.1 96.2 28.9 20.2 68.5 8.1
BIAS - class F 5,376 94.9 85.7 96.5 96.4 30.4 20.4 72.0 8.6
BIAS - class P 1,245 88.2 76.2 88.7 91.1 12.8 10.1 27.8 4.7
BIAS - class B 4,764 87.9 75.2 88.3 91.1 14.4 12.0 32.0 4.7
R2 - all data \ BIAS- all data 440 78.8 60.0 78.4 84.0 6.3 6.8 10.1 3.8
R2 - all data \ BIAS- all data lod cluster 380 43.8 22.9 35.9 54.1 2.2 2.9 4.0 1.0
R2 - all data \ BIAS- all data hid cluster 60 6.2 7.6 9.5 3.8 1.3 1.8 1.4 1.1

aThe considered interval is for 2 years of test period as a whole and also the classes F, P and B individually. Note that the performance of the calibrated
model set in validation period varies considerably among classes. Cardinality provides some idea of the uncertainty in parameter values associated with
each objective function. However, a significantly lower cardinality does not always result in a significant or consistent improvement in prediction.
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which result in low cardinalities for the corresponding
restricted sets (Table 2). However, a low cardinality does
not always translate into a better prediction envelope. For
example, using overall fBIAS results in an average prediction
envelope width of 28.9 mm, primarily due to the existence
of widely separated parameter values that yield similar
levels of fBIAS. Taken individually and considering only
the performance of the prediction envelope, the best results
are obtained with fBIAS for class P. However, the selected
parameter values for class P are very different from those
that satisfy the overall fBIAS. In general, models selected
based on the four different objectives (Figures 6a, 6b, 6c,
and 6d) tend to be different. In this instance, class F shows
some overlap with both class P and B, but the three classes
taken together show no appreciable region of intersection.

When all the classes are combined together with overall bias
(Figure 6e), only six models remain at the edge of the
parameter space. In appearance, this set has very well
defined parameter values in a restricted region of the
parameter space. However, comparing the output from these
models with the observations reveals that high values of
fBIAS for this set are achieved by compensation, overestimat-
ing the discharge at some points and underestimating the
same at others (figure not shown as these models belong to
the hid cluster shown in Figure 7b and provide similar
outputs). Models retained by this criterion include those that
achieved the goal of low bias by compensation, possibly in
addition to the models that simulate the behavior of the
system adequately. This illustrates how a process of elim-
ination can progress too far in the presence of considerable

Figure 4. R2 restricted sets for the three classes (a) F, (b) P, and (c) B, show different response to the
values of parameters m and d. Combining the three classes by set intersection yields (d) a restricted set
similar to the restricted set based on over all R2 (Figure 3a) but shows somewhat better defined parameter
values.
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tradeoffs between objective functions without a reliable
automated technique for expanding the restricted set when
necessary, and the importance of selecting noncommensu-
rable measures of information [Gupta et al., 1998]. In this
case, where models can achieve a consistently better fBIAS
value by compensation; fBIAS should be combined with
other objective function(s) that provide additional informa-
tion required to distinguish between the two cases. To avoid
the above problem, the restricted set for overall fBIAS was
considered appropriate for combining with R2.

3.3. Combining Coefficient of Determination and Bias

[22] R2 and fBIAS result in crisp sets of models with
different shortcomings (refer to Table 2). On the one hand,
R2 produces a set with a high cardinality and a wide
parameter range for the restricted set, but a reasonable
prediction envelope in terms of containing observations.
On the other hand, the crisp set obtained by fBIAS is better
defined in terms of cardinality, but has a wider prediction
envelope due to the presence of widely separated parameter
clusters. An examination of the parameter space (Figures 3a
and 6a) reveals that the parameters for the two calibration
objective functions differ considerably. The restricted set
obtained by combining these two objective functions (Fig-
ure 6f ) has a much lower cardinality of 440. The prediction
envelope is similar or better in terms of its ability to
successfully contain observations within a narrow range
for all classes compared to those for individual objective
functions or a combination of R2 for classes (Table 2). An
examination of the prediction envelope (Figure 7a) shows it
to be similar to the one obtained by overall R2 (see Figure
5), but with a lower average width for higher values of
observations (classes F and P). However, the parameter
values for this combined objective function tend to occur in
two distinct clusters widely separated in the parameter space
(Figure 6f ). One of these clusters corresponds to lower

values of m and d and the other to high values of d (referred
to as lod and hid clusters respectively). The existence of
such widely separate clusters indicates a contradiction in
parameter values that must be resolved to achieve satisfac-
tory calibration of the model. The existence of such contra-
dictory sets of parameter values was not detected with any
single objective function. When the predictions from each
of the clusters are viewed separately (Figure 7b), the
prediction envelope from the combined fBIAS and R2 can
be seen as a composite of two disjoint intervals correspond-
ing to two parameter clusters. The simulations associated
with the lod cluster show a better visual match to the
dynamics of the observed streamflow. Clearly, the models
associated with the hid cluster underpredict high flows and
over-predicts low flows. The prediction envelope associated
with the lod cluster is only 2.2mm wide on the average, but
contains about 44% of observations (Table 2).
[23] The restricted set obtained by the intersection of

individual class based R2 sets with that for overall fBIAS
show characteristics similar to the restricted set described
above. It has a cardinality of 66 and displays two distinct
clusters at similar locations with 40 models in the lod
cluster. Prediction envelopes associated with these clusters
also show similar characteristics. The envelope constructed
using only the models in the lod cluster has an average
width of 0.7 mm and contains 20% of the observations over
all.
[24] In both of the above cases, the parameters that yield

better simulators of the dynamics by matching the timing of
peak flows also tend to overestimate the magnitude of the
peaks. It is important to realize that a four-parameter
selection system limits the degrees of freedom. As such,
the parameter combinations that provide a better match
between observed and simulated peak flows (e.g., the hid
cluster) do not necessarily match low flows and the dynam-
ics. We hypothesize that these limitations are due to (1)

Figure 5. A comparison of prediction envelopes for over all R2 (shaded line) and combination of R2 for
classes F, P, and B (solid line) shows that the later envelope is consistently narrower and does not have
some of the spikes in the first prediction envelope (e.g., at day 1535). Most observations that moved
outside of the new prediction envelope are low observed stream flow values that remain close to the
lower limit (e.g., between days 1470 to 1490).
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Figure 6. Restricted sets for fBIAS as membership grade function are shown for (a) all observations, (b)
class F, (c) class P, and (d) class B. These sets show more distinct differences among classes than those
using class based R2. When the three class based fBIAS are combined, only six simulations are retained in
the resulting restricted set, and all are restricted to only one parameter region obtained by overall fBIAS. In
order to explore the parameter space more thoroughly, over all fBIAS and R

2 are to form (f ) a restricted set,
which has a cardinality of 440. Parameter values associated with this restricted set occur in two distinct
clusters in parameter space. Separation between these clusters (identified as hid and lod, depending on the
associated values of d) provides further opportunity to evaluate and refine the calibration.

SWC 1 - 10 SAMANTA AND MACKAY: FLEXIBLE AUTO-PARAMETERIZATION OF MODELS



restrictions imposed by using only four parameters for
calibration or (2) some structural inadequacies in the model
that need to be addressed. These issues would have to be
resolved for any model that is to be used for predictive
purposes.
[25] From the above results, it is observed that predictions

from deterministic models are usually not randomly dis-
tributed within the predicted interval, particularly when
there are multiple optima in the parameter space (e.g., the
clusters obtained by combining R2 and fBIAS). The resulting
predicted interval might be composed of more than one
disjoint interval making it difficult to assign a probabilistic
interpretation to this interval as in GLUE [Beven, 1993].
While the problem of equifinality [Beven and Binley, 1992]
remains, it can be considerably reduced by incremental
refinement using combinations of objective functions under
the fuzzy interpretation. The concept of pareto optimality
[Yapo et al., 1998; Gupta et al., 1998] provides a powerful
framework for combining multiple objective functions and
assessing parameter uncertainty arising out of tradeoffs
among objective functions. However, an assumption of

equal significance to all objective functions in the Pareto
set of solutions (refer to equation 2 of Gupta et al. [1998])
may retain parameter sets that ‘‘fit the data’’ but are
unacceptable to manual calibration experts [Boyle et al.,
2000] making it difficult to incorporate an automated
rejection scheme strictly within this framework. However,
satisfactory compromise solutions can be obtained by selec-
tion based on expert knowledge. As is shown with fBIAS, and
R2 here, existence of significant tradeoffs can prevent
satisfactory parameterization of a model such as RHESSys.
It may be easier to formulate automatic rejection schemes for
such models using rule-based criteria in addition to strictly
calculated objective functions. The ability to separate out
clusters of parameter values using a fuzzy logic framework
would make it easier to formulate relevant knowledge-based
rules useful for this purpose. However, the robustness of our
framework depends on the sampling frequency of the
parameter space and an efficient search procedure e.g.,
multiobjective complex evolution (MOCOM-UA [Yapo et
al., 1998]) or shuffled complex evolution (SCE-UA [Duan
et al., 1992]) may be employed to ensure that the promising

Figure 7. Prediction envelope from the restricted set for the combined over all fBIAS and R
2 (a) performs

reasonably well during the test period. However, considering the hid and lod parameter clusters seperately
show that this prediction envelope is compsed of two prediction envelopes (b) of very different
caharacteristics. Prediction envelope from simulations in the lod parameter cluster resemble the system
behavior more closely.
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parameter regions are well represented among the sampled
parameters.

4. Conclusions

[26] The calibration and uncertainty estimation framework
described in this paper provides a basis for making an
objective estimate of parameters and the range of model
output associated with a failure to identify a unique solution.
A fuzzy ranking of models, instead of a strict one as implied
by equation 1, results in a nonspecific solution to the
calibration problem. However, the iterative approach pro-
posed here supports a nonlinear but continual refinement in
selection of parameter values while recognizing the uncer-
tainties inherent in the calibration process. The method can
be used to identify contradictory parameter clusters that are
subsequently evaluated by different objective functions or
other decision criteria. However, as seen from the results,
careful choice and evaluation of the membership grade
function or combinations thereof is still necessary to obtain
reliable parameter estimates. This is a monotonic refinement
technique based solely on the elimination of models consid-
ered unacceptable at any calibration step. For an automated
calibration and uncertainty estimation framework to be
effective, we suggest that this method needs to be extended
to incorporate methods for accepting as well as rejecting
candidate models (i.e., a nonmonotonic system). As the
described method and pareto optimality are both grounded
in set theory, it may be possible to construct such a frame-
work by combining the two approaches. Flexibility provided
by this approach makes it suitable for implementation as a
rejection method in a more complete automated calibration
framework or an expert system for model calibration inte-
grating rule-based techniques along with calibration based
on objective function evaluation.
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