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+A long Argument

1. A—B.
. B> C.
Constructing a truth table
;. C—D. for this would be tedious!
Since there are five letters
4. ~D. involved, there would then
S5 — || |
. AVE be 25 = 32 rowsl!! Yuckl

. L.
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L he Truth Table Monster

Premise 5

Premise 3

AVE

CcC—-»D

Premise 2

B—~C

Premise 1

A—-B

Premise 4

~D

Conclusion

(1)
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A Shorter Form of Assessment

1. A—DB.
2. B— C.

3. C—D.

4. ~D.

s. AV L.

-k

6. A—C.
7. A—D.

8. ~A.
9. k.

But there is a more “natural”
way fo show that it is o
deductively valid argument.

/

1, 2; Hypothetical Syllogism.
6, 3; Hypothetical Syllogism.
7, 4; Modus Tollens.

5, 8; Disjunctive Syllogism.

Introduction to Natural ‘Deduction—Introduction to Logical Reasoning—Professor Gray




INatural Deduction

Natural deduction is a method of dcriving the
conclusion of a deductive argument by using rules of
inference. This allows us to construct a formal proof
of validity for any deductively valid argument. Once
mastered, it is more efficient, eiegant, and more

illuminating than Chccking Vaiidity with a truth table.

There are nine important rules of inference that we

Wlll fOCUS on fOl’ thiS COUrscC.
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+Modus Ponens [M.P.)

1. p g Recall that the pattern for
M.P. says that affirming both
2. D. (1) a hypothetical and (2) its

antecedent allows you to also
" q (-] aftirm its consequent.
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+Examples ot Using M.P.

Prove that the following argument is valid:

1. A—B.
2. Al
. B.

Introduction to Natural ‘Deduction—Introduction to Logical Reasoning—Professor Gray




+Examples ot Using M.P.

Prove that the following argument is valid:

1. A—B.
2. Al

. B.
3. B.

We just add a new line, putting a new
number for it. Then state the inference
rule used to get it along with the number
of the premises used with that rule. In this
case, we get the argument’s conclusion
right away just by using M.P.

1,2: M.PP
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+Examples ot Using M.P.

Prove that the following argument is valid:

1. A—DB.

Just put A'in for p, and put B
in for g, and this then has the
3 A same pattern as M.P. You
saw this before, when we
. B.

covered argument patterns.
3. B. 1,2; M.P
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+Examples ot Using M.P.

Prove that the following argument is valid:

The first number tells us which line in the
I. A — B oroof is acting as the first line for M.P.

(the line affirming the hypotheticall,

while the second number tell us which
2. A line is acting os The second line for
M.P. (the line affirming the antecedent).

. B. //

3. B. 1,2; M.P
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+Examples ot Using M.P.

Prove that the following argument is valid:

1. A—DB.

5 A So this completes the proof,
' ' explaining how the conclusion
follows from the premises.

. B.
3. B. 1,2; M.P
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+Examples ot Using M.P.

Prove that the following argument is valid:

1. C.
. C— E
. F
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+Examples ot Using M.P.

Prove that the following argument is valid:

1. C.
We just put C in for p, and
2 C —) F out F in for g, and this then

.k
3. 2, 1; M.P

has the same pattern as M.P.
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+Examples ot Using M.P.

Prove that the following argument is valid:

Even if the order of the premises is
L. C reversed, the rule still applies. Just put the
number labels in correct order for the step
in the proof. For M.P. the first number is
L. C — F the line where the hypothetical is affirmed,
and the second number is the line where
F the antecedent is affirmed.

o

3. 2, 1;
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+Examples ot Using M.P.

Prove that the following argument is valid:

1. C.

2. C—k

.k

3. 2, 1; ML.P

So this completes the proof!
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Intro

+Examples ot Using M.P.

Prove that the following argument is valid:

. ~(D&Z)—=(A—D).
2. ~(D&2).
s A—D.
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+Examples ot Using M.P.

Prove that the following argument is valid:

. ~(D&Z)—=(A—D).
Just put ~(D & Z) in for
p, and A = D in for g,
L. N<D & Z) and this then has the
same pattern as M.P.
. A D.

3. A—D. 1,2; M.P
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+Examples ot Using M.P.

Prove that the following argument is valid:

I. N<D &Z)—}(A—}D) So even if the

statements are more

complex, the rule
3 N<D & Z) still applies as long
as the general
pattern conforms to

A —» D the rule of inference.

3. A—D. 1,2; M.P
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Jamiliar Rules of Interence

1. Modus Ponens 3. Hypothetical Syllogism
(M.P) (H.S.)
I.p—q. I.p—q.
2. D. 2.4
S SopT
2. Modus Tollens 4. Disjunctive Syllogism
(MT)) (D.S.)
I.p—q. I. pVg.

2. Nq. 2. NP.
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New Rules of Interence

5. Constructive Dilemma 8. Conjunction
(C.D.) (Conj.)
1. (p—q) & (r—s). L. p.
2. pVT. 2. ¢.
;g Vs L p&yg.
6. Absorption 9. Addition
(Abs.) (Add.)
I p—q. L. p.
~ p—(p&q). L PV
7. Simplification
(Simp.)
1. p&yg.
o p.
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Lonstructive

lemma (C.
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+Absorption (Abs.)

1.p—'q.
L2 (p &)
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»Simplification (Simp ]
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»Conjunction (Conj.|

2. 4.
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LAddition (Add.)

I. D.
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+ 1 he Nine Rules of Inference

1. Modus Ponens

(M.P.)
I. p—4q.
2. p.
g
2. Modus Tollens
(MT)

L. p—4q.
2. ~q.
S~

3. Hypothetical Syllogism

(H.S.)

1. p—q.
2.4
P

4. Disjunctive Syllogism
(D.S.)
I. pVyq.
2. ~p.
.
5. Constructive Dilemma

(CD)

L (p—q)&(r—s)
Z.PVI’.

. qVs.
6. Absorption
(Abs.)
I p—g.
wprp&y).
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~. Simplification
(Simp.)

1. p&yg.

.

8. Conjunction
(Conj.)
I. p.
2. q.
s p&y.
9. Addition
(Add.)
1. p.
L pVag.

2.8




«Pattern Matching

Given all chese rules, the first thing to practice 1S
recognizing patterns 1N arguments. Thatis, when givcn

dll argument, can you SCC hOW thC flllCS OfinCI”CI]CC

might be applied.
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+Argument |

Intro

C&H YOU, ﬁgUFC out thC pattem hCI‘C?

1. (A&B)—C.

L (A&B) 2 [(A&B) & Cl.
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10]0.

[S

»Understanding Formal

then fill in these blanks in the proof by trying to

In starting to practice natural deduction, it is useful to
’bégin by looking at correct formal proofs of Validity,

but with the Cxplanation of each step lefe blank. We

recognize which rule of inference can be used to gct

us to that step.
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WProof |

Fill in the blanks for the following proof of Validity:

1. A& DB
2. (A v C)

— D

- A&D.

ca easoning—Professor Gray
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WProof |

Fill in the blanks for the following proof of Validity:

1. A&DB.

2. (AVvC)—D.

o A&D.

3. A 1; Simp
4. AV C. 3. Add

5. D 2, 4; M.P
6. A& D. 3. 5: Add

35




«Learning Natural Deductior

There are only three ways to learn natural deduction:
1. Practice,
2. Practice, and
3. Pracice.

If you do not practice this, then you will not be able to
doit. I trust you now understand 7zo0dus ponens and

modus z‘of/em, SO you can follow the implications here.
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sLecture Survey

YOU ShOU,ld have d ShOI't SUI'VCY about thCSC tpr?S Of

problcms attached to your lecture slides. Please gendy
detach it and fill it out,

Do not put your name on it but put your clicker ID

on it instead.

Please hand it in when you drop off your clicker at the

front of the room as youare lcaving.
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Next Class. ..

We will do a Workshop on doing simple formal proofs

of Validity using natural deduction.
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