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1 | INTRODUCTION

One of the most striking effects that can arise from the combination of dispersion and nonlinearity
is the formation of dispersive shock waves (DSWs), which are coherent, nonstationary oscillatory
structures which typically arise in the context of small dispersion problems, and which provide a
dispersive counterpart to classical shock waves*’ (e.g., see the review?’ and references therein).
DSWs are known to form in surface water waves (where they are known as undular bores), inter-
nal waves, nonlinear optics, the atmosphere, Bose-Einstein condensates, and beyond. Because of
their ubiquity in nature, the study of DSWs continues to attract considerable interest worldwide.

A powerful tool to study small dispersion problems is Whitham modulation theory**>" (or
Whitham theory for brevity). Looking at a DSW as a slow modulation of the periodic traveling
wave solutions of the underlying partial differential equation (PDE), Whitham theory allows one
to derive the so-called Whitham modulation equations (or Whitham equations for brevity), that
govern the evolution of these periodic traveling wave solutions over longer spatial and temporal
scales. The Whitham equations are a system of first-order, quasi-linear PDEs. For integrable equa-
tions in one spatial dimension, the inverse scattering transform (IST)>”-* can also be used to study
small dispersion limits (e.g., see Refs. 8, 13, 14, 33 and references therein). However, Whitham the-
ory is more broadly applicable compared to IST, because the former does not require integrability
of the original PDE, and therefore it can also be applied to nonintegrable PDEs. Moreover, even
if original PDE is integrable, in many cases Whitham theory is still useful because it allows one
to obtain a leading-order approximation of the solutions more easily. Because of this, Whitham
theory has been applied with great success to many nonlinear wave equations in one spatial
dimension (again, see Ref. 20 and references therein). Until recently, however, small dispersion
limits in more than one spatial dimension had been much less studied.

Recently, one of the authors derived the Whitham modulation equations for the Kadomtsev—
Petviashvili (KP) equation,’ the Benjamin-Ono equation,* and a class of equations of KP type.” He
then studied the properties of the resulting system of equations'*!! and used it to study a variety
of initial value problems of physical interest.*>*> The Whitham modulation equations for the
nonlinear Schrédinger (NLS) equation in two® and three' spatial dimensions were also recently
derived. In this work, we continue this program of study, aimed at generalizing and applying
Whitham modulation theory to nonlinear wave equations in two and three spatial dimensions.
Specifically, we derive the Whitham modulation equations for another physically relevant model,
namely, the Zakharov-Kuznetsov (ZK) equation, and we use the resulting system of equations to
study the transverse stability of its periodic traveling wave solutions.

The ZK equation is a physical model arising in many different contexts, including fusion
plasmas and geophysical fluids,”> magnetized plasmas,**? vortex soliton theory,*’ and wave
turbulence.’® In N spatial dimensions and in semiclassical scaling, the ZK equation is written
as

u; + uuy, +€*(Au)y, =0, @

85UB0|7 SUOWIWOD 3AIERID 3|qedl|dde 8y} Aq peuienob afe Ssjoile YO ‘88N JO'Sa|NJ 0} Aiq 17 8UIUO AB]IM UO (SUORIPUOD-PUR-SLLBIALI0D" A8 | IM"ALR1q 1[BU JU0//:SHNY) SUORIPUOD PUe swie | 81 88s *[e202/2T /2] uo Ariqiiauliuo )M ‘(Auns) oeyng 1w AiSeAIUN AQ TS9ZT Wides/TTTT 0T/I0p/w00 A3 1M Areiqjpujuo//sdiy wouy papeojumod ‘0 ‘0656297 T



BIONDINI and CHERNYAVSKY | 3

where x = (xy, ..., xy) are the spatial coordinates, A = d, , + -+ + 0y, is the Laplacian opera-
tor, and 0 < € <« 1is a small parameter that quantifies the relative magnitude of dispersive effects
compared to nonlinear ones. Note that the first spatial coordinate plays a special role compared
to the other ones. Accordingly, for brevity we will simply write x = x; below. When solutions are
independent of x,, ..., Xy, the ZK equation (1) reduces to the celebrated Korteweg-de Vries (KdV)
equation. Therefore, the ZK equation is, like the KP equation?’, a multidimensional generaliza-
tion of the KdV equation. Unlike the KdV and the KP equations, however, the ZK equation appears
not to be integrable. (To avoid confusion, we should mention that Ref. 38 refers to (1) as the
Petviashvili equation.)

The well-posedness of certain initial value problems and initial-boundary value problem for
(1) was studied in Refs. 22, 24, 29, 34, 46, and the decay rate of localized solutions was studied in
Refs. 35, 36. (However, these studies are concerned with solutions that vanish as |[x| — oo, and are
therefore not directly applicable to the present work, which deals with solutions that are periodic
with respect to each spatial dimension.) The stability of the solitary wave solutions of (1) was
studied with various methods,”!>!721:30:3142.51 and that of its periodic solutions was studied in
Ref. 26. Finally, a wave kinetic equation for (1) was derived using formal methods in Ref. 38 and
rigorously in Ref. 48 for a stochastic perturbation of (1) on a lattice.

Despite its similarities with the KP equation, the ZK equation (1) is not of KP type in the sense of
Ref. 2, because (1) is fully evolutionary, that is, no auxiliary field is present. Therefore the method-
ology presented in Ref. 2 does not apply. Specifically, the ZK equation (1) differs from the KP
equation in two important respects: (i) the terms involving derivatives with respect to the trans-
verse variables x,, ..., xy contain third-order derivatives, not second-order ones, and (ii) these
terms involve mixed derivatives. We will see that, as a result, the parameterization of the traveling
wave solutions of the ZK equation is quite different from that of the solutions of the KP equation,
and in fact it has some similarities with the periodic solutions of two-dimensional NLS equation.
Indeed, we will see that the Whitham modulation system for the ZK equation contains a mix of
the features of the systems for the KP and NLS equations.

The main result of this work is the ZK-Whitham system (ZKWS) of modulation equations (22),
or equivalently (28), as well as its use to investigate the stability of the periodic traveling wave
solutions of the ZK equation (1). Specifically, we study the stability of the periodic solutions of (1)
with respect to spatially periodic perturbations. In particular, we show that all periodic solutions
traveling along the first spatial coordinate are linearly unstable with respect to purely transver-
sal perturbations. We also study the stability of periodic solutions traveling in different directions
with respect to arbitrary periodic perturbations, and we identify the domains of stability and insta-
bility for each traveling wave solution. For a more detailed description of these results, please see
Section 3.

More generally, this document is structured as follows. In Section 2, we present the derivation
of the ZKWS. In particular, in Section 2.1 we introduce the periodic traveling wave solutions and
relevant conservation laws of (1), in Section 2.2 we present the multiple scales expansion used for
the derivation, in Section 2.3 we present the relevant period averages, in Section 2.4 we present the
calculations needed to obtain the ZKWS in its final form, and in Section 2.5 we discuss some basic
symmetries and reductions of the ZKWS. In Section 3, we study the stability of the periodic travel-
ing wave solutions. In particular, in Section 3.1 we linearize the ZKWS around a constant solution
and use the resulting system to study the stability of solutions propagating along the first spatial
coordinate with respect to purely transversal perturbations. In Section 3.2, we compute numeri-
cally the growth rate of transversal perturbations for the same setup by direct linearization of the
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ZK equation, and in Section 3.3 we compute analytically the instability growth rate for the soliton
solutions. Finally, in Section 3.4 we generalize the analysis of Section 3.1 to periodic solutions trav-
eling in arbitrary directions and perturbations at arbitrary angles. Section 4 concludes this work
with some final remarks.

2 | WHITHAM MODULATION THEORY FOR THE ZK EQUATION

2.1 | Periodic traveling wave solutions and conservation laws of the
ZK equation

Recall that the Whitham equations describe modulations of periodic solutions of a nonlinear PDE.
Therefore, the first step in formulating Whitham modulation theory is to write down the peri-
odic solutions of the PDE. The ZK equation (1) admits periodic traveling wave solutions, which
are most conveniently expressed by introducing Riemann-type variables r; < r, < r3, similarly to
what is done for the KdV, KP, and NLS equations. The derivation of these solutions is similar to
that for the periodic solutions of those equations, so we omit the details for brevity. However, one
can easily verify by direct substitution that (1) admits the following “cnoidal wave” solutions:

ux,t) = 1+ g>)|[(ry —ry +r3) + 2(r; — ry) cn’(2K . Z, m)), (2)

where cn(z, m) is the Jacobi elliptic cosine,*' K,,, = K(m) the complete elliptic integral of the first
kind,

r,—r

m= ﬁ (33)
is the elliptic parameter,
Z=(k-x—owt)/e, k = (ky, ..., ky), q = (ky, ..., kn)/ky, (3b)
r3—n 1 5
ky W= 5(1 +q)ry +ry+r3)ky, (30)

ek,

andg’=q-q= q% + -+ qf\,_l. (The calculations required to show that (2) is indeed an exact
solution of (1) are very similar to those needed for the cnoidal wave solutions of the KdV equa-
tion, and are therefore omitted for brevity.) The solution (2) is uniquely determined by N + 2
independent parameters, rq,...,r; and q, ..., qny—_1, and it describes wave fronts localized along
the lines k - x — wt = 2n7, with unit period with respect to the variable Z and period 2K, with
respect to the variable x. Note the appearance of the factor 1 + g2 in (2) and (3c), unlike the KP
equation,® and similarly to the NLS equation in N spatial dimensions.! In keeping with the nota-
tion for the first spatial coordinate, we will simply write k; = k. Also, when there are only two
spatial dimensions (i.e., N = 2), we will simply write y = x,,l = k,, and q = q;.

The above solutions admit two nontrivial limits: the harmonic limit, obtained when m = 0,
corresponding to r, = r, and the soliton limit, obtained when m = 1, corresponding to r, = r;.
Specifically, recalling that cn(z, m) = cosz + O(m) as m — 0 and cn(z, m) = sech z + O(1 — m)
as m — 17, it is trivial to see that, as m — 0, the solution (2) describes vanishing-amplitude
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harmonic oscillations on a nonzero background, whereas, as m — 1, the solution limits to the
line soliton solutions of the ZK equation. Explicitly, in two spatial dimensions,

u(x,t) = (1 + qz)[a + 12csech® (\/E(x +qy — Vt)], 4

where i =r), ¢ =(r;—r;)/6, and V = (1 + g*) (@ + 4c). However, we emphasize that the
modulation theory presented below applies to all of the periodic solutions (2).

Recall that several methods can be used to derive the Whitham equations: multiple scales per-
turbation theory (as in Ref. 3), averaged Lagrangians,*’ and averaged conservation laws (as in
Ref. 1). Here, we will employ the latter. Accordingly, we need the conservation laws of the ZK
equation (1). The ZK equation itself can be written as a conservation law in differential form:

u + (%uz + ezAu> =0. (52)
X

Note that in this case there is no flux along the coordinates x,,...,xy. Moreover, the ZK

equation admits an additional differential conservation law related to conservation of mass:

W?), + Erf +2¢?(uhAu —u? + (Vlu)z)]x -2V, -(u,V,u)=0, (5b)
where V, = (9,,, ..., 0, ) is the gradient with respect to the transverse variables. As mentioned
earlier, the ZK equation is not completely integrable, unlike the KdV and KP equations, so only a
limited number of conservation laws are available. Nonetheless, below we will show that the above
conservation laws will be sufficient for the derivation of the Whitham modulation equations.

2.2 | Multiple scales expansion

As usual in Whitham theory, we now look for modulations of the above periodic solutions.
Specifically, we introduce the fast variable Z defined by
k w

X ¢’ t ¢’ (6)

as well as the slow variables X = x and T = ¢, and we look for solutions
u(x,t) = uwZ,X,T), @)

where all of the solution’s parameters are now functions of X = (X3, ..., Xy) and T. In particular, k
and w are now the local wavevector and the local frequency. Recall that in two spatial dimensions
we have four independent parameters: rq, r,, 3, and q = q;. With the above multiple scales ansatz,
one has

k )
VX = EaZ + Vx, a[ = —Eaz + 5T. (8)

Or, in two spatial dimensions, simply 3, = (k/€)dz + 9x,0, = (I/€)d; + dy,and 0, = —(w/€)d; +
or,withX = X; and Y = X,. Inserting the above ansatz into (1), to leading order one recovers the
periodic solutions in Section 2.1, but where the parameters rq,r,, 73, and q are now functions of
X and T. The Whitham modulation equations that we are seeking are precisely the PDEs that
govern the spatiotemporal dynamics of these solution parameters.
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It is clear from the above discussion that one needs N + 2 equations to obtain a closed system.
The first few Whitham modulation equations, referred to as “conservation of waves,” are simply
a consequence of the above ansatz and cross-differentiability of Z:

kT + fol) =0, (93.)

Vi Ak =0, (9b)

where v A w denotes the N-dimensional wedge product, which in two and three spatial dimen-
sions can be replaced by the standard cross product.?® In two spatial dimensions, recalling that
I = gk, (92) becomes

kT +wy =0, (103)
(kq@)r + wy =0, (10b)

while (9b) becomes
ky = (kq)x- (10c)

Equation (92) above provides N evolution equations, whereas, similarly to Refs. 1, 3, (9b) provides
constraints on the initial values of the dependent variables (whose role will be discussed more
fully below). Since we need N + 2 modulation equations, one must therefore supplement (92) by
obtaining two additional modulation equations. The simplest way to do that is to average the first
and second conservation laws over one spatial period, obtaining

Uy + uuy + e*Auy =0, (11a)

W) + [§u3 + €2 (2uhu — u2 + (Vlu)z)] —22 V] (uxV,u) =0, (11b)
X

where V| = (dx,,...,0x,, ) is the transverse gradient in the slow variables, and where throughout
this work the overbar will denote the integral of a quantity with respect to Z over the unit period.
The next step in the derivation of the modulation equations is therefore to compute the above
period averages.

2.3 | Period averages

Inserting the ansatz (7), the leading-order solution (2) and using (6), to leading order the averaged
conservation laws (11) yield

@r + (%F)X =0, (12a)

(u2), + @ﬁ — K23+ qz)(uz)2> —2V, - <k2q(uz)2> =0. (12b)
X

All of the integrals appearing in the above averages can be computed exactly, yielding'®
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FIGURE 1 The quantities G,(m), ..., G,(m) in (14) (vertical axis) (in green, orange, blue, and red,
respectively) as a function of m (horizontal axis).

u=0+q>[r —ry+15+20r, — 1G], (13a)
w2 =1+ g*)? [(ri =y + 132 + 40 —ry + 13)(r; = 11)Gy + 4(r; — 11)*G,), (13b)

w = (L+g»3[(ry =y +13)® +6(ry — 1y +13)%(r, — 11)Gy

+12(ry — 1y + 13)(ry = 11)*Gy + (1, = 11)3G5), (130)
(uz)? = (14 q*)*4(r, — r1)*Gy, (13d)
where
1
E,—(1-m)K
Gi(m) = [ cn?(2K,,z,m)dz = M’ (14a)
0 me
1 2
—2(1-2m)E,, +(2—5m+3 K
Gy(m) = [ cn*(2K,,z, m)dz = ( M)y, + ( m + 3m’) =, (14b)
0 3m?K,,
1 2
8 —23m(1 — E,, —(1— 8—19 15 K
Gy(m) = [ en8(@Kopz, mydz = S 231 = mDEy = (1~ m)8 = 19m + 13m)Kyn -,
0 15m3K,,
1
G4(m) = 16K}, [ cn?(2K,,.z, m)dn®(2K,,z, m) sn?(2K,,z, m) dz
0
201 —m(A1 - E, —(1— 2 —m)K
16K, (1—m(l —m))E, —(1—m)2—m) m (14d)

15m?2

and E,, = E(m) is the complete elliptic integral of the second kind. The behavior of these
quantities as a function of m is shown in Figure 1. Their limiting values as m — 0 are

G1(0)=1/2, Gy(0)=3/8, G4(0)=5/16, G,(0)=r2/2, (15)

while their asymptotic behavior as m — 1is

16 + o(1)

2+0(1) _ 4+ 0(1)
> Golm) = 15 log(1 — m)’

log(1 — m) 3 log(1 — m) (162)

G(m) = — , Gy(m) = —
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8 | BIONDINI and CHERNYAVSKY
1 1 1 1 4 1
Gl(m) = _+—0()2, Gl(m) = _+—0()2, Gl(m) = _+—°()2, (16b)
2(1 - m)K;, 31 -m)K;, 15(1 — m)K;,
32400 ,, . 16+0(1)
Gy(m) = 5K, ,G,(m) = a—m) (16¢)

Also recall that K, = —%(log(l —m)—4log2)+0(1-m) and K, =(E,—-1-

m)K,,)/2m(1 — m)) = 1/(2(1 — m)) + %(log(l —m)—4log2+3)+0(1-m) as m—14
These singular behaviors as m — 1 imply that certain rescalings are needed in order to write the
modulation equations in a convenient form, as discussed below.

2.4 | The ZKWS in two spatial dimensions

For brevity, in this section we only write down explicitly the modulation equations in detail in
two spatial dimensions, but we emphasize that the calculations below are trivially generalized to
any number of transverse dimensions, in a similar manner to Ref. 1. Also, for simplicity from now
on we will write derivatives with respect to X, Y, and T simply as derivatives with respect to x, y,
and t.

Using the averages (13), recalling the definition of k and w in (3c), and collecting all terms, Equa-
tions (10a), (10b), (12a), and (12b) yield a system of four modulation equations. As usual, however,
some manipulations are needed in order to write the resulting system in the most convenient
form. We turn to this issue next.

We begin with the first conservation of waves equation, namely, (10a). Recalling (3c), multiply-
ing (10a) by (1 — m)K,,,/k one then obtains an expression that remains finite both as m — 0 and
m— 1.

The second conservation of waves equation requires some additional treatment. In this case,
one can first use (10a) to replace k;, obtaining, as in Refs. 1-3, the universal transversal modulation
equation

q: + (Dyw)/k =0, (17)
where
D, =8, — o, (18)

is the convective derivative, which will appear prominently in all modulation equations below,
similarly to other modulation systems in two spatial dimensions.!* Unlike the first conservation
of waves equation, however, in this case in order to obtain a nontrivial equation in the limitm — 1
it is necessary to use the constraint (10c), which we can rewrite so that it remains finiteasm — 0
andm — 1as

chyrl + Cszrz + C3Dyr3 +C4q9x = 0, (19)
with
¢, =A—-m)Kp —Ep), ¢; =Ep — (1 —m)Ky,, c3 = —mEy, ¢4 = 2(r; —r)(1 —m)K,,. (20)

Then, subtracting w /(kK,,,) times (19) from (17) we finally obtain the desired modulation equation.
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The averaged conservation laws (12) are the most complicated, as can be seen from (13) and (14).
The only manipulation needed to regularize the resulting equations, however, is just multiplica-
tion by (1 — m)K,,. In light of (13) it is also convenient to divide (12a) by (1 + ¢g2) and (12b) by
(1 + g?)?, respectively. (One could also subtract a linear combination of the first conservation law
and the first conservation of waves from the second conservation law to try to simplify it, but this
is unnecessary for the present purposes.)

The collection of the resulting four modulation equations can be written in matrix form as

Cr,+Ar,+Br, =0, (21)

where r = r(x,y,t) = (r1,75,73,q)" collects the four dependent variables. Specifically, we write
the first row of (21) from (10a), the second and third rows from (12a) and (12b), respectively, and
the fourth row from (10b). Hereafter, 0,,,,, and 1,,,.,, denote matrices of size m X n with all entries
equal to 0 or 1, respectively, and for brevity we will drop the size notation when it should be clear
from the context.

All entries of the coefficient matrices C, A, and B in (21) are finite for all 0 < m < 1 as well
as in the limits m — 0 and m — 1. On the other hand, their explicit expressions are fairly com-
plicated, and are therefore omitted for brevity, since they are just an intermediate step in the
derivation. At the same time, we next show how one can considerably simplify the system by
suitably diagonalizing the coefficients of the temporal derivatives.

Owing to (17), the last row of C is simply (0,0,0,1). Writing C in block diagonal form, it is there-
fore convenient to introduce a partial inverse of C as C~! (C3><3’ 1), where Csy; denotes the
upper-left 3 x 3 block of C. Multiplying (21) from the left by C~!, one can then solve the above
system of modulation equations for the temporal derivatives, Which yields the final ZK-Whitham
system in matrix form as

r,+Ar, +Br, =0, (22)

where the coefficient matrices A = C™1A and B = C~1B are

)y 2 B B
A= (1 + g) Viiag 45qAle —gB, B=|, 3><23 3x1 , (23)
0153 A+q¢HV 5(1 +q)lixs 2qV
with
Vdiag = diag(V17 eeey V3)7 (248.)

where V1, ..., V3 are velocities of the KdV-Whitham system, namely,

K,, (1 -m)K,, (1 -m)K,,
_—V,=V-2b—— Vo=V +2b—————— 24
Kn—En ° b m—(1—mK, > b ’ (24b)

Vi=V-=-2
! b mkE,,

where V = %(rl +ry +r3), b = 2(r, — ry) is the amplitude of oscillations in (2), and with

Asq =Diga,  Dsys = diag(d), (259)
4 1+ 5¢° 4q
3x1 = Equ( —r1)*b, Dy ze, B3z = 5mK,, (r;—r) Dy, e'®b,  (25b)
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10 | BIONDINI and CHERNYAVSKY

where vI' ® w denotes the outer product of two vectors, namely, vT'® w);. i =vwj, with
a=(a;,a,a3)", b=(by,by,by)", d=(dy,d,d3)", e=(-1,1,1), (26)
and, finally, with
a; = ((1 + m(4 + m)E,, — K,,(1 — m)(1 + Tm)K,,))(r3 — ry)? + 45d,r2, (272)

a, = —((1 — m(16 + 29m))E,,, — (1 — m)(1 — m(8 + 45m))K,,,)(r3 — r1)* + 45d,r,(2r, — ry),

(27b)

a; = (82— m)(1 — m)K,, + (29 + m(16 — m))E,,)(r; — r1)* + 45d5r,(2r; —r;),  (27c)

b, = 2 — m)(1 — mK,, — 2(1 — m(1 — m))E,,, (27d)

by = 2(1 + 2m?)E, K, — (1 — m)(1 + 2m)K2, — (1 — m + m?) E2, (27¢)
by = (1 — m)(1 — 3m)K2, — 2(1 — m(2 — 3m))E,K,, + %E; (27f)
by = m<5(1 — K2, — 2(2 — M)E, K, — <ﬁ - m>E%1> 279)

dy =Ky —Ep, dy = Ep —(1—m)K,, ds=E,. (27h)

Equivalently, in component form, the ZKWS (22) comprises the following four PDEs:

rie+(1+g>)V;rjx+byDyrj+hjq,+v;Dyq=0, ji=12,3, (28a)
@+Q+gHVa,+(Q+g>)V,+29VDyq =0, (28b)

where D, is the convective derivative introduced in (18), and

4q(rs —r1)e; 2q a; 4(1 +5¢%)(r3 — r1)*boe;

4= asmKod. d.] b-r, h;= ﬁd_].’ Vi T 45d:(1 + g2) S i=123 @)
m&j J J

The computations above can be readily performed with any computer algebra software. We
also point out that the ZKWS (22) is considerably simpler than what one would obtain by mul-
tiplying (21) by the full inverse of C. More importantly, note how the above ZKWS is purely in
evolution form (i.e., all four equations contain a temporal derivative), like those for the two-
and three-dimensional NLS equations,"® and unlike those for the KP equation,3 two-dimensional
Benjamin-Ono equation,* and modified KP equation?. This is of course a direct consequence of
the fact that the ZK equation (1) does not comprise a spatial constraint like the KP equation and
the two-dimensional Benjamin-Ono equation.
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2.5 | Symmetries, reductions, and distinguished limits of the ZKWS

Like the Whitham modulation systems for the KdV, KP, and NLS equations, the ZKWS (22) admits
a number of symmetries and reductions.

Symmetries
The ZKWS preserves some of the physical symmetries of the ZK equation, specifically, the
symmetries under space-time translations and scaling:

u(x,t) - u(x —xg,t — tg), (30a)

u(x, t) » a?u(ax, at), (30b)

respectively, where a, t, are arbitrary real constants, and X, is an arbitrary N-component real
vector. The ZK equation (1) is invariant under (30a) and (30b). Moreover, each of these trans-
formations induces a corresponding transformation for the dependent variables ry,...,73,q,
namely:

ri(x, ) > rix—xo,t —ty), qx,t) = q(x—Xo,t — ty), (31a)

ri(x,t) = a’ri(ax,a’t), q(x,t) ~ q(ax,a’t) (31b)

for j = 1,2, 3. Itis straightforward to verify that all these transformations also leave the ZKWS (22)
invariant. For brevity, we omit the details.

KdV reduction
It is straightforward to see that, when q = 0 and all quantities are independent of y, the ZKWS
reduces to the Whitham modulation system for the KdV equation, namely,

}’j’[ + V] Vj’x =0, ] =1,2,3, (32)

where V4, ..., V; are the characteristic velocities of the KdV-Whitham system, as above.

Harmonic limit
The ZKWS system admits a self-consistent reduction in the harmonic limit m — 0 (i.e., r, = ry).
In this case, the PDEs for r; and r, coincide, and we obtain the reduced 3 X 3 system

w; +A, W, +B,w, =0 (33)

for the three-component dependent variable w(x, y, t) = (r1, 13, q), with

3(2ry —r3) + q%(4r; —r3) 0 2q (4r7 —2r3ry +13)
A, = % 0 3(1+g2rs 6qr> , (34a)
-q(1+¢%) -q+q*) (A -g»)Qr +r3)
2q(ry —r3) 0 0
B, = % 0 0 0 : (34b)

1+¢° 1+q%> 2q@2r, +r13)
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12 | BIONDINI and CHERNYAVSKY

Soliton limit

The ZKWS system also admits a self-consistent reduction in the soliton limit m — 1(i.e.,r, — r3).
The calculations are more involved in this case, since the entries in the second and third columns
of A and B diverge. As we show next, however, this is not an issue.

Recalling (3a), let i = 1 —m = (r3 —ry)/(r; — ry), and write r, = r3 — Wi (r3 — ry). The limit
m — 1 corresponds to i1 — 0 together with 1, my, and 71,. We then look at the second and third
columns of A and B multiplied by (r,,r3). For the former, we have a;, 7, +a;373 = (a;, +
ai3)r3x + a;((r; —ry) M)y, for i = 1,...,4 with a similar expression for the y derivatives. Since
the singular parts of a; , and a; 5 are exactly equal and opposite, it is straightforward to verify that
one obtains a finite expression in the limit as 772 — 0. The result is the soliton modulation system

W, +A; W, + B w,=0 (35)

for the same dependent variables w = (r;, 73, q) as above, but where the coefficient matrices are
now

(1+¢7n 0 21
PR R I O R |
“Lga+ ) ~2901 +¢) (1= gA)(ry +2r3)
(36a)
0 0 0
B, = —%q(}’l —r3) %Q(rl —73) —% . (36b)

1 2 2
5(1 +q%) 5(1 +q%) §Q(V1 + 2r3)

3 | TRANSVERSE INSTABILITY OF THE PERIODIC TRAVELING
WAVE SOLUTIONS OF THE ZK EQUATION

We now show how the ZK-Whitham modulation system derived in Section 2 can be applied to
study the stability of the periodic traveling wave solutions of the ZK equation for all 0 < m <
1. We will then compare the predictions of Whitham theory with a numerical evaluation of the
instability growth rate, as well as with an explicit, analytical calculation of the growth rate in the
soliton limit.

3.1 | Stability analysis via Whitham theory

Recall that, when rq,7,, 73, and q are independent of x, y, and ¢, (2) is an exact periodic traveling
wave solution of (1). In order to study the stability of such solutions, we therefore look for solu-
tions of the ZKWS (22) in the form of a constant solution r® = (rgo), rgo)’ rgo)’ q(o)) plus a small
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BIONDINI and CHERNYAVSKY 13

perturbation, namely,
ri(x,y,t) = rﬁo) + 5r§.l)(x,y, H, j=1,2,3, q(,y,t) = q© + 8qgW(x, y, 1), (37)

with 0 < § < 1. Substituting this ansatz into (22) and neglecting terms O(6?) and smaller, we then
obtain the linearized ZKWS

rt(l) + A(O)r)(cl) + B(O)r;l) =0, (38)

since r® is constant with respect to x, y, and ¢. Here, r) = (ril), rgl), rgl) ,q1), while A© and
B© denote the 4 x 4 matrices A and B above evaluated at r = r(©). Since (38) is a linear system
of PDEs with constant coefficients, it is sufficient to study plane wave solutions of (38), which
correspond to periodic perturbations of the underlying cnoidal wave solution (2). We therefore

look for solutions of (38) in the form
r(l)(x,y, t) — Rei(Kx+Ly—Wt)’ (39)

where R is a constant vector, and K, L, and W are, respectively, the perturbation wavenumbers in
the x- and y-directions and the perturbation’s angular frequency.

Recall that the underlying cnoidal wave solution (2) has spatial periods in x and y deter-
mined by (3). The perturbations in (39) are not required to be coperiodic with the underlying
solution (2) at this point. Substituting the expression (39) into (38), the problem above is then
transformed into the homogeneous linear system of equations (=W I, + KA® + LBO)R =0,
which is equivalent to the eigenvalue problem

(KA® + LBO)R = WR. (40)

The eigenvalues (corresponding to nontrivial solutions for R) are the roots of the characteris-
tic polynomial p(K,L, W) = det(K A© + L B® — W I,), where I, is the 4 X 4 identity matrix. In
turn, the condition p(K,L, W) = 0 determines the linearized dispersion relation W = W(K, L).
If W € R, the ZKWS system (22) is hyperbolic, and the periodic solution (2) obtained from the
constant solution r = r® of the ZKWS is linearly stable. Otherwise, the system is elliptic and the
corresponding periodic solution is unstable.

By virtue of the scaling invariance of the ZKWS (22), we can set r; = 0 and r3 = 1 without loss
of generality, in which case we simply have r, = m. Still, for general values of q, K, and L, find-
ing the linearized dispersion W (K, L) involves computing the roots a highly complicated quartic
polynomial. On the other hand, a particularly simple scenario is obtained when g = 0 (which
corresponds to a vertical cnoidal wave, whose period in the y-direction is therefore infinite) and
K = 0 (which corresponds to purely transversal perturbations). In this case, the perturbations (39)
are indeed coperiodic with the underlying cnoidal wave solution (2) in the x-direction. Also, in
this case we simply have (W /L)? = f(m), with

4 2(1-=m@1-m)E, — (1 -m)2—-m)K,)(Q - mKz —2(2 — mE,K,, + 3E2)

fm)= == Epn(Kp = Ep)(Epy — (1 = m)K,p)

(41)

It is straightforward to see that f(m) < 0 for all 0 < m < 1. Therefore, periodic traveling wave
solutions of the ZK equation are linearly unstable with respect to transverse perturbations. More
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FIGURE 2 Main panel: Relative growth rate Im W /L of perturbations in the long wave limit as a function
of m. Inset: Discrepancy between the analytical predictions of Whitham theory (Section 3.1) and the numerical
computation of the growth rate by direct linearization of the Zakharov-Kuznetsov (ZK) equation (Section 3.2).
See text for details.

precisely, the above calculations yield the relative growth rate (i.e., Im W /L) of perturbations in
the long wave limit as g(m) = /—f(m). The behavior of g(m) as a function of m is shown in
Figure 2. Note that g(0) = 0 (indicating that the constant solutions are linearly stable), and g(m)
increases monotonically in m, limiting to the value g(1) =4/(3 \/1_5) =~ 0.344265, which is the
growth rate of unstable perturbations of the soliton solutions of the ZK equation in the same limit
(cf. Section 3.3).

The above predictions about the instability of the periodic solutions are consistent with the
results of Refs. 26, 37. The above results, however, yield a fully explicit expression for the instability
growth rate, similar to Refs. 2-4. As we show next, these predictions are in excellent agreement
with anumerical calculation of the growth rate (in Section 3.2) as well as with a direct perturbation
theory for the soliton solutions (in Section 3.3).

The absolute growth rate, Im W, is proportional to L, and is therefore unbounded. This is
because the ZKWS is a dispersionless system, like all leading-order Whitham modulation sys-
tems, and all these systems suffer from the same limitation. This is why the above calculations only
apply in the long wavelength limit. To obtain the maximum growth rate over all wavenumbers L,
it would be necessary to go to higher order and incorporate dispersive terms in the modulation
system before computing the linearized dispersion relation. For example, this is done when study-
ing the modulational stability or instability of a plane wave via the NLS equation. The focusing
NLS equation is a modulation equation that incorporates dispersion, so its instability spectrum is
nonlinear (and bounded) in the perturbation wavenumber.

3.2 | Stability analysis via linearization of the ZK equation and
Floquet-Hill’s method

We can validate the predictions of Whitham theory by studying numerically the linear stability of
the periodic solutions of the ZK equation (1) and comparing the findings with those obtained via
Whitham theory in Section 3.1.

In this case, by analogy with Section 3.1, we look for solutions of the ZK equation (1) in two
spatial dimensions in the form u(x,y,t) = u,(x,y,t) + dv(x,y,t), where 0 < § <« 1, and where

85UB0|7 SUOWIWOD 3AIERID 3|qedl|dde 8y} Aq peuienob afe Ssjoile YO ‘88N JO'Sa|NJ 0} Aiq 17 8UIUO AB]IM UO (SUORIPUOD-PUR-SLLBIALI0D" A8 | IM"ALR1q 1[BU JU0//:SHNY) SUORIPUOD PUe swie | 81 88s *[e202/2T /2] uo Ariqiiauliuo )M ‘(Auns) oeyng 1w AiSeAIUN AQ TS9ZT Wides/TTTT 0T/I0p/w00 A3 1M Areiqjpujuo//sdiy wouy papeojumod ‘0 ‘0656297 T



BIONDINI and CHERNYAVSKY 15

u,(x,y,t)is an exact periodic traveling wave solution, namely,
uy(x,y,1) = 1+ g*)(ry — 15 + r3) + 2(r, — 1) cn*(2K,, Z, m))
=@+ ) [r =yt rs+ 20 —r)en? (Vs =)/ + gy —vo/e )| (42

Z = k(x + qy — Vt)/e is the fast variable defined in (6), V = w/k and k and w are as in (3c).
Substituting this ansatz in (1), to leading order in § we obtain a linearized ZK equation:

v; + (upv), + €2(Av), = 0. (43)

To obtain the correct balance of terms in € and &, we look for transversally modulated per-
turbations that are coperiodic with respect to Z, that is, we use the following ansatz for

v(x,y,1):
v(x,y,1) = W(2K,,Z) eI +A/E, (44)

with w(2K,,,Z) a function with unit period in Z, which implies

2K,k 2K, L K A

Uy = Ern Uz, vy = em Uz =+ ?U, Uy = — :1 Uz + Ev, (453.)
4K2 1 4K, ¢l &2 1 4K2 k?

Uyy = 62 UZZ —+ 62 UZ —_ e_zv + O E ) Uxx = 62 UZZ’ (45b)

with [ = gk as before. (Note that the ansatz (44) corresponds precisely to the setting in Section 3.1
with ¢ = K = 0.) Then, to leading order in ¢, (43) yields

—2K,, w0y + Av + 2K, k(u,0); + 8K, k3 (1 + q2)vyz 7 + 8iK2 kv, , — 2K, ké?v, =0, (46)
which can be written as the linear eigenvalue problem
L,v=Av, (47a)
with
L, = 2K,,wdz — 2K,k 7uy — 8K, k*(1 + ¢*)3}, — 8iK},$k?qd + k&0 (47b)
Explicitly, using the definition of k, (46) is
=\ =1 Vuz + v+ \/rs — ri(u,0)z + (r; — r)*2A + /6] vzzz
+ 2iq[(r; — ”1)/\/61 Svzz —\frs —r1$Puz =0, (48)

where 1 = \/g A. To compare the results of this perturbation expansion with the predictions of
Whitham theory, we set ; = 0 and r; = 1, implying r, = m, and we take g = 0. Then, (48) yields

Vg + v + (uyv); + (1/6)vy,, — v, = 0. (49)
Equivalently, the eigenvalue problem (50a) becomes

Lv = v, (50a)
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where
L=V3;—0dzu,—(1/6)3; +{?d;. (50b)

We compute the eigenvalues A of £ numerically for each 0 < m < 1 using Floquet-Hill’s method."®
The difference between the resulting values and those obtained via Whitham theory shown in the
inset of Figure 2, which demonstrates excellent agreement between the two approaches. Note
however that, unlike the present approach, Whitham theory yields an analytical expression for
the instability growth rate. Note also that the degree of discrepancy between the two approaches
depends somewhat on the value of ¢ chosen, since the latter affects the accuracy of the numerical
scheme. The values in Figure 2 were obtained with ¢ = 5 x 10~*. This is also consistent with the
fact that the predictions of the ZKWS are only accurate in the long wave limit, as explained in
Section 3.1.

3.3 | Analytical stability theory for soliton solutions

As a final test for the predictions of Whitham theory, we now calculate the instability growth rate
for the soliton solutions analytically. That is, we look for perturbed solution in the following form:

u(x, y,£) = ue(€) + U(§) er+H, (51)

where u.(§) is the solitary wave solution [i.e., the limit m — 1 of (42)], and the second term in (51)
describes purely transversal perturbations. For concreteness, we choose r; = 0 and r, = r; = 6¢
(with the specific parameterization chosen so as to simplify the calculations that follow, similarly
to Ref. 42), and g = 0. We then have 2K,,,Z = \/E(x +qy —4ct) = \/Eé', where £ = x — 4ct, and,
as per (4),

u.(£) = 12¢ sech’(1/cé). (52)

We write the ZK equation (1) in the soliton comoving reference frame (£, y, t), which reduces
the problem to the analysis of ordinary differential equations (ODEs). We then look for a formal
asymptotic expansion in ¢ for A and U near { = 0, namely:

A= ﬂ'lg + /12{2 + O(gs), (533.)

U(&) = Ug(&) + 11¢UL(8) + 1,82U1(8) + $2UL(E) + 0(S). (53b)

We should point out the similarities and the differences between the present approach and that of
Ref. 42. The perturbation expansion above is similar in spirit to that in Ref. 42. However, Ref. 42
studied the stability of solitary waves with speed close to the critical speed of propagation, whereas
in this case we are studying the stability near zero transverse wavenumbers (i.e., in the limit of
long wavelength perturbations).

Substituting this ansatz into the ZK equation written in the comoving reference frame, at
leading order we obviously simply recover an ODE that yields the soliton solution:

u! + %u? —4cu, =0, (54)
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where primes denote differentiation with respect to £. Then the eigenvalue problem for A can be
written as

8:(M +¢{*U = AU, (55)
where
M= —6§ + 4c — 12c sech®(1/c&). (56)
We can write
AU = ¢ Up) + (LU + 4;U1) + 0(¢) (57)
and
9:MU = 3:MUy + A1{8:MU; + 1,{?0: MU, + ¢?6:MU, + 0($3). (58)

At O(1) in ¢ of the eigenvalue problem (55) we have
3:(MUy) =0, (59)
which yields U, = u/.(£). At O(¢) we have
0:MU, = U, (60)
that is,
[—6? +4c —12c¢ sechz(\/zf)] U, =12 sechz(\/zé’). (61)

It is straightforward to see that the above ODE admits the solution

Us(§) = § sech?(v/e§)(—4+ (5 + 4v/c8) tanh(V/e) ). (62)
Then, and finally, at O(¢?) we have
0:MU, + 2,Uy + 0:Uy = 1,Uy + ;U4 (63)
or equivalently
%M@:@m—%% (64)

The Fredholm solvability condition requires the right-hand side of (64) to be orthogonal to the
kernel of the adjoint of the operator in the left-hand side in order for (64) to admit solutions. Since
M is self-adjoint, the adjoint of d:M is simply MJ;. The kernel in question is thus spanned by .
Therefore, the resulting constraint is

4 [ wue d = [ucul dé, (65)
R R
and this condition determines 1,. The integrals in the above conditions are given by, respectively,

[ wu dé = =36v/c, [uuldE=— [(u))?dt = —ngcs/z. (66)
R R
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Their ratio then gives 4; as

A= — e 67)

Vis

In order to compare this result with Whitham theory, note that in that case we took r; =1,
implying ¢ = 1/6, which then yields 4, = 4/(3\/E), in perfect agreement with the results of
Section 3.1.

We should note that the above formalism can be generalized in a relatively straightforward
way to compute the instability growth rate for all periodic solutions of the ZK equation. How-
ever, the corresponding calculations are somewhat more involved, and at the moment they have
not yet led to a closed-form result similar to (67). For brevity, they are therefore deferred to a
future publication.

3.4 | Stability analysis of general periodic solutions with respect to
arbitrary periodic perturbations

In Section 3.1, after presenting the general method to study the stability of periodic solutions via
the ZKWS, for simplicity we only studied the stability properties of periodic solutions with g = 0
(i.e., with fronts parallel to the y-axis) with respect to purely transversal perturbations (i.e., with
K = 0). In this section, we now relax both assumptions and consider the most general scenario.
To do so, it is convenient to slightly reparameterize the periodic perturbations and replace the
ansatz (39) with

r(l)(x,y, t)=R elK(x cosO+y sin@)—th’ (68)

so that the parameter 0 identifies the directionality of the perturbation. The matrix eigenvalue
problem (40) is then replaced by

(cos0 A® +sin6 BO — (W/K)I,) R = 0. (69)

Similarly to Section 3.1, the eigenvalues of the matrix cos 6 A 4 5in6 BO© [i.e., the roots of the
characteristic polynomial p(W /K) = det(cos 8 A® + sin8 B© — (W /K)I,)] then determine the
linearized dispersion relation W /K. Namely, if all four roots are real, the ZKWS (22) is hyperbolic,
and the periodic solution obtained from r = r(©) is stable. Otherwise, the system is elliptic and the
periodic solution is unstable.

Similarly to Section 3.1, we now use the scaling invariance of the ZK equation to set 7; = 0 and
ry = 1, implying r, = m, and we compute the eigenvalues of cos 8 A + sin 8 B as functions
of the elliptic parameter m, slope parameter g, and perturbation angle 6. The plots in Figure 3
show the imaginary part of the four eigenvalues as a function of 8 and q for m = 0 (left panel),
m = 1/2(center panel), and m = 0.9999 (right panel). Note that, since the ZK equation is invariant
under the transformation y — —y, the stability properties when g < 0 are identical to those when
q > 0 and 6 — —0. Therefore, it is sufficient to only consider nonnegative values of q. Figure 4
summarizes the results of the calculations by showing, for the same values of m, the domains
where the imaginary part of all four eigenvalues is zero (white regions) or where at least one
eigenvalue has nonzero imaginary part (gray regions), as a function of 6 (horizontal axis) and q
(imaginary axis).
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FIGURE 3 The imaginary part of the four eigenvalues of the matrix cos 8 A© + sin 6 B as a function of 8
and q for m = 0 (left panel), m = 1/2 (central panel), and m = 0.9999 (right panel).
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FIGURE 4 The corresponding regions of stability (white) and instability (gray) as a function of 6
(horizontal axis) and q (vertical axis) for the same cases as in Figure 3.

Figure 4 shows that, for a generic nonzero value of g, and for each nonzero value of m, one
can find both values of 8 corresponding to stable perturbations and values of 6 corresponding
to unstable ones. The scenario studied in Section 3.1 (i.e., ¢ = 0) corresponds to looking at the
bottom of each plot in Figure 4, and is the only case in which all periodic waves associated to a
nonzero value of m are unstable. Nonetheless, since for each value of q there is always a range
of values of 0 for which the eigenvalues are not purely real, the system (38) is not hyperbolic in
general, and therefore the corresponding periodic solutions of the ZK equation are unstable to at
least some periodic perturbations. Thus, we conclude that the ZK equation (1) does not admit any
periodic traveling wave solutions that are stable with respect to all periodic perturbations.

4 | CONCLUDING REMARKS

In summary, we have derived the ZKWS, that is, the system of Whitham modulation equations for
the periodic solutions of the ZK equation. The ZKWS shares some similarities with the KP-
Whitham system, that is, the system of modulation equations for the KP equation. Both are
first-order systems of PDEs of hydrodynamic type, and both systems involve three time evolu-
tion equations for the Riemann-type variables rq, ..., r; plus a fourth time evolution equation for
the local slope parameter q = k,/k;. At the same time, there are some important differences
between the two modulation systems. Most importantly, the fact that the ZKWS comprises only
four PDEs, whereas the KP-Whitham system contains an additional PDE (which does not contain
time derivatives) for an auxiliary field. (As mentioned in Ref. 3, the presence of this fifth PDE is
essential for the system to correctly capture the dynamics of solutions of the KP equation.) We
also studied the harmonic and soliton limits of the ZKWS, and we used the ZKWS to study the
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transverse stability of the periodic traveling wave solutions, showing that all such solutions are
unstable with respect to a nontrivial set of periodic perturbations.

The results of this work show that the ZK equation does not admit any exact solutions describ-
ing stable two-dimensional wave patterns. An interesting open question is whether the ZKWS
can be used to study time evolution problems similarly to what was done in Refs. 43-45 for the KP
equation. The situation for the ZK equation is different because its periodic solutions are unsta-
ble. Still, it is well-known that Whitham modulation equations can be very useful even when
the underlying solutions of the PDE are unstable and the system is not hyperbolic (e.g., as in the
case of the modulational instability of constant solutions of the focusing one-dimensional NLS
equation'>'*?%), A natural question is therefore where special solutions of the ZKWS could be
useful to capture certain features of the time evolution of solutions of the ZK equation.

Obviously, it would also be interesting to study the ZKWS as a (2+1)-dimensional hydrodynamic
system on its own, independently of its connection with the ZK equation. On that note, we point
out that, similarly to what happens with the KP equation,'® solutions of the ZKWS describe the
modulation of solutions of the ZK equation only when the initial conditions for the ZKWS are
consistent with the third conservation of waves equation, that is, the constraint k, = (gk),. As
with the KP equation,3 it is straightforward to show that if this condition is satisfied at time zero,
the ZKWS ensures that it is preserved by the time evolution. A related question concerns the
possible integrability of the ZKWS. Since the ZK equation is not integrable, one would not expect
the ZKWS to be integrable. Nonetheless, it is possible that certain reductions such as the harmonic
limit and the soliton limit, could nonetheless be integrable.

All of these questions are left for future investigation, and it is hoped that the results of this
work and the above remarks will stimulate further study on these topics.
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