Introduction to Logical Reasoning (ategorical Statements

Professor David Emmanuel Gray

Northwestern University in Qatar Carnegie Mellon University in Qatar

All men are mortal.

No lawyers are honest.

Some students are hard working.

Some professors are not lazy.

A category (or a class) is a collection or set of things.

A categorical statement makes a claim concerning the relationship between two categories of things, the subject term (S) and the predicate term (P).

The **subject** term names the main category the statement is about; the **predicate** term names the category the statement is using to say something about that subject.

A categorical proposition has the following logical form:

[Quantifier] S [copula] P.

Copula = a verb of the form "is" ["are"] or the form "is not" ["are not"].

When analyzing a categorical statement, there are three questions to ask about it:

1. Quality: Does the proposition *affirm* or *deny* some relationship between S and P?

2. Quantity: Does it refer to *all* members of *S*, or only to *some* members of *S*?

3. **Distribution:** Does it refer to *all* members of *P* or only to *some* members of *P*?

Four standard forms of categorical statements are traditionally distinguished:

- I. Universal Affirmative (\mathbf{A}) : All *S* is *P*.
- 2. Universal Negative (**E**): No S is P.
- 3. Particular Affirmative (**I**): Some S is P.
- 4. Particular Negative(\mathbf{O}): Some *S* is not *P*.

Universal Affirmative (A)

A categorical statements can be represented by a Venn diagram:

All men are mortal.

Subject (S): Men.

Predicate (P): Mortals.

So this says, All *S* is *P*.

Men Mortals

Filling it in with black means that this area is empty. So there are no men that are not also mortal.

Universal Affirmative (A)

The quality is *affirmative* because it affirms that *S*'s are also *P*'s. The quantity is *universal* because it is referring to all the *S*'s.

P is *not* distributed, however, as seen in the Venn diagram: the statement makes a claim about *some* of the *P*'s (i.e., some of those *P*'s are also *S*'s), but not necessarily about all of the *P*'s.

Universal Negative (E)

Venn diagram:

No lawyers are honest. Subject (S): Lawyers. Predicate (P): Honest people. So this says, No S is P.

». Universal Negative (E)

The quality is *negative* because it denies that S's are also P's. The quantity is *universal* because it is referring to all the S's.

P is distributed, as seen in the Venn diagram: the statement makes a claim about all of the *P*'s, because *all* of them are outside of *S*.

Particular Affirmative (I)

Some students are hard working.

Subject (S): Students.

Predicate (P): Hard workers.

So this says, Some *S* is *P*.

Venn diagram:

Particular Affirmative (I)

The quality is *affirmative* because it affirms that at least one *S* is also a *P*. The quantity is *particular* because it is only to referring to some of the *S*'s.

P is *not* distributed, as seen in the Venn diagram: the statement makes a claim about *some* of the *P*'s (i.e., at least one of those *P*'s is also in *S*'s), but not necessarily about all of the *P*'s.

».Particular Negative (O)

Some professors are not lazy.

Subject (S): Professors.

Predicate (P): Lazy people.

So this says, Some *S* is not *P*.

Venn diagram:

».Particular Negative (O)

The quality is *negative* because it denies that at least one *S* is a *P*. The quantity is *particular* because it is only to referring to some of the *S*'s.

P is distributed, however, as seen in the Venn diagram: the statement makes a claim about all of the *P*'s because *all* of them are absolutely not this *x*.

Just keep in mind, if you can draw a picture of the statement in a Venn diagram, then you can much more easily figure out its logical structure.

We will look at some slightly more complicated forms of categorical propositions.