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Part 1: All symbolic, nothing requiring translation from English (75 minutes, 40% of the final exam grade).

	 Testing for logical equivalence,
	 Advanced natural deduction (with 17 rules of inference), and
	 Assessing traditional categorical syllogisms.

15-Minute Break.

Part 2: All arguments, all in English requiring translation (90 minutes, 60% of the final exam grade).

	 Diagramming arguments,
	 Assessing arguments with truth tables, and
	 Assessing traditional categorical syllogisms and other types of categorical arguments.

Final Exam: Structure
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Part 1: All symbolic, nothing requiring translation from English (75 minutes, 40% of the final exam grade).

	 Testing for logical equivalence,
	 Advanced natural deduction (with 17 rules of inference), and
	 Assessing traditional categorical syllogisms.

15-Minute Break.

Part 2: All arguments, all in English requiring translation (90 minutes, 60% of the final exam grade).

	 Diagramming arguments,
	 Assessing arguments with truth tables, and
	 Assessing traditional categorical syllogisms and other types of categorical arguments.

Final Exam: Structure (There is New Material!)
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Biconditional statement: A compound statement claiming that its statements have the exact 
same truth value.

Logic is fun if and only if logic is easy.

Logic being fun is a necessary and sufficient condition for logic 
being easy.

Logic being fun is necessary and sufficient for logic being easy.

Such a statement is false if one of its statements is false while the other statement is true. We call the 
statements contained within a biconditional statement the components.

New Compound Statement: Material Equivalence
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So a biconditional statement has the form of “…if  and only if…”, asserting that the statements 
connected together have the exact same truth value. It is symbolized using ↔ (called “double-
headed arrow”).

So the biconditional statement p ↔ q asserts that p and q have the same truth value: they are 
both true or they are both false. In this example, p and q are the components.

Note: As you may recall, the use of the lower-case, italic letters p and q means that any two 
generic statements can be connected together as components within a biconditional statement.

Material Equivalence: Translation
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Consider the following biconditional statement:

Logic is fun if and only if it is easy.

Both antecedent and consequent are simple positive statements, which are symbolized:

F:	 Logic is fun.
E:	 Logic is easy.

The entire biconditional statement is then symbolized as F ↔ E.

Note: Recall that we using those upper-case, upright letters F and E to represent the specific, 
simple positive statements involved.

Material Equivalence: Example
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The biconditional statement p ↔ q asserts that p and q have the same truth value. So it is false 
just when the components have different truth values (that is, one component is true and the 
other is false). Otherwise it is always true. Here is its truth table:

p q p ↔ q

T T T

T F F

F T F

F F T

Material Equivalence: Truth Table
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Two statements p and q are logically equivalent just when the statement of their associated 
biconditional (that is, p ↔ q) is a tautology.

This means that it is absolutely impossible for p and q to have different truth values. In other words, 
they always have the same truth value, no matter what. Thus, p and q have the same logical 
meaning and so they may be substituted for one another while remaining logically consistent.

The claim that p and q are logically equivalent is denoted symbolically as p ≡T  q.

New Concept: Logical Equivalence
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Determining if a pair of statements p and q are logically equivalent is done with a truth table 
according to the followings steps: 

1.	 Construct the associated biconditional for the two statements (that is, p ↔ q),

2.	 Construct a truth for that biconditional statement,

3.	 Use that truth table to see if that biconditional statement is a tautology, and

4.	 If the biconditional statement is a tautology, then the two statements are logically 
equivalent (that is, p ≡T  q). If it is not a tautology, then those two statements are not 
logically equivalent. 

New Skill: Testing for Logical Equivalence
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Are p and ~~p logically equivalent?

Testing for Logical Equivalence: Example 1
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Step 1: Construct the associated biconditional for the two statements.

The statements are p and ~~p, so the associated biconditional is p ↔ ~~p.

Testing for Logical Equivalence: Example 1
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Step 2: Construct a truth for that biconditional statement.

p ~p ~~p p ↔ ~~p

T F T T

F T F T

Testing for Logical Equivalence: Example 1
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Step 3: Use that truth table to see if that biconditional statement is a tautology.

p ~p ~~p p ↔ ~~p

T F T T

F T F T

This biconditional is a tautology.

Testing for Logical Equivalence: Example 1
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Step 4: Determine logical equivalence.

p ~p ~~p p ↔ ~~p

T F T T

F T F T

p and ~~p are logically equivalent. This is because the biconditional of both statements is a 
tautology (it is true in both lines of the truth table). That means that both statements always have 
the same truth value, no matter what. Thus, both statements have the same logical meaning, and 
so p ≡T  ~~p.

Testing for Logical Equivalence: Example 1
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Double Negation Introduction (D.N.I.)

	 1.	 p.
	 ∴	 ~~p.

New Rules for Natural Deduction: Double Negation

Double Negation Elimination (D.N.E.)

	 1.	 ~~p.
	 ∴	 p.
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The following is a valid argument. Use natural deduction to construct this argument’s formal 
proof of validity.

	 1.	 ~N → ~M.
	 2.	 M.
	 ∴	 N.

	 3.	 ~~M.		 2; D.N.I.
	 4.	 ~~N.		 1, 3; M.T.
	 5.	 N.		  4; D.N.E.

Advanced Natural Deduction: Example 2
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Are p → q and q → p logically equivalent?

Testing for Logical Equivalence: Example 2
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Step 1: Construct the associated biconditional for the two statements.

The statements are p → q and q → p, so the associated biconditional is (p → q) ↔ (q → p).

Testing for Logical Equivalence: Example 2
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Step 2: Construct a truth for that biconditional statement.

p q p → q q → p (p → q) ↔ (q → p)

T T T T T

T F F T F

F T T F F

F F T T T

Testing for Logical Equivalence: Example 2
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Step 3: Use that truth table to see if that biconditional statement is a tautology.

p q p → q q → p (p → q) ↔ (q → p)

T T T T T

T F F T F

F T T F F

F F T T T

This biconditional not a tautology.

Testing for Logical Equivalence: Example 2
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Step 4: Determine logical equivalence.

p q p → q q → p (p → q) ↔ (q → p)

T T T T T

T F F T F

F T T F F

F F T T T
p → q and q → p are not logically equivalent. This is because the biconditional of both statements is not a tautology 
(it is false in lines 2 and 3 of the truth table). That means that it is possible for the two statements to have different truth 
values. So these statements do not have the same logical meaning.

Testing for Logical Equivalence: Example 2
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De Morgan’s Theorems:	 ~(p & q) ≡T  ~p v ~q
			   ~(p v q) ≡T  ~p & ~q

Commutation:		  (p v q) ≡T  (q v p)
			   (p & q) ≡T  (q & p)

Association:		  [p v (q v r)] ≡T  [(p v q) v r]
			   [p & (q & r)] ≡T  [(p & q) & r]

Distribution:		  [p & (q v r)] ≡T  [(p & q) v (p & r)]
			   [p v (q & r)] ≡T  [(p v q) & (p v r)]

Double Negation:		  p ≡T  ~~p

Common Logically Equivalent Expressions (Feel Free to Verify Them!)

Transposition:		  (p → q) ≡T  (~q → ~p)

Material Implication:		  (p → q) ≡T  (~p v q)

Material Equivalence:		  (p ↔ q) ≡T  [(p → q) & (q → p)]
			   (p ↔ q) ≡T  [(p & q) v (~p & ~q)]

Exportation:		  [(p & q) → r] ≡T  [p → (q → r)]

Tautology:			   p ≡T  (p v p)
			   p ≡T  (p & p)
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More New Rules for Natural Deduction

Disjunctive Commutation (D.C.)
	 1.	 p & q.
	 ∴	 q & p.

Conjunctive Commutation (C.C.)

	 1.	 p ∨ q.
	 ∴	 q ∨ p.

Biconditional Introduction (B.I.)
	 1.	 (p → q) & (q → p).
	 ∴	 p ↔ q.

Biconditional Elimination (B.E.)
	 1.	 p ↔ q.
	 ∴	 (p → q) & (q → p).

Material Implication 1 (M.I.1)
	 1.	 p → q.
	 ∴	 ~p ∨ q.

Material Implication 2 (M.I.2)
	 1.	 ~p ∨ q.
	 ∴	 p → q.
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1. Modus Ponens (M.P.)

	 1.	 p → q.
	 2.	 p.
	 ∴	 q.

2. Modus Tollens (M.T.)

	 1.	 p → q.
	 2.	 ~q.
	 ∴	 ~p.

3. Hypothetical Syllogism (H.S.)

	 1.	 p → q.
	 2.	 q → r.
	 ∴	 p → r.

4. Disjunctive Syllogism (D.S.)

	 1.	 p ∨ q.
	 2.	 ~p.
	 ∴	 q.

5. Constructive Dilemma (C.D.)

	 1.	 (p → q) & (r → s).
	 2.	 p ∨ r.
	 ∴	 q ∨ s.

6. Absorption (Abs.)

	 1.	 p → q.
	 ∴	 p → (p & q).

7. Simplification (Simp.)

	 1.	 p & q.
	 ∴	 p.

8. Conjunction (Conj.)

	 1.	 p.
	 2.	 q.
	 ∴	 p & q.

9. Addition (Add.)

	 1.	 p.
	 ∴	 p ∨ q.

10. Double Negation Introduction (D.N.I.)

	 1.	 p.
	 ∴	 ~~p.

11. Double Negation Elimination (D.N.E.)

	 1.	 ~~p.
	 ∴	 p.

12. Disjunctive Commutation (D.C.)

	 1.	 p ∨ q.
	 ∴	 q ∨ p.

12. Conjunctive Commutation (C.C.)

	 1.	 p & q.
	 ∴	 q & p.

14. Biconditional Introduction (B.I.)

	 1.	 (p → q) & (q → p). 
	 ∴	 p ↔ q.

15. Biconditional Elimination (B.E.)

	 1.	 p ↔ q.
	 ∴	 (p → q) & (q → p).

16. Material Implication 1 (M.I.1)

	 1.	 p → q.
	 ∴	 ~p ∨ q.

17. Material Implication 2 (M.I.2)

	 1.	 ~p ∨ q.
	 ∴	 p → q.

The Seventeen Rules of Inference
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The following is a valid argument. Use natural deduction to construct this argument’s formal 
proof of validity.

	 1.	 Y.
	 ∴	 X → Y.

	 2.	 Y ∨ ~X.	 1; Add.
	 3.	 ~X ∨ Y.	 2; D.C.
	 4.	 X → Y.	 3; M.I.2.

Advanced Natural Deduction: Example 3
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The following is a valid argument. Use natural deduction to construct this argument’s formal 
proof of validity.
	 1.	 ~A ∨ (B → C).
	 2.	 A → B
	 3.	 B → (C → B).
	 4.	 A.
	 ∴	 C ↔ B.

	 5.	 B.			   2, 4; M.P.
	 6.	 C → B.			   3, 5; M.P.
	 7.	 ~~A.			   4; D.N.I.
	 8.	 B → C.			   7, 1; D.S.
	 9.	 (C → B) & (B → C).		 6, 8; Conj.
	 10.	 C ↔ B.			   9; B.I.

Advanced Natural Deduction: Example 4

	 5.	 B.			   2, 4; M.P.
	 6.	 C → B.			   3, 5; M.P.
	 7.	 A → (B → C).		  1; M.I.2.
	 8.	 B → C.			   7, 4; M.P.
	 9.	 (C → B) & (B → C).		 6, 8; Conj.
	 10.	 C ↔ B.			   9; B.I.
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So far, the only categorical arguments that you have assessed have been traditional categorical 
syllogism. (Two premises involving three categories.)

Now you should be able to use your Venn diagramming skills to assess categorical arguments 
involving one premise or even three premises. You may also see arguments involving only two 
categories. (I will not have you assess arguments involving more than three categories because 
Venn diagrams at that point get unwieldy!)

While these arguments may seem complex: do not panic. Just follow your training and you will 
be surprised at how straightforward these actually become with only a little practice.

Categorical Arguments
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All non-philosophers are students, and so no non-students are 

non-philosophers.

Major term (P): Philosophers.
Minor term (S): Students.

		  1.	 All non-P is S.
		  ∴	 No non-S is non-P.

The argument is valid. The conclusion claims that the area 
outside of both students and philosophers is completely 
empty, and the premise confirms this. So assuming the 
truth of the premise means that the conclusion is true as 
well, making this argument valid.

Categorical Arguments: Example 4

Premise:	 P S

Conclusion:	 S P
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Some non-students are philosophers because there is a non-

musician who is a philosopher.
Major term (P): Philosophers.
Minor term (S): Students.
Other term (M): Musicians.

		  1.	 Some non-M is P.
		  ∴	 Some non-S is P.

The argument is invalid. The conclusion claims that there is a 
philosopher who is not a student. The premise, however, fails to 
confirm this: according to it, there is a philosopher that is not a 
musician, but that premise does not say whether that philosopher is 
a student or not. (This is because the dot-x is on the students’ line, 
leaving it unclear whether it is a student or not.) So assuming the 
truth of the premise is not enough to show that the conclusion must 
be true, making this argument invalid.

Categorical Arguments: Example 5

Premise:		  S P

M

x

Conclusion:	 S P

x
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Some students are philosophers for three reasons. First, all non-musicians are 
philosophers. Second, no philosopher is a musician. Third, some students are 
not musicians.
Major term (P): Philosophers.
Minor term (S): Students.
Other term (M): Musicians.

		  1.	 All non-M is P.
		  2.	 No P is M.
		  3.	 Some S is not M.
		  ∴	 Some S is P.

The argument is valid. The conclusion claims that there is a student 
who is also a philosopher, and the premises confirm this. So 
assuming the truth of the premises means that the conclusion is true 
as well, making this argument valid.

Categorical Arguments: Example 6

Premises:		
S P

M

x

Conclusion:	 S P

x
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We will have the final exam.

Keep practicing! You can do this!

Next Class…


