CRITICAL THINKING Lecture #10

Logical Analysis via Truth Tables

Professor David Emmanuel Gray

Truth & Falsity

this class), a statement *cannot* be both.

The truth or falsity of any statement ultimately depends upon the truth values of the simple positive statements making it up.

Recall that a statement is either true or false. According to classical logic (the logic assumed for

2

Conjunction

The conjunctive statement p & q asserts that *both* its conjuncts p and q are true. In other words, p & q is true when p is true and q is true. It is false, however, if and only if *any one* conjunct is false. This meaning of conjunction is neatly expressed with what is called a "truth table":

3

Negation

The negative statement $\sim p$ asserts that statement p is false. In other words, $\sim p$ is true when p is false. However, ~p is false if and only if p is actually true. The truth table for negation is here:

Disjunction

The disjunctive statement $p \lor q$ asserts that *at least one* of its disjuncts p and q is true. In other words, $p \lor q$ is true when p is true and/or q is true. It is false if, however, and only if *both* disjuncts are false. This is expressed in the truth table for disjunction:

5

Implication

The hypothetical statement $p \rightarrow q$ asserts that whenever p is true, then q must be true as well. However, it is false if and only if the antecedent is *true* but the consequent is *false*. Otherwise it is always true. Here is its truth table:

For instance, let's construct the truth table for the following statement:

If I do not hate logic, then I am smart.

- Given any statement, we can construct a truth table to see what possible truth values it can have.

Step I: Translate the statement into the language of symbolic logic.

In this example, there are two simple positive statements to symbolize:

- H: I hate logic.
- S: I am smart.

So the entire statement is symbolized as follows:

Step 2: Construct the columns of the table.

The columns are determined by taking apart the statement until we reach its simple positive

statements that cannot be broken down any further (because they are just a single letter).

Start with the original statement (it will be at the top of the *last* column, so put it on the right):

$\sim H \rightarrow S$

Next, identify the main connective:

~H → S

]]

Now identify the main parts it connects:

$\sim H \rightarrow S$

Next, add one column for each part:

$\sim H \sim H \rightarrow S$

To make things easier later on, always put any single letters to the far left (because they cannot be taken further apart).

Repeat the process with the parts just found:

$S \sim H \rightarrow S$

Keep putting anything that cannot be broken down to the far left:

H

$S \sim H \sim H \rightarrow S$

And since H and S cannot be broken down any further, there is nothing more to do:

Н

$S \sim H \sim H \rightarrow S$

Step 3: Construct the rows.

If there are an n number of single letters, then there will be 2^n rows.

In this example, there are only H and S, so n = 2. As a result, there are 2^2 or only 4 rows.

(This is the only math you need to know for this course.)

For the first single letter (in this case H), set the first half of the rows to true and the second half to false:

$S \sim H \sim H \rightarrow S$

For each of these halves, repeat this process for the next single letter (in this case S):

$H \qquad \sim H \qquad \sim H \rightarrow S$

For each of these halves, repeat this process for the next single letter (in this case S):

Repeat this process for all the single letters (in this case, there are no more to do):

$H \qquad \qquad \sim H \qquad \sim H \rightarrow S$

Notice that these are *all* the possible truth value combinations for these two statements:

Step 4: Fill out the remaining columns.

on the truth values of statements to the left and the connective used in that column.

Work across each column from left to right, calculating the truth value for each column based

Staring with the left-most column that is not filled in, the main connective is ~ and the statement is H:

$H \qquad \sim H \quad \sim H \rightarrow S$

Use the truth table for negation plugging in the values from H's column to fill in ~H's column:

S:

Repeat this for the next column; here the main connective is \rightarrow and the statements are \sim H and

Use implication's truth table plugging in the values from ~H's and S's columns to fill in $\sim H \rightarrow Ss$ column:

And it is all done!

28

Now suppose H is true but S is false. The truth table then reveals the value of $\sim H \rightarrow S$:

Truth Table Construction: Instructions

Creating a truth table is done according to the followings steps:

- I. Translate the statement into the language of symbolic logic,
- 2. Construct the columns of the table,
- Construct the rows, and 3.
- 4. Fill out the remaining columns.

Truth & Statements

A contingent statement is a statement that may logically be *either* true *or* false.

A tautology is a statement that is logically *always true*.

A contradiction is a statement that is logically *always false*.

Contingent Statements

The truth table we just did for "If I do not hate logic, then I am smart" reveals that it is a *contingent* statement:

F

The statement may logically be *either* true (as it is in rows 1, 2, and 3) *or* false (as it is in row 4).

The statement "It will rain tomorrow *or* it will *not* rain tomorrow" is a tautology:

No matter what, this statement is *always true* (as it is in all the rows).

33

Contradictions

"It will rain tomorrow *and* it will *not* rain tomorrow" is a contradiction:

No matter what, this statement is *always false* (as it is in all the rows).

We will do a workshop on translating English symbolic logic and constructing truth tables.

