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Optimal Gear Shift Schedule Design for Automated
Vehicles: Hybrid System Based

Analytical Approach
Chaozhe R. He, Wubing B. Qin, Necmiye Ozay, and Gábor Orosz

Abstract— In this paper, we present a systematic design frame-
work for gear shift schedule using hybrid system theory primarily
intended for automated vehicles. The longitudinal motion of
the vehicle is regulated by a PI controller that determines
the required axle torque. The longitudinal dynamics of the
vehicle with a gear box is modeled as a hybrid system, and
an optimization-based gear shift schedule design is introduced.
This guarantees that the propulsion requirements are delivered
while minimizing fuel consumption. The resulting dynamics is
proven to be stable in the presence of constraints. We apply
our framework to heavy-duty vehicle gear shift schedule design
and evaluate the performance of the controller using numerical
simulations.

Index Terms— Automated vehicle, fuel economy, gear shift
schedule design, hybrid system, stability.

I. INTRODUCTION

NOWADAYS, ground vehicles with increased level of
autonomy and connectivity are becoming available due

to their potentials for improving safety, mobility, and fuel
economy [1]. In particular, for the longitudinal dynamics,
features, such as adaptive cruise control, are available in many
cars, and advanced concepts, such as connected cruise control,
are studied in academia and industry [2]–[4]. Current con-
nected and automated vehicle development usually focuses on
high-level controllers while relying on the traditional propul-
sion system design. However, utilizing these technologies in
the propulsion system may allow significant improvements in
efficiency and reliability.

Most ground vehicles are propelled by powertrains that use
transmissions to match the vehicle state with the state of
the engine. Transmissions enable reasonable sized engines to
drive the vehicles in a wide range of speed. Ground vehicles
driven on the U.S. roads are typically equipped with automatic
transmission (AT) or automated manual transmission (AMT),
which shifts gear in response to driver command [5].
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Designing the gear shift schedule appropriately allows one to
improve the fuel economy, and therefore, it is a key component
of transmission design. Traditional gear shift schedules are
typically designed as a static map on the plane of the driver
command (throttle/pedal position) and vehicle speed.

A recent trend in a gear shift schedule design is to focus on
better interpretation of the driver’s intention and estimation of
road environment [6]–[12]. However, including driver demand
in the gear shift schedule design explicitly can make the design
very challenging, and optimality may be difficult to achieve.
For connected and automated vehicles, axle torque demand
is explicitly assigned, and thus can be met by setting the
engine torque and the gears appropriately while bypassing
the need for monitoring driver demand. As shown in Fig. 1,
the gear shift schedule design can be carried out based on
torque demand and vehicle speed, while the design parameters
have clear physical meanings and can be adjusted according
to driving conditions. With a properly designed pedal-torque
map, the same gear shift schedule can also be used in the
human driven mode. Moreover, the automated vehicle may
utilize traffic information to meet the torque demand while
minimizing fuel consumption, so that the drivability and
towing ability of the vehicle are not compromised. Meeting
all these requirements in a reliable manner requires a rigorous
mathematical approach.

The dynamics of an automated vehicle with AT/AMT can be
modeled as a hybrid system, which contains dynamic variables
of both discrete and continuous types [13]–[15]. Analyzing
the dynamics of these systems is challenging especially when
the governing equations are nonlinear [16]–[18], and this is
certainly the case for automobiles and trucks. Driver as an
advanced controller can handle many complicated scenarios.
Integrating controllers over a powertrain designed for a human
driven vehicle may require a lot of efforts on testing and tuning
so as to make a safe overall system for an automated vehicle.
To bypass this, we take a simplified approach that is primarily
tailored for automated vehicles through the framework sug-
gested in Fig. 1. Specifically, we propose a framework for
gear shift schedule design for AT/AMT that is based on a first
principle dynamic model and direct optimization. By using
methods from hybrid systems, we prove the stability of the
gear shift design under state and input constraints. Based on
our analysis, we improve the fuel economy of a class 8 heavy-
duty truck.

The remainder of this paper is organized as follows.
In Section II, we describe the modeling framework that
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Fig. 1. Gear shift schedule implementation for automated vehicles, where Ta is the required axle torque, v is the speed of the vehicle, Te is the engine
torque, ωe is the engine speed, and u is the commanded acceleration of the vehicle.

leads to a hybrid system. Then, we present the shift sched-
ule design framework in Section III and prove that it can
be used to achieve stable operating points in Section IV.
In Section V, we apply the proposed design to a heavy-duty
vehicle and demonstrate the effectiveness of our proposed
framework under different requirements over in-production
design. Finally, we conclude this paper in Section VI.

II. VEHICLE DYNAMICS WITH GEAR CHANGES

In this section, we describe the longitudinal dynamics of
the vehicle with gear shift. We study forward driving only, and
therefore, we develop the model for nonnegative vehicle speed.
We, then, rewrite the equations using engine-based quantities
to include the gear change explicitly. In order to make the
problem analytically tractable, the longitudinal motion of the
vehicle is modeled by differential equations, the engine fuel
consumption is calculated using a static map, and the gear
shifts are considered to be instantaneous.

A. Modeling Vehicle Dynamics

Here, we use the longitudinal vehicle model from [2]
and [19]. Neglecting the flexibility of the suspension and the
tires, Newton’s second law yields

meff v̇ = −mg sin φ−γ0mg cosφ−k0(v + vw)2+ ηTe + Tb

R
(1)

where meff = m + J/R2 is the effective mass, containing
the mass of vehicle m, the mass moment of inertia J of the
rotating elements, and the wheel radius R. Also, g is the grav-
itational constant, φ is the inclination angle, γ0 is the rolling
resistance coefficient, k0 is the air drag constant, vw is the
velocity of the head wind, and η is the gear ratio. Since we
assume that the vehicle is traveling forward, we have η > 0.
Finally, Te is the engine torque, and Tb is the braking torque,
which are the control inputs that we need to design. For
simplicity, we assume that the vehicle is traveling on a flat
road with no headwind, i.e., φ = 0 and vw = 0. Thus, we have

v̇ = −γ g − k v2 + u (2)

where

γ = m

meff
γ0, k = k0

meff
, u = ηTe + Tb

meff R
(3)

and the input u has unit [m/s2], so it can be considered as the
commanded acceleration.

In general, the control may lead to v < 0. Here, we design
a controller that ensures the invariance of the region v ≥ 0.
In particular, we specify the control law at v = 0, such that,
if u ≥ γ g, v̇ is still given by (2), while if u < γ g, we select u,
such that v̇ = 0. This is equivalent to

v̇ = − f (v) + u (4)

where

f (v) =
{

γ g + kv2, v > 0

min{γ g, u|v=0}, v = 0.
(5)

In order to start the vehicle at v = 0, one needs u > γ g to
obtain v̇ > 0, and otherwise, the vehicle remains stand still.
On the other hand, when v = 0, for u < γ g, f (0) could take
values, such that v̇ = 0, which makes the graph of f (0) a line
section instead of a single point.

For simplicity, the control input u is given by the PI
controller

u = KPẇ + KIw

ẇ = vr − v. (6)

Thus, [4]–[6] give the closed-loop dynamics

v̇ = − f (v) + KP(vr − v) + KIw

ẇ = vr − v (7)

that can be rewritten in terms of the variables v and u as

v̇ = − f (v) + u

u̇ = −KP(− f (v) + u − v̇r) − KI(v − vr). (8)

When considering constant reference speed vr(t) ≡ v∗
r > 0,

system (8) possesses the equilibrium

v∗ = v∗
r

u∗ = f
(
v∗

r

)
. (9)

Remark 1: All the analyses, in this paper, can be extended
to f (v) that satisfies

f (v) > 0,
d f

dv
> 0,

d2 f

dv2 > 0, ∀v > 0 (10)

as no analysis uses explicitly the detailed form of f .
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B. Introducing Gear Change

Assume that the transmission system has N gears, i.e., η ∈
{ηi |i ∈ {1, 2, . . . , N}}. Then, with the i th gear applied,
the angular speed of the engine and the engine torque are
given by

ωe = ηi

R
v, Te = meff R

ηi
u (11)

that defines a linear transformation from the (v, u)-space to
the (ωe, Te)-space. Henceforth, the closed-loop dynamics (8)
can be rewritten as

ω̇e = ηi
R f

(
R
ηi

ωe

)
+ η2

i
meff R2 Te

Ṫe = −meff RKP
ηi

(
− f

(
R
ηi

ωe

)
+ ηi

meff R Te − v̇r

)

− meff RKI

ηi

(
R

ηi
ωe − vr

)
. (12)

With gear change, this can be written into the compact form[
ω̇e(t)
Ṫe(t)

]
= Fi (ωe(t), Te(t), vr(t)), if [ω̇e(t), Ṫe(t)] ∈ Xi⎡

⎣ωe(t+)
Te(t+)

i(t+)

⎤
⎦ = S(ωe(t

−), Te(t
−), i(t−)),

if [ωe(t
−), Te(t

−)] ∈ ∂Xi(t−) (13)

for i ∈ {1, . . . , N}. The function Fi represents the right-
hand side of (12), and it describes the continuous time
dynamics for gear i when the state evolves inside the set Xi .
Moreover, S represents the gear shift schedule to be designed
and describes the switches at the boundary of the set Xi

(denoted by ∂Xi ), while t− and t+ denote the moment right
before and right after a gear shift, respectively. In Section III,
we design the gear shift schedule to achieve optimal fuel
consumption, while in Section IV, we formally prove that the
proposed design guarantees the stability of the overall hybrid
system (13), that is, the stability of the equilibrium (9) of
system (8) under gear change.

III. GEAR SHIFT SCHEDULE DESIGN

In this section, we explain the gear shift design process.
For simplicity, we assume that the efficiency coefficients of
torque delivery at different gears are the same. As shown by
the numbers in Table III, this is a very good approximation.

A. Design Process

The goal of gear shift schedule design is to select the
gear that minimizes the fuel consumption while allowing the
transmission to deliver the acquired torque/power. The fuel
consumption can be quantified by measuring the mass flow
rate of fuel ṁf = q(ωe, Te) as a function of the engine speed
ωe and engine torque Te. To determine how efficiently the
engine uses fuel while producing power P = ωeTe, one can
use the brake specific fuel consumption (BSFC) defined by

BSFC = g(ωe, Te) = ṁf

P
= q(ωe, Te)

ωeTe
(14)

Fig. 2. Conceptual BSFC map. The blue contours correspond to the constant
levels of BSFC g(ωe, Te) = c, the gray curves represent the iso-power curves
and the black curves represent the limitation of the engine. Since the gray
region is only accessible in certain gears, the blue region is considered as the
engine operating region. (Best viewed in color.)

(see [20]). Therefore, minimizing BSFC increases fuel
efficiency. In practice, the function g(ωe, Te) is nonlinear and
does not have an analytical expression, but it may be acquired
experimentally and one may use interpolation to obtain the
value of g for combination of (ωe, Te), where measurements
are not available.

In Fig. 2, the contours of a conceptual BSFC map are plotted
as blue curves, together with the maximum and minimum con-
straints on the engine torque and engine speed, i.e., C(ωe) ≤
Te ≤ C(ωe) and ωe ≤ ωe ≤ ωe. Note that the gray
region is only accessible in certain gears (i.e., a gear change
would lead to a working point where the engine limitation
is exceeded) and it is typically very small in practice. Thus,
to simplify the derivation, we use the iso-power curve corre-
sponding to Pmax to bound the blue operating region that is
given by

ωe ∈ [ωe, ωe], Te ∈ [C(ωe), C(ωe)], Teωe ≤ Pmax. (15)

We assume that g(ωe, Te) has a minimum in the operating
region (15).

Also note that an engine can output negative torque, but
the maximum absolute value of the negative torque is much
smaller than that of the positive torque. As fuel consumption
measurements are typically available for positive torque values
only, we assume that the fuel consumption is zero along the
minimum torque curve C(ωe) and use interpolation to obtain
the fuel consumption for negative torque values. Still, for
Te ≤ 0, we use the strategy designed for small Te > 0 in
order to avoid difficulties due to singularity of the BSFC at
Te = 0 [see (14)].

We assume that the gear ratio is monotonically decreasing
and no gear skipping is possible, that is

η1 > η2 > · · · > ηN

i(t+) = {i(t−) − 1, i(t−) + 1} (16)
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Fig. 3. Gear shift concept. (a) Magenta contours, blue contours, and purple contours represent the BSFC level sets as functions of the vehicle speed v and
commanded acceleration u at the (i − 1)st, i th, and (i + 1)st gear, respectively. Connecting the intersections of BSFC contours results in the ideal shift curves
hi−1,i = hi,i−1 and hi,i+1 = hi+1,i shown as green curves that bound the ideal working region for the ith gear highlighted as blue. (b) Capping the ideal
shift curves with constraints due to engine limitations [see (15)]. The resulting constrained working region for the ith gear is bounded by the green curves
H 0

i−1,i = H 0
i,i−1 and H 0

i,i+1 = H 0
i+1,i , and is shaded as blue. Moving the upshift curves to H ε

i,i+1 and H ε
i−1,i , as shown by the blue curves, while leaving

the downshift curves intact, i.e., having H ε
i,i−1 = H 0

i,i−1 and H ε
i+1,i = H 0

i+1,i to the right, as shown by the red dashed curves, generate overlap regions
between adjacent gears. The union of the blue and the red shading is the actual working region for the ith gear denoted by Xi . (Best viewed in color.)

for i ∈ {1, . . . , N} and k = 1, 2, . . . We also assume that
shifting happens instantaneously along the iso-power curves
shown as light gray curves in Fig. 2. Mathematically, such
gear shift process is described as

meff uv = Te,iωe,i ,
ωe,i

ηi
= ωe,i+1

ηi+1
, Te,iηi = Te,i+1ηi+1

(17)

for i ∈ {1, . . . , N − 1}.
Our gear change strategy is to choose the gear with

smallest BSFC value, which is shown graphically in
(v, u)-space in Fig. 3(a). The blue contours correspond
to g(ηiv/R, meff Ru/ηi ) = g(ωe,i , Te,i ) = c, the purple
contours correspond to g(ωe,i+1, Te,i+1) = g(ηi+1v/R,
meff Ru/ηi+1) = c, while the magenta contours
correspond to g(ωe,i−1, Te,i−1) = g(ηi−1v/R, meff Ru/
ηi−1) = c. The ideal upshift curve hi,i+1(v) from gear i to
gear i + 1 is determined by the solution of

g

(
ηiv

R
,

meff Rhi,i+1(v)

ηi

)
= g

(
ηi+1v

R
,

meff Rhi,i+1(v)

ηi+1

)

(18)

that is visualized in Fig. 3(a) by the green curves obtained from
intersections of blue and purple contours (green dots). To be
able to solve (18) for the function hi,i+1(v), the conditions
for implicit function theorem are assumed to hold. Crossing
this curve to the right, i.e., shifting one gear up, shall give
a smaller BSFC value. Note that this is also the ideal down-
shift curve from gear i + 1 to gear i , that is, hi+1,i (v) =
hi,i+1(v). Similarly, between the i th and (i −1)st gear, we can

construct hi−1,i (v) = hi,i−1(v) and define the operating
region for the i th gear, which is shown as the shaded blue
in Fig. 3(a).

The ideal curves should be further tuned to satisfy the con-
straints given by the engine [see (15)], as shown in Fig. 3(b).
These constraints include minimum and maximum speed con-
straints (v i = ωe R/ηi and v i = ωe R/ηi ), engine maximum
torque and minimum torque (Ci (v) and Ci (v)), and maximum
power Pmax. The modified curves are denoted by H 0

i,i+1 =
H 0

i+1,i and H 0
i−1,i = H 0

i,i−1, where the superscripts refer to
the fact that the curves are given in the form H 0

j,k(v, u) = 0.
These green curves bound the new ideal working region of
the i th gear, indicated by blue shading in Fig. 3(b). Note that
depending on the engine specification, some of the constraints
above may not be part of the boundary of the working
region.

The above ideal working regions will lead to ambiguity in
gear selection for (v, u) pairs that sit exactly on the curve
H 0

i,i+1 = H 0
i+1,i . To avoid this, we introduce hysteresis

by generating a small overlap region between the gears by
splitting the curves to H ε

i,i+1 �= H ε
i+1,i . For example, between

the i th and (i + 1)st gears, we move the upshift curve to
the right (that is, H ε

i,i+1 �= H 0
i+1,i ) as shown by the blue

solid curve in Fig. 3(b), while keep the downshift curves at
the ideal curve (that is, H ε

i+1,i = H 0
i+1,i ) as shown by the

red dashed curve in Fig. 3(b). The same strategy is applied
between the (i − 1)st and the i th gears. We can now define
the actual working region Xi for the i th gear, which is the
union of the blue and the red regions in Fig. 3(b), while ∂Xi is
given by the blue solid curves on the right and the red dashed
curve on the left. Thus, the gear shift schedule (13) can be
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formally written as

⎡
⎣ωe(t+)

Te(t+)
i(t+)

⎤
⎦ =

⎡
⎢⎢⎢⎣

ωe(t−)
ηi(t−)+1

ηi(t−)

Te(t−)
ηi(t−)

ηi(t−)+1
i(t−) + 1

⎤
⎥⎥⎥⎦

if H ε
i,i+1

(
ωe(t−) R

ηi(t−)
, Te(t−)

ηi(t−)

meff R

)
= 0,

∇H ε
i,i+1|t=t− ·

⎡
⎢⎣ω̇e(t−)

R

ηi(t−)

Ṫe(t−)
ηi(t−)

meff R

⎤
⎥⎦ > 0 (19)

and

⎡
⎢⎣

ωe(t+)

Te(t+)

i(t+)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

ωe(t−)
ηi(t−)−1

ηi(t−)

Te(t−)
ηi(t−)

ηi(t−)−1
i(t−) − 1

⎤
⎥⎥⎥⎦

if H ε
i,i−1

(
ωe(t−) R

ηi(t−)
, Te(t−)

ηi(t−)

meff R

)
= 0,

∇H ε
i,i−1|t=t− ·

⎡
⎢⎣ω̇e(t−)

R

ηi(t−)

Ṫe(t−)
ηi(t−)

meff R

⎤
⎥⎦ > 0 (20)

where ∇ is the gradient operator for multivariable functions
[see the vectors in Fig. 3(b)] [see (17) and (18)].

In Section IV, we will show that having overlap regions
between gears is crucial for the stability of system (13). The
size of the overlap region will affect the performance of the
gear shift schedule as will be demonstrated through a case
study on a heavy-duty vehicle in Section V.

IV. STABILITY WITH GEAR CHANGES

In this section, we prove that the hybrid system (13) is
stable in the sense of Lyapunov with the proposed gear shift
schedule (19) and (20). Before stating the main results of the
section, we present some useful definitions, all of which are
visualized graphically in Fig. 4.

Definition 1: A partition of a compact set X ⊆ R
2 is a

collection of subsets {Pi }k
i=1, Pi ⊆ X , Pi �= ∅, such that⋃k

i=1 Pi = X and Pi
⋂

Pj = ∅,∀i �= j .
As shown in Fig. 4(a), the partition means that the Pi -s

covers the set X and that there is no intersection between
the Pi -s.

Definition 2: Given a partition {PN
i }k

i=1 of a compact set
X ⊆ R

2, let Ni = { j ∈ N
+ | ∂ PN

i ∩ ∂ PN
j �= ∅, i �= j}. Then,

{PN
i }k

i=1 is called a two-neighbor partition if |Ni | ≤ 2.
Here, |S| denotes the number of element of the set S and

∂S denotes the boundary of the set S. The superscript “N”
stands for neighbor. The definition means that the PN

i -s covers
the set X and that each PN

i has at most two neighbors
[see Fig. 4(b)].

Definition 3: Given a partition {Pi }k
i=1, an ε-partition of

a compact set X ∈ R
2 is a collection of subsets {Pε

i }k
i=1,

Pε
i ⊆ X , Pε

i �= ∅, such that
⋃k

i=1 Pε
i = X and

Fig. 4. Visualization of definitions. (a) Partition. (b) Two-neighbor partition.
(c) ε-partition. (d) Two-neighbor ε-partition.

Pε
i \Pε

j �= ∅,∀i �= j , where ε = inf{ρ > 0|Pε
i ⊆ (Pi

⊕
Bρ)∩

X ,∀i}.
Here, Bρ denotes a ball with radius ρ around the origin

and
⊕

denotes the Minkowski sum defined by A
⊕

B =
{z = x + y|x ∈ A, y ∈ B}. This definition means that the
Pε

i -s covers the set X and that each Pε
i overlaps with its

neighbors, while ε is the smallest radius for the ball that
allows us to cover the overlap regions [see Fig. 4(c)]. It is
clear that as ε → 0, an ε-partition {Pε

i }k
i=1 converges to a

partition {Pi }k
i=1.

Definition 4: A two-neighbor ε-partition of a compact
set X is an ε-partition {PNε

i }k
i=1 of that set, such that

|Ni | ≤ 2,∀i and QNε
i, j

⋂
QNε

i,l = ∅, ∀ j, l ∈ Ni where Ni =
{ j ∈ N

+ PNε
i

⋂
PNε

j �= ∅, i �= j} and QNε
i, j = PNε

i

⋂
PNε

j .
This definition means that the PNε

i -s covers the set X and
each PNε

i overlaps with its neighbors, but there will be at most
two neighbors for each PNε

i [see Fig. 4(d)].
Lemma 1: Given a two-neighbor ε-partition of a set X ,

{PNε
i \(⋃ j∈Ni

QNε
i, j )}k

i=1

⋃{⋃ j∈Ni
QNε

i, j }k
i=1 gives a partition

of the set X .
Proof: This is trivial since there is no intersection between

any two intersections of any two of the partition elements
QNε

i, j = PNε
i

⋂
PNε

j . �
Lemma 2: A full-rank affine transformation preserves par-

tition (or ε-partition or two-neighbor partition or two-neighbor
ε-partition) of a set X ⊆ R

2.
Proof: We prove this by contradiction. Suppose that the

image of a partition is not a partition any more. It could be that⋃k
i=1 Pi �= X or ∃i �= j , Pi

⋂
Pj �= ∅. Both cases imply that

∃Q ∈ Im(X ), Q �= ∅, such that Pre(Q) = ∅, that is, the affine
transformation maps a point to a nonempty set, which cannot
be true for a full-rank affine transformation. �

Using Lemma 2, we can conclude that if the shift sched-
ule (19) and (20) gives a two-neighbor ε-partition, it maps
all the equilibria of the system (8) that are not located in
an overlap region to a unique equilibrium of the switched
system (13). If an equilibrium of (8) is located in the overlap
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Fig. 5. Phase plane dynamics of system (8) with constraints (26) for different control parameters as indicated. Trajectories starting from different initial
points are marked as brown curves. The green curves denote the nullclines u = f (v), and u = (KI/KP)(v∗ − v) + f (v) and they intersect at the equilibrium
denoted by the black dot. The black solid pluses denote the exit points of trajectories along the boundary arcs. (Best viewed in color.)

region, the shift schedule (19) and (20) will not map it to a
unique equilibrium of (13). We will deal with this issue in
Theorem 1.

Next, we define the working region of (8) on the
(v, u)-plane. In particular, the power limit of the engine results
in

u ≤ Pmax

meffv
. (21)

Besides this, we also impose the maximum and minimum
constraints

umin ≤ u ≤ umax (22)

where umin comes from braking torque limit, and it can only
be applied when v > 0, while umax is an upper bound due
to the torque limitation of the engine (e.g., C(ωe)), and other
physical limits at low vehicle speed. The speed where (21)
starts to become active and (22) starts to become inactive is
given by

vswitch = Pmax

meff umax
. (23)

Note that due to the relation between w and u given
by (6), (21) and (22) impose constraints on w as well. This
saturation, in fact, may lead to an antiwindup mechanism that
improves the performance of the PI controller [21]. Recall that
according to (5), umax > γ g is needed to start a stationary
vehicle. Finally, we restrict ourselves to the speed range

0 ≤ v ≤ vmax (24)

where vmax is chosen to be the maximum steady-state speed
given by

Pmax − meff f (vmax)vmax = 0. (25)

Since f is monotonically increasing for positive speed, vmax
is unique.

Therefore, the constrained working region is given by{
(v, u)|v ∈ [0, vmax], u ∈

[
umin, min

(
umax,

Pmax

meffv

)]}
(26)

that is enclosed by the black curves in Fig. 5. Lemma 3 states
the stability conditions for an equilibrium of (8) within this
domain.

Lemma 3: If condition (10) holds, by choosing the feed-
back gains as

KP >
Pmax

meffv
2
switch

, KI > KP f ′(vmax) (27)

the equilibrium (9) of system (8) is asymptotically stable and
(26) is the region of attraction.

The details of the proof are given in Appendix A, where
we propose a Lyapunov function and first show asymptotic
stability of the equilibrium without constraints. Then, we show
that the trajectories join and leave the boundaries of (26) at
particular points [see the inlets in Fig. 5(a)] and that the value
of the Lyapunov function decreases while traveling along the
boundaries. We remark that the conditions on KP and KI in
Lemma 3 are easy to satisfy, as f ′(vmax) > 0 is usually
small.

In Fig. 5, we show trajectories as brown curves starting
from multiple initial conditions (marked by brown crosses),
for reference speed v∗ = 20[m/s], for two different sets
of control parameters as indicated earlier. The conditions in
Lemma 3 are satisfied in both cases. Indeed, all trajectories
in Fig. 5 converge to the equilibrium denoted by black
dots. In Fig. 5(a), the equilibrium appears as a focus, while
in Fig. 5(b), it appears as a node. The green curves denote
the nullclines u = f (v) and u = (KI/KP)(v∗ − v) + f (v)
[see (8)] that intersect at the equilibrium. The nullclines
are utilized in the proof in Appendix A. The black solid
pluses denote the points along the boundary arcs where the
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Fig. 6. Sketch of the proof of Theorem 1. Trajectories associated
with different cases, with the zoomed-in view of the part of the figures.
In cases 1 and 2, the equilibrium is in the nonoverlap region and the
trajectory evolves either without gear change (case 1) or with finitely many
gear changes (case 2). In case 3, the equilibrium is in the overlap region,
and the gear at the equilibrium depends on the initial states. (Best viewed
in color.)

trajectories leave the arcs as highlighted by the inlets. These
can be calculated analytically [see (36) in Appendix A].

Before presenting the main theorem, we require one more
assumption that should be satisfied when designing the shift
schedule.

Assumption 1: The gear shift schedule (19) and (20) gives
a two-neighbor ε-partition in the (v, u)-space. If ε = 0,
the gear shift schedule gives two-neighbor partitions in the
(v, u)-space.

In practice, the BSFC map is usually close to a quadratic
function with one minimum point, and it can be checked that
for a quadratic BSFC function, Assumption 1 holds. As will
be shown in the following, this assumption is essential to
prove the stability of a gear switch schedule, so one shall
generate a two-neighbor ε-partition in the (v, u)-plane even
when the BSFC is more complicated. Based on all definitions,
lemmas, and assumptions, we are now ready to present the
main theorem.

Theorem 1: If Assumption 1 and Lemmas 1–3 hold, the tra-
jectories will approach the equilibrium while having finitely
many gear changes.

The details of the proof are given in Appendix B. The idea
behind the proof is to categorize all different cases and show
stability of the system (13), respectively. All the three different
possibilities are shown in Fig. 6, where initial conditions
are denoted by brown crosses, the equilibrium is denoted
by black dot, and different line styles of the trajectories
indicate different gears. We emphasize again that the stability
of system (13) requires implicitly the fact that the gear shift
schedule (19) and (20) gives a two-neighbor ε-partition in the
(v, u)-space.

We remark that stability of system (13) with certain gear
shift schedule does not require specific structure of the con-
troller. The proof of Theorem 1 relies only on the fact that the
equilibrium of the controlled system in (v, u)-space is stable.
Therefore, the gear shift schedule design may be generalized to

Fig. 7. Procedure of generating the two-neighbor ε-partition gear shift
schedule from the ideal shift curves (green). Through the indicated shifting
using ε1 and ε2, the actual upshift (blue) and downshift (red dashed) curves
are obtained. (Best viewed in color.)

more general and nonlinear controllers, such as those presented
in [2] and [22].

V. APPLICATION OF THE GEAR SHIFT SCHEDULE

DESIGN FOR A HEAVY-DUTY VEHICLE

In this section, we apply the proposed method to the
gear shift schedule design of a class 8 truck. In particular,
we consider a Prostar truck manufactured by Navistar that
is equipped with a MaxxForce 13 liter diesel engine and a
ten speed AMT. The parameters for the vehicle are given
in Table III in Appendix C. The gear ratios ηi in (16) are
given by the corresponding value in Table III times the final
drive ratio. Similar to the gear ratio, the efficiency is calculated
by the corresponding number in Table III times the efficiency
of the final drive. During simulations, the mild difference in
efficiency of torque delivery at different gears is also taken
into account. We also set Pmax = 330 [kW], umax = 2[m/s2],
and umin = −2[m/s2], yielding vmax = 40.70[m/s].

Using the proposed gear shift schedule design, the ideal
shift curves H 0

i,i+1 = H 0
i+1,i and H 0

i,i−1 = H 0
i−1,i are shown

as green solid curves in Fig. 7. Note that each H 0
i,i+1 consists

of two sections. The vertical line at the bottom up to blue dot
is resulted from the low engine speed limit, i.e., v i = ωeηi/R.
We refer to this section as the lower section. The rest of
the curve H 0

i,i+1 is called the upper section. To generate a
two-neighbor ε-partition in the (v, u)-space, we shift the ideal
curve H 0

i,i+1 to the right in order to get the upshift curve
H ε

i,i+1 while keeping downshift curve as H ε
i+1,i = H 0

i+1,i .
The curve H ε

i,i+1 is obtained in three steps. First, the lower
section of H 0

i,i+1 is shifted to the right with ratio ε1, that is,
from H 0

i,i+1 to H 0
i,i+1+ε1(H 0

i+1,i+2−H 0
i,i+1), as shown by the

black dashed arrows in Fig. 7. Second, the upper section of the
new H 0

i,i+1(v, u) is shifted along iso-power curves, that is from
H 0

i,i+1(v, u) = 0 to H 0
i,i+1((1+ε2)v, u/(1+ε2)) = 0, as shown

by the black solid arrows in Fig. 7. Finally, the upshift curve
H ε

i,i+1 is generated by extending the lower section toward
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Fig. 8. Performance of the system (13) with the gear shift schedule [see (19) and (20)]. (a) Trajectory in the (v, u)-space, with the corresponding gear
indicated by the line styles. (b) Time profiles of the reference speed vr and the vehicle speed v . (c) Time profile of the gear. (Best viewed in color.)

Fig. 9. Performance of the system (13) with proposed gear shift schedule while following different driving cycles. The top (a) and (d) and middle (b) and
(e) rows show the speed profiles of both optimal design (brown) and in-production benchmark design (red) while following the driving cycle (dashed black).
The bottom (c) and (f) row shows the corresponding gear profiles. (Best viewed in color.)

the upper section as shown by the blue curve in Fig. 7.
The downshift curves are shown as red dashed curves, and
they coincide with the ideal green curves.

All upshift and downshift curves are shown in the
(v, u)-space in Fig. 8(a) when choosing ε1 = 0.15 and
ε2 = 0.05. Indeed, a two-neighbor ε-partition in (v, u)-space
is generated, so Assumption 1 holds, and thus, the stability
of (13) is guaranteed by Theorem 1. We remark that larger ε-s
leads to better drivability in traditional sense [7], as they make
the vehicle stay at a lower gear compared with the ideal design,
making the maximum available power larger at a given speed.

On the other hand, increasing ε-s pushes the design away
from the ideal curves and thus lowers the fuel economy. Thus,
the ε-s can be used for tuning between fuel economy and
drivability.

Numerical simulations are carried out to show the effec-
tiveness of the proposed design. The feedback gains in (8)
are set to KI = 0.5[1/s2] and KP = 6[1/s]. As the condition
of Lemma 3 holds, stability of the equilibrium is guaranteed.
The simulation uses a time step of 0.01 [s], and the gear shift
decision made at each time step is applied in the next step.
In Fig. 8(b), we first show the case where controller (6)
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Fig. 10. Performance of the system (13) with the proposed gear shift schedule while following filtered cycles. The top (a) and (d) and middle (b) and (e)
rows show the speed profiles of both optimal design (brown) and in-production benchmark design (red) while following the filtered cycles (dashed blue). The
bottom (c) and (f) row shows gear profiles corresponding to the two difference speed profiles. (Best viewed in color.)

tries to follow a test cycle marked as a black dashed curve.
The resulted time profile of the speed is shown by the solid
brown curve in Fig. 8(b), while the time profile of the gear
engaged is displayed in Fig. 8(c). In the last part of the cycle,
the reference speed is set as a constant vr = 15[m/s], and the
vehicle speed approaches this equilibrium. The corresponding
trajectory is plotted in the (v, u)-plane in Fig. 8(a), with the
gear engaged indicated by line type.

Next, we simulate cases where controller (6) is used to fol-
low real driving cycles. In particular, we use two different EPA
driving cycles, the heavy-duty urban dynamometer driving
schedule (HUDDS) cycle and the New York City (NYC) cycle,
shown as black dashed curves in Fig. 9(a), (b), (d), and (e),
respectively. We compare the results using the proposed gear
shift map and the in-production gear shift map implemented in
the Navistar Prostar. The time evolution of the speed is shown
in Fig. 9(a) and (d) for the optimal design (brown curves)
and in Fig. 9(b) and (e) for the in-production benchmark
design (red curves), while the corresponding gear profiles are
shown in Fig. 9(c) and (f). The fuel performance and the
tracking performance are summarized in Table I. In both cases,
the controller manages to follow the reference speed closely,
but the proposed gear shift map can achieve a better tracking
performance with less fuel consumption.

However, frequent gear changes with the proposed opti-
mal design can be seen, especially for the HUDDS cycle.
For the HUDDS cycle, downshift at high speed happens when
a large acceleration is needed, while for the NYC cycle,
the frequent change is caused by both large deceleration and
large acceleration.

TABLE I

FUEL CONSUMPTION AND TRACKING PERFORMANCE COMPARISON

BETWEEN PROPOSED DESIGN AND IN-PRODUCTION

BENCHMARK DESIGN WHILE FOLLOWING THE
ORIGINAL DRIVING CYCLES

With traffic information available, an automated vehicle
may plan the torque demand, so large variation of the torque
demand can be avoided [23]. As an example, we filtered
the original driving the HUDDS and the NYC cycles using
a moving average filter of window size 5 [s], and fed the
filtered cycle to the controller. This mimics a predictive
controller for an automated vehicle with the prediction window
of 2.5 [s]. The time profiles of the speed and the gear of
the filtered cycles are shown in Fig. 10(a), (b), (d), and (e)
as dashed blue curves. For filtered cycles, the controller still
manages to follow the reference speed closely as shown by
the brown and red curves. The corresponding gear profiles
in Fig. 10(c) and (f) show that by providing a smoother
speed profile (and therefore requiring lower torque), frequent
gear changes can be avoided. In Table II, the fuel con-
sumption and the tracking performance are summarized for
the cases when the truck tries to follow the filtered cycle.
It can be seen that a large improvement in fuel economy
is achieved by filtering without creating a noticeable differ-
ence in the tracking error. The improvement of the proposed
design over in-production design becomes more significant.
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TABLE II

FUEL CONSUMPTION AND TRACKING PERFORMANCE COMPARISON
BETWEEN PROPOSED DESIGN AND IN-PRODUCTION

BENCHMARK DESIGN WHILE FOLLOWING THE

FILTERED DRIVING CYCLES

These imply that by integrating the proposed gear shift design
with proper speed profile planning, the automated vehicle
could be driven both safely and fuel efficiently. To sum up, our
framework guarantees the stability and efficiency of propulsion
system, and enables further improvement in fuel economy
with driving cycle planning for an automated vehicle while
achieving better fuel performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a gear shift schedule
design primarily intended for automated vehicles. We used
Lyapunov arguments to prove the stability of equilibrium of
the underlying constrained hybrid dynamical systems in the
presence of constraints. Our design guarantees that the torque
demand is delivered at the most fuel efficient gear. That is,
fuel economy is improved without compromising drivability.
It was shown that further improvements in fuel economy can
be achieved by requesting smoother speed profile through
automation.

In the future, we would like to: 1) extend the stability proof
on hybrid system to cases with gear skip, power loss, and
noninstantaneous gear shift; 2) improve the longitudinal con-
troller by tuning of the PI-gains and using more sophisticated
feedback design, such as feedback linearization; 3) explore
other solutions at lower level to prevent frequent gear changes;
and 4) investigate the effect of dynamic fuel consumption map
on the proposed gear shift map.

APPENDIX

A. Proof of Lemma 3

We will prove the lemma in two steps. First, we show
that without constraints, the equilibrium (9) is stable.
Second, we show that adding (21), (22), and (24), the con-
strained working region (26) is still invariant, and the equilib-
rium (9) is still stable. Note that for a given v∗, equilibrium
(9) is unique.

Defining the perturbations

ṽ = v − v∗

ũ = u − u∗ (28)

(8) can be rewritten as

˙̃v = − f (ṽ + v∗) + ũ + u∗
˙̃u = −KP(− f (ṽ + v∗) + ũ + u∗) − KIṽ. (29)

Choosing the Lyapunov function

V (ṽ, ũ) = 1

2
KIṽ

2 + 1

2
(ũ + KPṽ)2 (30)

with KI > 0 and KP > 0, we obtain the Lie derivative

V̇ (ṽ, ũ) = KIṽ ˙̃v + (ũ + KPṽ)( ˙̃u + KP ˙̃v)

= KI(− f (ṽ + v∗) + f (v∗))ṽ − KI KP ṽ2

= KI(− f ′(ξ) − KP)ṽ2. (31)

In the last step, the mean value theorem is applied to f
assuming v > 0, which ensures that there exists ξ satisfying

f (ṽ + v∗) − f (v∗) = f ′(ξ)ṽ (32)

where ξ = ξ(ṽ) > 0. Thus, (31) is negative semidefinite
when v > 0. Applying the LaSalle–Krasovskii invariance
principle, it can be shown that the largest invariant set within
V̇ = 0 is (ṽ, ũ) = (0, 0). Therefore, the equilibrium is
asymptotically stable.

Next, we show that in the presence of state constraints (24)
and control constraints (21) and (22), the stability of the
equilibrium can still be guaranteed. We show that the dynamics
can be maintained along boundaries v = 0, u = umin,
u = umax, and meffuv = P , and that when a trajectory enters
one of these boundaries (at time ten) and leaves it (at time tex),
then the Lyapunov function decreases between tin and tex.
We first determine the dynamics along the boundaries and
determine the exit points (v(tex), u(tex)). Then, we show that
the Lyapunov function (30) decreases while traveling along
the boundary arcs, by comparing v(tex) − v∗ with v(ten) − v∗,
and u(tex) − u∗ with u(ten) − u∗.

1) Along v = 0: Below the nullcline u = f (v), we have
v̇ < 0, while above it, we have v̇ > 0 (see Fig. 5). Correspond-
ing to this, a trajectory can only enter the v = 0 boundary
below the point where the nullcline intersects it (marked as
a black plus in Fig. 5), i.e., u(ten) < f (0) = γ g. Along
this section, we have v̇ = 0 and u̇ = KIv

∗ > 0 according
to the dynamics (8). That is, the trajectory keeps traveling
upward on v = 0 until it reaches the nullcline at tex where
u(tex) = f (0) = γ g. Comparing the states at ten and tex,
we have v(ten) = v(tex) = 0 and u(ten) < u(tex) < u∗, which
imply

|v(tex) − v∗| = |v(ten) − v∗|
|u(tex) − u∗| < |u(ten) − u∗|

(u(tex) − u∗)(v(tex) − v∗) < (v(ten) − v∗)(u(ten) − u∗).
(33)

Substituting these into the Lyapunov function (30), we obtain

V (ṽ(tex), ũ(tex)) < V (ṽ(ten), ũ(ten)) (34)

that is, the Lyapunov function decreases, while the trajectory
travels along the v = 0 boundary.

2) Along v = vmax: According to the definition (25),
the v = vmax boundary is located below the u = f (v)
nullcline, yielding v̇ < 0. This means that no trajectory enters
this boundary.
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Before discussing the remaining three boundaries, we
remark that according to the control constraints (21) and (22)
and the monotonicity condition (10), we have

umin < f (v) < min

{
umax,

Pmax

v

}
(35)

in the domain 0 < v < vmax [see (24)].
3) Along u = umin: On the right-hand side of the null-

cline u = (KI/KP)(v∗ − v) + f (v), we have u̇ < 0,
while on the left-hand side of it, we have u̇ > 0. That
is, a trajectory can enter the u = umin boundary on the
right-hand side of the nullcline. After traveling left along
the boundary, it exits where the nullcline intersects the
boundary (see black plus in Fig. 5). Consequently, we have
v(tex) < v(ten) and u(tex) = u(ten) = umin.

However, in order to show that the Lyapunov function
decreases while traveling along the boundary, additional argu-
ments are needed. The normal unit vector to this boundary
(pointing outbound) is given by nmin = [0,−1]T. According
to (8), when u ≡ umin, the vector field is given by tmin =
[− f (v) + umin,−KP(− f (v) + umin) + KI(v

∗ − v)]T. Then,
staying on the boundary corresponds to

tmin · nmin = KP(− f (v) + umin) + KI(v − v∗) > 0 (36)

which holds on the right of the point where nullcline intersects
the boundary, and it becomes zero at the intersection point.
That is, using (35) and (36), we have v(tex) > v∗. Moreover,
using u ≡ umin ⇒ ũ < 0 ⇒ u̇ = ˙̃u = 0, v̇ = ˙̃v < 0 and (10),
(28), (35), and (36) in (31), we obtain the Lie derivative

V̇ (ṽ, ũ) = v̇
((

KI + K 2
P

)
ṽ + KPũ

)
. (37)

Using the fact that v̇ < 0, ṽ > 0, KP > 0 and ũ = − f (v∗) +
umin > − f (v) + umin, we have

V̇ (ṽ, ũ) < v̇(KIṽ + KP(− f (v∗) + umin))

< v̇(KIṽ + KP(− f (v) + umin))

= v̇(tmin · nmin) < 0. (38)

That is, the Lyapunov function decreases along the u = umin
boundary.

Note that it is possible that the nullcline intersects the
u = umin boundary at v > vmax. In such a case, no trajectory
enters the boundary u = umin.

4) Along u = umax: This boundary can be handled similar
to the u = umin boundary. A trajectory may enter the boundary
on the left-hand side of the nullcline, and after traveling
right, it exits where the nullcline intersects the boundary
(see black plus in Fig. 5). Consequently, we have v(tex) >
v(ten) and u(tex) = u(ten) = umax.

Similar to the u = umin boundary, it can be shown that
the Lyapunov function decreases when the trajectory travels
along the boundary. The normal unit vector to this boundary
(pointing outbound) is given by nmax = [0, 1]T. According to
(8), along the u = umax boundary, the vector field is given by
tmax = [− f (v) + umax,−KP(− f (v) + umax) + KI(v

∗ − v)]T,
yielding

tmax · nmax = −KP(− f (v) + umax) − KI(v − v∗) > 0. (39)

This holds only on the left of the point where nullcline
intersects the boundary, and it becomes zero at the intersection
point. That is, using (35) and (39), we have v∗ > v(tex) >
v(ten) and u(tex) = u(ten) = umax. When traveling along
the boundary, the Lie derivative is the same as (38) and
again using (10), (28), (35), and (39), one can show that it
is negative, i.e., the Lyapunov function decreases along the
u = umin boundary.

Note that it is possible that the nullcline intersects the
u = umax boundary at v > vswitch [see (23)] or v < 0. In the
former case, the no trajectory enters the u = umax boundary.
The latter case implies that no trajectory exits within
[0, vswitch], but continues to travel along the boundary
meffuv = Pmax, which will be handled in the following.

5) Along meffuv = Pmax: This boundary can only be
entered when v ≥ vswitch [see (23)], and we have v̇ > 0,
since this boundary is above the nullcline u = f (v). We denote
P̄ = (Pmax/meff ) in the rest of proof for compact description.
Note that this boundary is neither horizontal nor vertical. Con-
sequently, one cannot use the nullcline to determine where this
trajectory exits the boundary. The normal vector to this bound-
ary pointing outbound is given by nP = [(P̄/v2), 1]T, while
vector field is given by tP = [− f (v) + P̄/v,−KP(− f (v) +
P̄/v) + KI(v

∗ − v)]T [see (8)]. In order to stay along the
boundary, we need

(tP · nP)(v)=
(

P̄

v2 −KP

) (
− f (v)+ P̄

v

)
−KI(v − v∗)>0.

(40)

This requires that vswitch < v < v∗, and otherwise, due to (27)
and (35), both terms in (40) are negative. Indeed, to enter the
boundary, we need (tP · nP )(v(ten)) > 0, while at the exit
point, (tP · nP )(v(tex)) = 0.

In fact, if KP and KI satisfy (27), there exists v̄ ∈ (0, vswitch)
such that KP v̄2 − P̄ = 0, so (tP · nP )(v̄) = KI(v

∗ − v̄) > 0.
On the other hand, due to (27) and (35), (tP · nP )(v) < 0
for all v ≥ v∗. Thus, there exists v ∈ (v̄, v∗), such that
(tP · nP)(v) = 0 (see the black plus on the curve uv = P̄
in Fig. 5). Recall that v is increasing along the boundary.
Using (10) and (35), we have v(ten) < v(tex) < v∗. Using (10)
and (28) in (31), the Lie derivative becomes

V̇ (ṽ, ũ) = KIṽ(− f (v) + u∗) − KP KI ṽ
2 < −KP KIṽ

2 < 0.

(41)

That is, the Lyapunov function decreases along the uv = P̄
boundary.

Note that (tP · nP)(v(tex)) = 0 may occur for
v(tex) < vswitch. In this case, the trajectory does not enter
the uv = P̄ boundary.

Therefore, we can conclude that if we choose KP, KI
according to (27), when traveling along boundary arcs,
the value of the Lyapunov function decreases. This, together
with that the Lyapunov function decreases along the trajecto-
ries in the interior, the equilibrium (9) is asymptotically stable.

B. Proof of Theorem 1

Recall (28) and let us denote working region of engine
in (ṽ, ũ)-space as X [see (26)]. Using Lemma 2 and
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TABLE III

DATA OF A 2012 NAVISTAR PROSTAR TRUCK [24]

Assumption 1, a two-neighbor ε-partition is generated by gear
change as

⋃N
i=1 PNε over (ṽ, ũ)-space. We define QNε

i, j =
PNε

i

⋂
PNε

j . The initial states are (ṽ0, ũ0) at t = 0. According
to Lemma 3, the trivial equilibrium of (29) is asymptotically
stable. Define the domain Dδ = {(ṽ, ũ)|V (ṽ, ũ) ≤ δ} ⋂

X ,
where V is the Lyapunov function (30). In the following,
we use the abbreviated notation DV (ṽ0,ũ0), by which we
mean Dδ with δ = V (ṽ0, ũ0). Without loss of generality,
we assume that the equilibrium (v∗, u∗) is located in PNε

i ,
while the initial state (ṽ0, ũ0) can be in any gear. Then, there
are three possibilities. The trajectories of all the possibilities
are shown in Fig. 6 by brown curves with gear engaged
implied by line styles, where initial conditions are denoted
by brown crosses, while equilibrium is denoted by black
dots.

1) The equilibrium is located in a nonoverlap region (i.e.,
(v∗, a∗

d) �∈ QNε
i, j ∀ j �= i ), and the initial state (ṽ0, ũ0) ∈

DV (ṽ0,ũ0) ⊆ PNε
i . If (ṽ0, ũ0) ∈ PNε

i

⋂
PNε

j where
j ∈ Ni , and the system starts in the j th gear, then
one gear change will happen and the trajectory settles
to the i th gear, yielding a stable equilibrium. If, instead,
the system starts in the i th gear, then no gear change will
happen, while the trajectory approaches the equilibrium.
The corresponding trajectory is shown in Fig. 6, denoted
by case 1.

2) The equilibrium is located in a nonoverlap region, but
the trajectory travels through different regions, that is
DV (ṽ0,ũ0)

⋂
PNε

j \QNε
i, j �= ∅, ∃ j �= i . In this case, multi-

ple gear shifts may occur. By Assumption 1, there is a
nonzero dwell time between two consecutive gear shifts.
Then, ∃T > 0 such that ∀t > T , DV (ṽ(t),ũ(t)) ⊆ PNε

i .
Since T is finite, it will enter and leave PNε

j ,∀ j �= i only
finite times. The corresponding trajectories are shown
in Fig. 6, denoted by case 2. Therefore, the gear will
still settle down to the i th gear, and the equilibrium will
be stable.

3) The equilibrium is located in an overlap region,
i.e., ∃ j ∈ Ni , such that (v∗, u∗) ∈ QNε

i, j . If DV (ṽ0,ũ0) ⊂
QNε

i, j , the states converge to the equilibrium without
changing gears and the equilibrium is stable. The final
gear will be the same as the initial gear, and thus could
be either i th or j th. If DV (ṽ0,ũ0) �⊂ QNε

i, j , then ∃T > 0
such that ∀t > T , DV (ṽ(t),ũ(t)) ⊆ QNε

i, j . Since T is
finite, the trajectory will enter and leave PNε

j , ( j �= i )
only finite times. Therefore, the gear will still settle
down at the same gear as (ṽ(T ), ũ(T )) (also could be
either i or j ). The corresponding trajectories are shown
in Fig. 6, denoted by case 3.

C. Table of Parameter of a Navistar Truck

See Table III.
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