Introduction to Logical Reasoning *Basic Set Theory*

David Emmanuel Gray

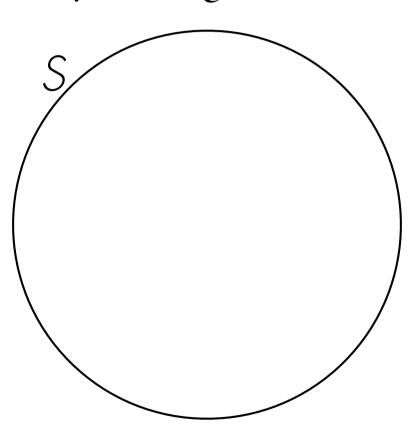
Northwestern University in Qatar Carnegie Mellon University in Qatar

». Sets and their Contents

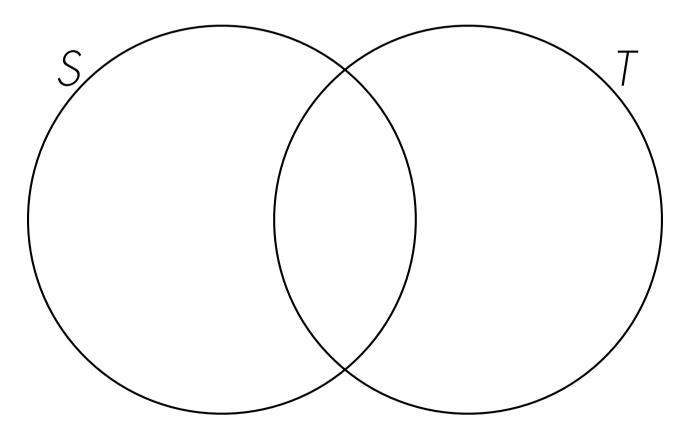
- Set: A collection of "things". A set is denoted by italicized capital letters, e.g., A, B, C, \ldots
- **Element:** A "thing" that is in a set. An element is denoted by italicized lowercase letters, e.g., x, y, z,
- **Empty set:** The set that contains no elements. The empty set is denoted by \emptyset .

Nenn Diagrams

Sets may may be diagrammed using circles. For instance, a set *S* may be diagrammed as follows:

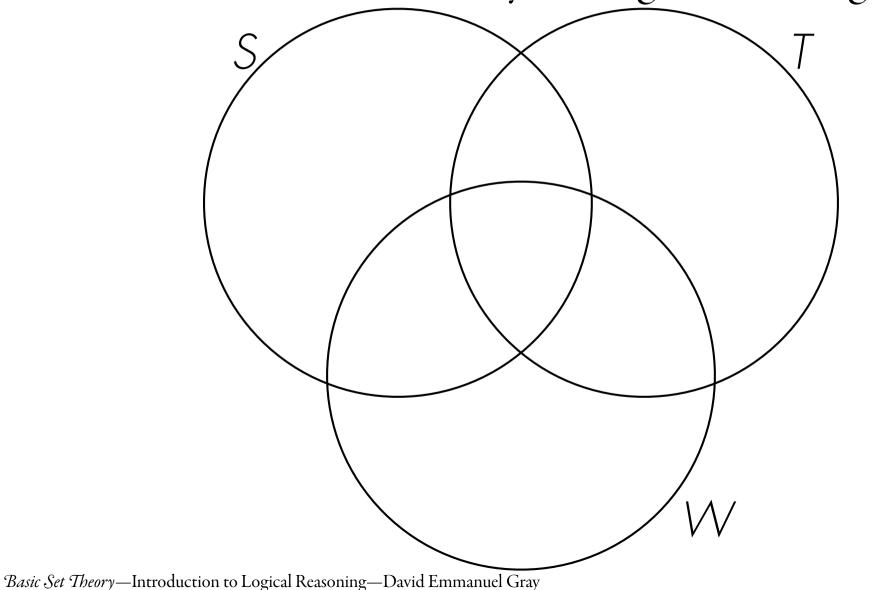


Two sets, *S* and *T*, may be diagrammed together:



».Venn Diagrams

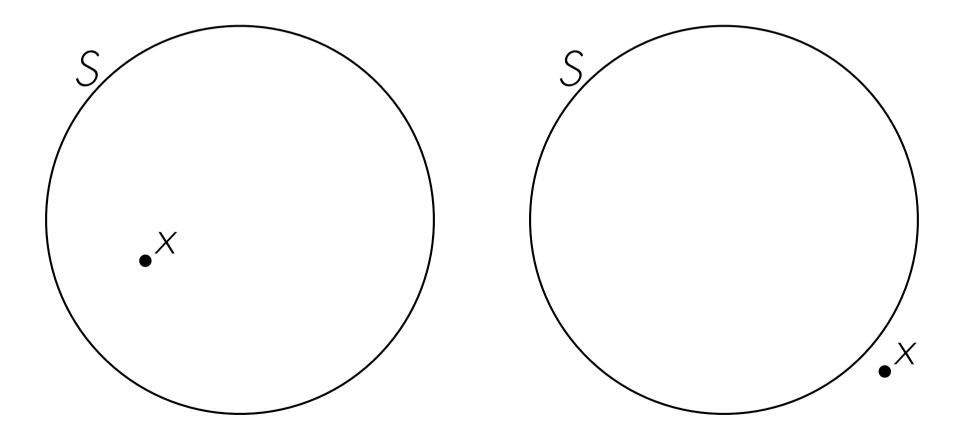
Three sets, *S*, *T* and *W*, may be diagrammed together:



». Sets and their Contents

 $x \in S$ means that "x is an element of set S", while $x \notin S$ means that "x is *not* an element of set S".

Diagram of $x \in S$: Diagram of $x \notin S$:



». Sets and their Contents

- The contents of a set can be shown in two ways:
 - I. The roster method: $S = \{1, 2, 3\}$, and

2. The rule method: $S = \{x \mid x \text{ is a whole number} and 1 \le x \le 3\}.$

Both represent the same set of numbers: the set of the numbers 1, 2, and 3.

Sets and Their Contents

The Roster Method: Explicitly writing out all the contents of a set.

For instance:

$$S = \{2, 4, 6, 8\}, \text{ or}$$

 $T = \{a, e, i, o, u\}.$

But what if the set has a hundred elements? Or what if it has an infinite number of elements?

». Sets and Their Contents

The Rule Method: Devise a rule that specifies the contents of the set.

For instance:

 $S = \{x \mid x \text{ is even and } 2 \le x \le 8\}, \text{ or}$ $T = \{x \mid x \text{ is a letter of the English alphabet and } x \text{ is a vowel (excluding the letter 'y')}\}.$

Comparing Sets

- **Subset:** For any sets *S* and *T*, $S \subseteq T(S \text{ is a subset of } T)$ if, and only if, for every $x \in S, x \in T$.
- Three properties concerning subsets: 1. For any set $S, S \subseteq S$, 2. For any set $S, \emptyset \subseteq S$, 3. For any set S, S has 2ⁿ subsets.

Comparing Sets

Proper Subset: For any sets *S* and *T*, $S \subset T(S \text{ is a} proper subset of$ *T* $) if, and only if, <math>S \subseteq T$ and there exists at least one *x*, such that $x \in T$ but $x \notin S$.

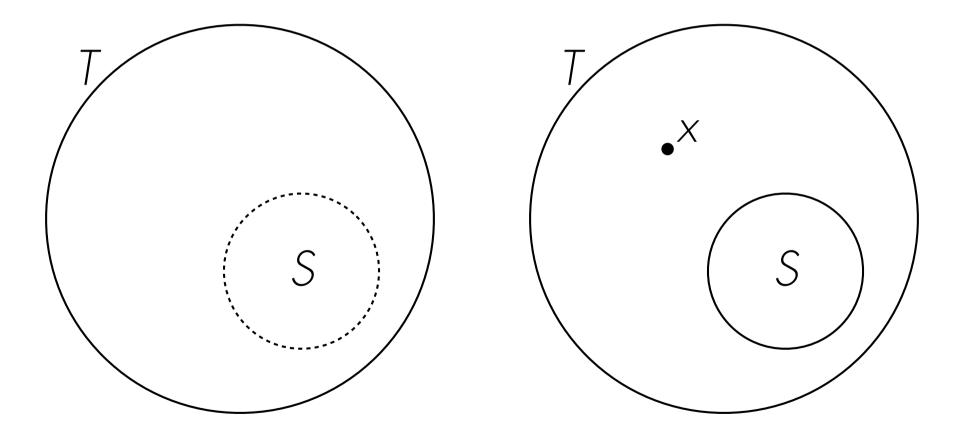
Three properties concerning proper subsets: 1. For any set $S, S \not\subset S$, 2. For any set S, if $\emptyset \subset S$, then S is not empty. 3. For any set S, S has $2^n - 1$ proper subsets.

Comparing Sets

Set Equivalence: For any sets *S* and *T*, S = T(S is equivalent to T) if, and only if, $S \subseteq T$ and $T \subseteq S$.

Basic Set Theory—Introduction to Logical Reasoning—David Emmanuel Gray

Diagram of $S \subseteq T$: Diagram of $S \subset T$:

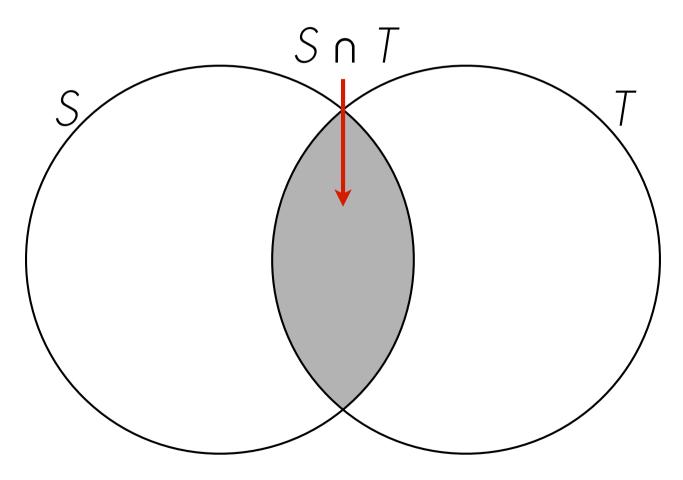


». Set Operations

Set Intersection: For any sets *S* and *T*, there exists the set $S \cap T$ (the intersection of *S* and *T*), such that for any $x, x \in S \cap T$ if, and only if, $x \in S$ and $x \in T$.

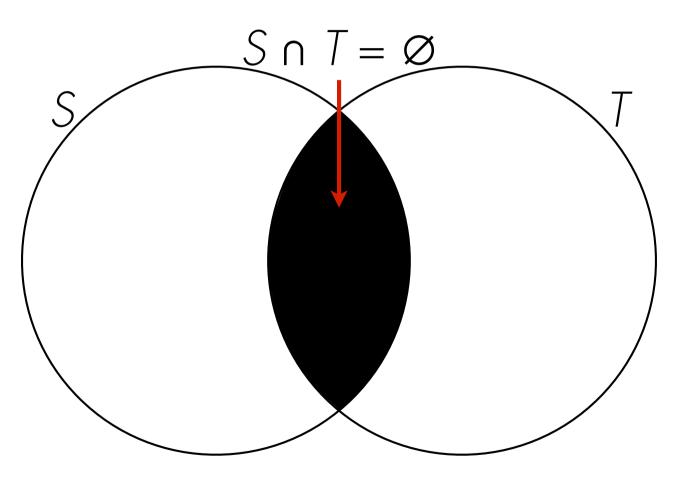
Set Disjointness: For any sets *S* and *T*, *S* and *T* are disjoint if, and only if, $S \cap T = \emptyset$.

The intersection of sets *S* and *T*:

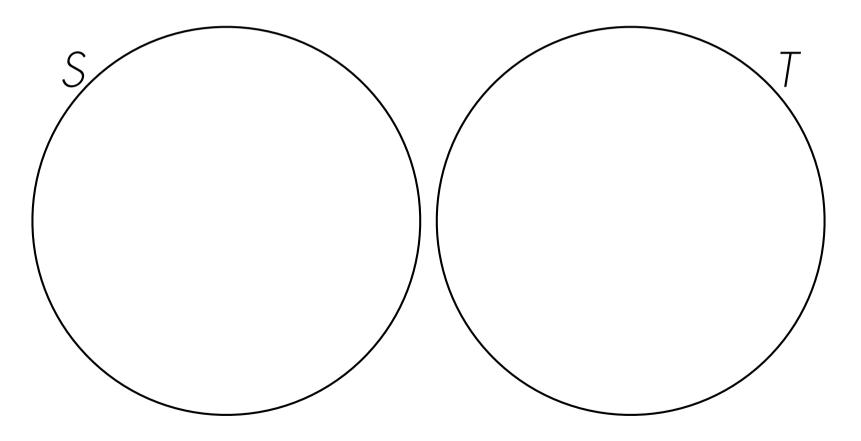


Nenn Diagrams

Example of when sets *S* and *T* are disjoint:



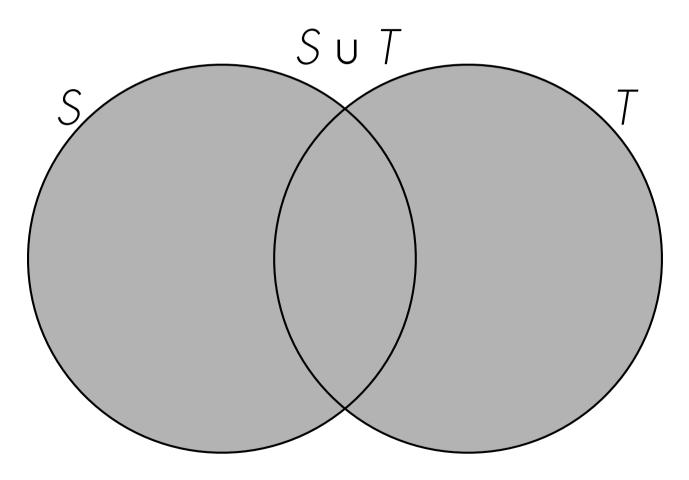
Example of when sets *S* and *T* are disjoint:



Set Operations

Set Union: For any sets *S* and *T*, there exists the set $S \cup T$ (the union of *S* and *T*), such that for any *x*, $x \in S \cup T$ if, and only if, $x \in S$ or $x \in T$.

The union of sets *S* and *T*:



Set intersection and set union are **commutative**:

$$S \cap T = T \cap S$$
, and

 $S \cup T = T \cup S$.

They are also both **associative**:

 $(S \cap T) \cap W = S \cap (T \cap W)$, and $(S \cup T) \cup W = S \cup (T \cup W)$.

But be aware that sometimes:

$$(S \cap T) \cup W \neq S \cap (T \cup W).$$

For instance, let

$$S = \{ I, 2 \},\$$

 $T = \{2, 3\}, \text{ and }$

$$W = \{4, 5\}.$$

So
$$(S \cap T) \cup W = \{2, 4, 5\}$$
, but $S \cap (T \cup W) = \{2\}$.

Basic Set Theory—Introduction to Logical Reasoning—David Emmanuel Gray

This means the order of

parentheses is

extremely important!

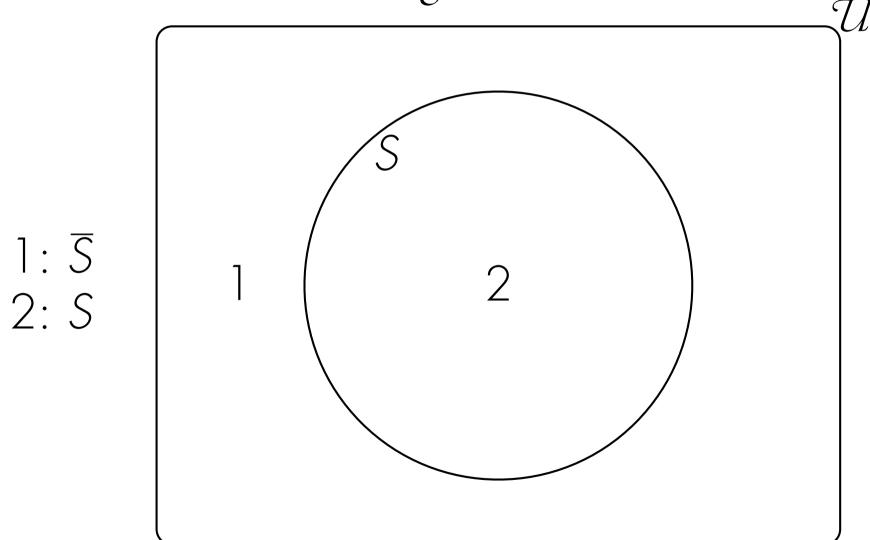
Set Complement: For any set *S*, there exists a set \overline{S} (the complement of *S*), such that $S \cap \overline{S} = \emptyset$ and $S \cup \overline{S} = \mathcal{U}$.

Universal Set: For any set *S*, there exists a set \mathcal{U} (the universal set) for *S*, such that $S \subseteq \mathcal{U}$ and $S \cap \overline{S} = \mathcal{U}$.

Basic Set Theory—Introduction to Logical Reasoning—David Emmanuel Gray

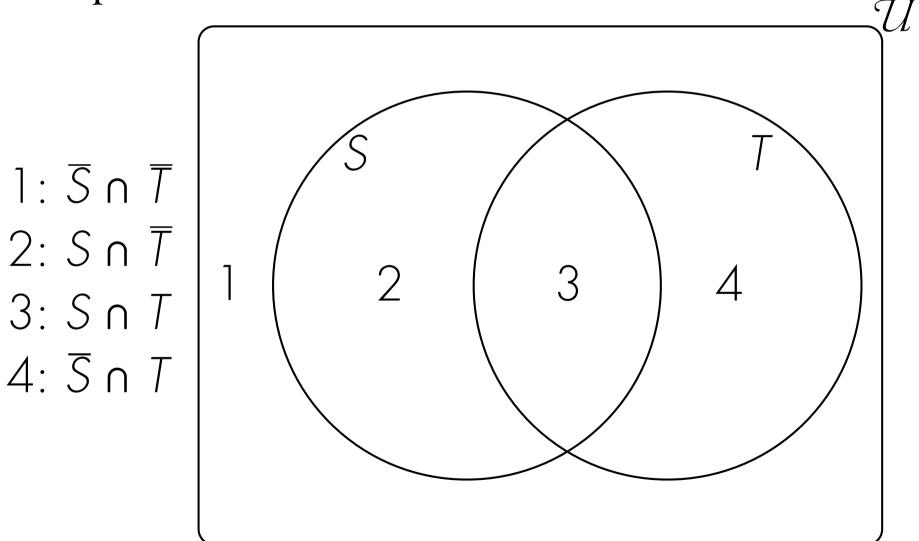
Nenn Diagrams

This can be seen with a diagram:



Nenn Diagrams

The possible sets with sets *S* and *T*:



We will have a workshop on working with sets.

Basic Set Theory—Introduction to Logical Reasoning—David Emmanuel Gray