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Fuel Consumption Optimization
of Heavy-Duty Vehicles With
Grade, Wind, and Traffic
Information
In this paper, we establish a mathematical framework that allows us to optimize the speed
profile and select the optimal gears for heavy-duty vehicles (HDVs) traveling on high-
ways while varying parameters. The key idea is to solve the analogous boundary value
problem (BVP) analytically for a simple scenario (linear damped system with quadratic
elevation profile) and use this result to initialize a numerical continuation algorithm.
Then, the numerical algorithm is used to investigate how the optimal solution changes
with parameters. In particular, we gradually introduce nonlinearities (air resistance and
engine saturation), implement different elevation profiles, and incorporate external per-
turbations (headwind and traffic). This approach enables real-time optimization in
dynamic traffic conditions, therefore may be implemented on-board.
[DOI: 10.1115/1.4033895]

1 Introduction

A large percentage of freight transport nowadays is carried out
by HDVs. According to the U.S. Department of Energy [1] and
Department of Transportation [2], more than 10 million registered
HDVs deliver 70% of the domestic freight transport counted both
in value and in weight, and they are responsible for 17% of the
petroleum consumption in the transportation sector. Experiments
have shown that given the same route, different driving profiles
(speed and gear applied) are implemented by different truck driv-
ers, resulting in a large variation in fuel consumption [3]. This
implies that optimizing the driving profile has a large potential for
saving fuel. However, when vehicles are driven in dynamic traffic
environment, the optimization problem becomes very challenging
due to lack of real-time information.

Recent developments in information and communication tech-
nologies present opportunities to solve this problem. In particular,
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munication may be used to obtain real-time traffic information
when optimizing the speed profiles and gear changes. Such sys-
tems have a clear advantage compared to sensory systems that
only provide information about the immediate surroundings of the
vehicle [4]. Moreover, V2V and V2I communication may provide
information with relatively small latency compared to a service
based on remote data aggregation.

Historically, the problem of obtaining the most fuel-efficient
driving profile has been formulated as an optimal control problem.
Most of the works in this field solved the problem numerically
using dynamic programing (DP) [5–8]. For example, in Ref. [9]
the longitudinal dynamics of the vehicle were considered, gear
shifts were incorporated, and constraints were added to represent
the speed limit. In Refs. [10,11], primitives, obtained from driving
samples, were used in the optimization to develop a driver-assist
system. Recently, researchers began to incorporate traffic infor-
mation in the optimization. In Ref. [12], for example, traffic data
were incorporated using rolling horizon optimal control (RHOC)
(often called model predictive control or MPC). The RHOC prob-
lems formulated were typically solved by DP algorithms, which
are not implementable on-board in real time due to the high

computation demand. A direct solver based on a pseudospectral
method was developed in Ref. [13] but its computation speed is
still not feasible for on-board implementation.

Some researchers approached the problem from an analytical
perspective. In Ref. [14], a necessary condition for optimality was
derived using Pontryagin’s maximum principle (PMP) while tak-
ing into account road elevation. In Refs. [15,16], the solutions
were derived analytically for simplified models. In Ref. [17], dif-
ferent driving profiles resulted from PMP and DP were compared,
and the results showed that PMP allows faster computation of the
optimal solution. In Refs. [18,19], RHOC problem was formulated
with geographical and traffic information, and the problem was
solved using PMP. In Refs. [20,21], an RHOC problem was
solved by using PMP while incorporating information about more
than one vehicles ahead. These results showed that the analytical
considerations in PMP can be used to speed up the optimization
problem.

The arising optimal control problems contain many parameters
that may be fixed to some reasonable values, and then, these prob-
lems can be solved using particular methods. However, a thorough
and systematic study on how the optimal solution changes when
the parameters are varied is not available in the literature. Since
the performance of the optimal controller depends heavily on the
parameter values, understanding how to tune the parameters is
equally important as understanding the design framework. In this
paper, we use analytical and numerical tools from bifurcation
theory to investigate the effects of parameter variations on optimal
control problems. This allows us to determine regions in parame-
ter space with qualitatively different dynamics and control actions
and quantify the trade-off between different control goals in the
different regions.

We start with a modeling framework that allows one to opti-
mize the driving profile to achieve better fuel economy given the
elevation profile, headwind, and traffic information along the
route. We also take into account the desired terminal time leading
to multi-objective optimal control problem. Then, we present a
systematic approach to analyze the optimal trajectory for fuel-
efficient driving while varying parameters and quantify the trade-
offs in different parameter regions. We convert the resulting opti-
mal control problem to a BVP by using PMP. We first solve a sim-
plified BVP analytically and then use numerical continuation to
gradually change the parameters until the original nonlinear prob-
lem is reached. Also, in order to avoid sensitivity to initial condi-
tions, we use collocation to solve the BVP that is embedded in our
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pseudo-arclength numerical continuation software. This allows us
to increase the computational speed by distributing the sensitivity
along the trajectory while reacting to changing parameters.

Mathematically, we need to deal with an optimal control prob-
lem that involves mixed state-control constraints and singular
arcs. Optimal control problems with mixed constraints are chal-
lenging due to the nonsmooth and noncontinuous nature of the
problem [22]. Necessary optimality conditions for this class of
control problems can be found in Refs. [23–27]. In our case, the
control variable appears linearly in the dynamics and cost func-
tional. Then, in view of PMP, the optimal control is a concatena-
tion of bang–bang and singular arcs which makes it difficult to
generate numerical solutions. In Ref. [28], mixed control-state
constraints were handled using saturation functions which can
tolerate the discontinuity to some extent. In Ref. [29], numerical
continuation was used to study the optimal solution while vary-
ing parameters in (smooth) optimal control problems occurring
in biomedical imaging. Inspired by these works, in this paper we
use the analytical solution of a simplified (linear damped) sys-
tem to characterize the switching structure between different
arcs while varying parameters. This allows us to identify the
structure of the optimal controller that may switch between dif-
ferent “bang–bang” and “bang-singular-bang” scenarios as pa-
rameters vary. Moreover, using the analytical solution to
initialize the numerical continuation allows us to speed up the
solution process.

The rest of the paper is organized as follows: The optimal con-
trol problem is formulated in Sec. 2, and the necessary condition
for optimal trajectories is presented in Sec. 3. We generate the
analytical solution of a corresponding linear system in Sec. 4,
which is used to initialize the numerical solver discussed in
Sec. 5. We analyze the optimal solution with respect to the change
of traffic condition in Sec. 6. Finally, we conclude the paper and
propose some future research directions in Sec. 7.

2 Multi-Objective Driving Profile Optimization

In this section, we lay out a modeling framework that is used to
optimize fuel economy of HDVs. This framework allows the use
of different models to describe the vehicle dynamics, a wide vari-
ety of fuel consumption maps, and real-time traffic information.

2.1 Optimization Problem. Let us denote the distance (arc-
length) traveled by the vehicle as s and the speed of the vehicle by
v. The goal is to find the scalar input ad that minimizes the objec-
tive function

J0 ¼
ðtf

0

qðv; adÞ dtþ r0 tf þ
ðtf

0

rðv; sÞdt (1)

subject to the constraints

_s
_v

� �
¼ v

f ðs; v; adÞ

� �
(2)

sð0Þ
vð0Þ

� �
¼ 0

v0

� �
;

sðtfÞ
vðtfÞ

� �
¼ sf

vf

� �
(3)

0 � ad � aUðvÞ (4)

where the dot represents the derivative with respect to time t. The
initial time is considered to be 0, while the terminal time is
denoted by tf and it is considered to be unknown.

The objective functional J0 in Eq. (1) consists of three parts.
The first term represents the total fuel consumption, where the
fuel consumption rate qðv; adÞ is a function of the vehicle speed v
and control input ad. The second-term r0tf represents the total
cost corresponding to the terminal time tf with weight r0. The

third term is a penalty term related to traffic. It includes penalties
related to the speed limit and traffic speed.

The dynamic system (2) describes a longitudinal vehicle
dynamics which will be specified below. The boundary conditions
(3) fix the total arc-length of the route sf , the initial speed v0, and
the final speed vf , while Eq. (4) gives a speed-dependent upper
bound for the control input ad. To avoid braking (since it dissi-
pates energy), we require the control input to be non-negative.

2.2 Vehicle Dynamics. The longitudinal dynamics of the
HDV is derived using classical mechanics. We assume that no
slip occurs on the wheels and that the flexibility of the tires and
the suspension can be neglected. Then using the power law, we
obtain

meff _v ¼ �m g sin /� c m g cos /� k vþ vwð Þ2 þ g
R

Te (5)

see Refs. [30,31], where the effective mass meff ¼ mþ I=R2 con-
tains the mass of the vehicle m, the moment of inertia I of the
rotating elements, and the wheel radius R. Furthermore, g is the
gravitational constant, / is the inclination angle, c is the rolling
resistance coefficient, k is the air drag constant, vw is the speed of
the headwind, g is the gear ratio (that includes the final drive ratio
and the transmission efficiency), and Te is the engine torque. See
Appendix A (Table 2) for parameter values used in this paper,
which are for a ProStar truck, a class 8 HDV manufactured by
Navistar, Lisle, IL [32]. When units are not spelled out, quantities
should be understood in SI units.

Based on Eq. (5), we have

f ðs; v; adÞ ¼ �a sin /� b cos /� j ðvþ vwÞ2 þ ad (6)

in Eq. (3) where

a ¼ mg

meff

; b ¼ c mg

meff

; j ¼ k

meff

; ad ¼
gTe

meffR
(7)

Note that the control input ad is a rescaled torque, with unit of
acceleration (m/s2), and by choosing the appropriate gear ratio g,
one can calculate the corresponding engine torque Te.

The inclination angle / can be calculated from the elevation
profile h(s) that gives the elevation as a function of the distance
traveled s. Often elevation is given as a function of the direct dis-
tance d. The relationship between s, d, and h is illustrated in Fig.
1. It can be seen that h0ðsÞ ¼ sin / and h0ðdÞ ¼ tan /. One needs
the arc-length parameterization d(s) to obtain h(s), but since / <
0:05 rad here we use the approximation cos / � 1. Moreover, for
simplicity we consider no headwind vw ¼ 0. Thus, Eq. (6) can be
simplified to

f ðs; v; adÞ ¼ �a h0ðsÞ � b� j v2 þ ad (8)

Throughout this paper, we consider a straight road with the simple
elevation profile

Fig. 1 Elevation h as a function of distance d and arc-lengths s
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h sð Þ ¼ hR

s� sR

sR

� �2

(9)

shown in Fig. 1. We also consider hR � sR, in particular, we use
hR ¼ 30 m and sf ¼ 2sR ¼ 4000 m. Nonetheless, the methods pre-
sented can be applied when using other profiles as well.

We emphasize that using ad as the control input enables us to
decouple the optimization of the speed profile and the gear selec-
tion: the rescaled torque ad is derived first, and then, the optimal
gear is selected to minimize fuel consumption.

2.3 Fuel Consumption Map. In order to keep the problem
analytically tractable, we use a static fuel consumption map,
qðv; adÞ, that specifies the fuel consumption rate (with unit (g/s))
for a given input ad and a given speed v. Fuel consumption maps
are typically given as a function of the engine speed xe and
engine torque Te, that is, qðxe;TeÞ. Dividing this with the engine
power Pd ¼ Texe ¼ meffadv, we obtain the brake-specific fuel
consumption (BSFC)

BSFC ¼ q xe;Teð Þ
Texe

¼
q v; adð Þ
meffadv

(10)

where we used ad ¼ gTe=meffR and v ¼ Rxe=g; cf. Eq. (7). Small
BSFC values typically imply good fuel economy [33]. Previous
efforts on fuel economy optimization usually assumed fixed gear
ratio, which resulted in a one-to-one relationship between
qðxe; TeÞ and qðv; adÞ [16,34]. In this paper, we generate a map
with the gear changes involved.

Given a control input ad at a certain speed v, different gears set
the engine to different working points, and therefore, yield differ-
ent BSFC values. We choose the gear that gives the least BSFC
among all the available gears and generate the working zone for
each gear in the ðv; adÞ plane as shown in Fig. 2(a) for a Maxx-
Force 13 diesel engine with a ten-speed transmission used in a
ProStar truck manufactured by Navistar, Lisle, IL [32]. We found
that for any given ðv; adÞ point, there is a single optimal gear ratio,
so one can map the fuel consumption from the ðxe;TeÞ-plane to
the ðv; adÞ-plane using the associated gear, which is shown by the
contours in Fig. 2(b). It can be observed that the contours of the

fuel consumption map are similar to the isopower curves
(Pd ¼ meffadv). To obtain an analytical model, we fit the data
using the Willans approximation

qðv; adÞ ¼ p2v ad þ p1vþ p0 (11)

see Ref. [35]. By applying least-square fitting, we obtain
p2 ¼ 1:8284 6 0:0019 gs2=m2; p1 ¼ 0:0209 6 0:0006 g=m; p0

¼ �0:1868 6 0:0068 g=s. The corresponding contours are shown
in Fig. 2(c). With the gear applied, the BSFC in ðv; adÞ-plane is
shown in Fig. 2(d), where crosses indicate the minimal points for
different gears.

We assume that gear changes occur instantaneously, and the
engine’s state jumps along isopower curves during gear change.
The blank regions in Fig. 2 correspond to ðv; adÞ combinations
that are not accessible by the engine. The corresponding black-
dashed boundary at the top consists of two sections: a constant
section at amax for low speed and an isopower curve at Pmax for
higher speed. Since P ¼ Texe ¼ meffadv, we have

aU vð Þ ¼ min amax; U=vf g; U ¼ Pmax

meff

(12)

in Eq. (4). In this paper, we use amax ¼ 2 m=s; Pmax

¼ 300:65 kW) U ¼ 10:14 m2=s3 that are acquired through data
fitting. We rewrite the constraints (4) and (12) into the form

0 � ad

minfamax; U=vg � 1

()
C1 v; adð Þ :¼ ad

minfamax; U=vg � 1 � 0

C2 v; adð Þ :¼ � ad

minfamax; U=vg � 0

8>><
>>:

(13)

We note that the mixed constraint trivially satisfies the regularity
condition @ad

Ciðv; adÞ 6¼ 0; i ¼ 1; 2, which allows to obtain the
corresponding Lagrange multipliers. Moreover, having the two
constraints in a similar form results in multipliers of same scale,
which is convenient for numerical computation.

2.4 Penalty on Traffic. We consider two types of penalty on
traffic: one related to the speed limit, and the other related to the
traffic flow speed, that is, in Eq. (1), we consider

rðs; vÞ ¼ r1ðvlimðsÞ; vÞ þ r2ðvtrafðsÞ; vÞ (14)

Here, we assume the speed limit penalty

r1 vlim sð Þ; vð Þ ¼ q1 sec
p
2

2v

vlim sð Þ
� 1

� �n
" #

� 1

( )
(15)

where the speed limit vlimðsÞ is given along the route and as
a function of the arc-length s, and q1 is a constant weight. The
function (15) is illustrated in Fig. 3(a), with vlim � 30 m=s
and q1 ¼ 0:1g=s, for different values of n. It can be seen that as
parameter n increases, the function becomes more “square
shaped.” In this paper, we use the power n¼ 10.

For traffic penalty, we use a quadratic function

r2ðvtrafðsÞ; vÞ ¼ q2ðvtrafðsÞ � vÞ2 (16)

which is illustrated in Fig. 3(b) for the weight q2 ¼ 1gs=m2.
Indeed, the traffic penalty increases when the vehicle speed moves
away from the traffic flow speed vtrafðsÞ that is given as a function
of the arc-length s. We remark that we use an Eulerian description
to describe the traffic flow, that is, vtraf shows the “averaged” flow
speed at location s and does not necessarily correspond to the

Fig. 2 Contours in the plane of speed v and control input ad.
(a) Optimal gear ratios; (b) experimental fuel consumption con-
tours, with unit (g/s); (c) fitted fuel consumption contours, with
unit (g/s); and (d) BSFC with optimal gear ratios applied, with
unit (g/(kW hr)). The black crosses represent points with mini-
mal BSFC value. In all the four panels, black-dashed curves
indicate the boundaries of the domain accessible by the engine
for all the gears.
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speed of an individual vehicle (that would require a Lagrangian
description [36]). When increasing the weight q1, one intends to
adapt more to the traffic flow speed.

3 Optimal Control Problem and Necessary Conditions

for Optimality

Substituting Eq. (11) into Eq. (1), we obtain

J0 ¼
ðtf

0

ðp2vad þ p1vþ p0Þ dtþ r0 tf þ
ðtf

0

rðs; vÞ dt (17)

Since p1v is independent of the control input ad and
Ð tf

0
p1v dt

¼ p1sf is constant, these two terms may be dropped. We define
r ¼ p0 þ r0, drop the subscript of p2, and redefine the objective
function as

J ¼
ðtf

0

p adv dtþ r tf þ
ðtf

0

rðs; vÞ dt (18)

To minimize this, we need to determine a piecewise continuous
control function ad : ½0; tf � ! R that minimizes the functional
(18) subject to the dynamic system (2) (or specifically Eq. (8)),
the boundary conditions (3), and the mixed state-control con-
straints (4) (or specifically Eq. (13)). For systems with mixed con-
straints, necessary conditions of optimality were derived in Refs.
[24,27,37] in the form of PMP, and the following analytical
framework is based on these works.

Let x ¼ ½s; v�T be the state vector of the system and
k ¼ ½ks; kv�T be the associated costate vectors. The standard
Hamiltonian function is defined as

Hðx; k; adÞ ¼ padvþ rþ rðv; sÞ
þksvþ kvð�ah0ðsÞ � b� jv2 þ adÞ (19)

Then, the augmented Hamiltonian that takes into account the
mixed constraints is given by

Hðx; k;l; adÞ ¼ Hðx; k; adÞ þ lTCðx; adÞ (20)

where C ¼ ½C1;C2�T is given by Eq. (13), and l ¼ ½l1; l2�T are
the Lagrange multipliers.

Let x�; a�d denote a local minimum pair of the optimal control
problem. Then, according to Ref. [24] there exists a piecewise
continuous costate k� : ½0; tf � ! R2 and a piecewise continuous
multiplier l� : ½0; tf � ! R2 such that the following conditions
hold:

(1) adjoint equations

_k
� ¼ �@xHðx�; k�;l�; a�dÞ (21)

(2) minimum condition for the standard Hamiltonian

Hðx�ðtÞ; k�ðtÞ; a�dðtÞÞ ¼ min
u2XðtÞ

Hðx�ðtÞ; k�ðtÞ; uÞ (22)

with (momentarily) admissible control set

XðtÞ ¼ fu j 0 � u � minfamax; U=v�ðtÞgg

(3) local minimum condition for the augmented Hamiltonian

@ad
Hðx�; k�;l�; a�dÞ ¼ 0 (23)

(4) complementarity condition

l� 	 0; l�TCðx�; a�dÞ ¼ 0 (24)

(5) transversality condition (for free terminal time tf)

Hðx�ðtfÞ; k�ðtfÞ; a�dðtfÞÞ ¼ 0 (25)

Note that because C1 and C2 cannot be active at the same time,
the complementarity condition (24) actually leads to l�i Ci ¼ 0,
i¼ 1, 2 when either of the constraints is active and, consequently,
the constraint qualification condition is trivially satisfied [22].
Also note that we do not get a terminal condition for kðtfÞ, since
the terminal state xðtfÞ is fixed.

From now on, we abuse the notation and drop the * for the optimal
solution. Using Eqs. (19) and (20) the adjoint equation (21) becomes

_ks
_kv

" #
¼ kvah00ðsÞ � @srðv; sÞ
�ks þ 2kvjv� pad � @vrðv; sÞ � l1@vC1 � l2@vC2

� �
(26)

where @s and @v denote the partial derivatives with respect to s
and v. Since the control variable ad appears linearly in the Hamil-
tonian (19), the minimum condition (22) gives the controller

adðtÞ ¼
minfamax;U=vðtÞg; if fðtÞ < 0

asing
d ðtÞ; if fðtÞ ¼ 0; t 2 Is 
 ½0; tf �

0; if fðtÞ > 0

8<
:

(27)

where fðtÞ ¼ fðvðtÞ; kvðtÞÞ is the switching function given by

fðv; kvÞ ¼ @ad
H ¼ pvþ kv (28)

while the control input asing
d along the singular arc is described fur-

ther below. To determine the multipliers l1 and l2, we use the
local minimum condition (23), which gives

l1 ¼ �
f

@ad
C1

; l2 ¼ �
f

@ad
C2

(29)

Fig. 3 Traffic penalty given by Eqs. (14)–(16)
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Note that the sign condition l1 	 0 and l2 	 0 in Eq. (24) are in
accordance with the sign of the switching function f in Eq. (28),
and we exploited that C1 and C2 cannot be active at the same time.

Now, we derive a formula of the singular control asing
d in

Eq. (27). We achieve this by differentiating Eq. (28) with
respect to time until ad appears explicitly. The derivation is
carried out for the case with no traffic penalty (r(s,v) � 0 in
(14), but it can easily be generalized when adding traffic pen-
alty. Assume that control takes values in the interior of the
control set, that is, Ciðv; adÞ < 0 for i¼ 1, 2, in a certain time
interval Is. Then, the singular arc is given by

f ¼ pvþ kv ¼ 0 (30)

cf. Eqs. (27) and (28). Differentiating this with respect to time and
using Eqs. (2), (8), and (26), we obtain

_f ¼ pð�ah0ðsÞ � b� jv2Þ � ks þ kv 2jv ¼ 0 (31)

Note that the control variable ad drops out in accordance with the
theory of singular control, see Ref. [38]. Substituting kv ¼ �pv,
we attain

_f ¼ pð�ah0ðsÞ � b� 3jv2Þ � ks ¼ 0 (32)

Using again Eqs. (2), (8), and (26), the second derivative of f is
computed as

€f ¼ pð�ah00ðsÞv� 6jvð�ah0ðsÞ � b� jv2 þ adÞÞ�kvah00ðsÞ ¼ 0

(33)

Substituting kv ¼ �pv again, we obtain

€f ¼ �p6jvð�ah0ðsÞ � b� jv2 þ adÞ ¼ �p6jv � _v ¼ 0 (34)

The control ad appears explicitly in the second derivative of f and,
hence, a singular arc is of first-order, see Ref. [38]. According to
Eq. (34), a singular arc is characterized by the condition _v � 0 of
constant speed which yields the singular control

asing
d ðs; vÞ ¼ ah0ðsÞ þ bþ jv2 (35)

Moreover, note that the strict generalized Legendre–Clebsch con-
dition, which is a higher order necessary condition for the singular
control to be optimal, holds since

� @€f
@ad

¼ 6pjv > 0 (36)

see Ref. [38]. To interpret the physical meaning of singular con-
trol (35), we give the following two lemmas.

LEMMA 1. Assume that j 6¼ 0 in Eq. (8), no constraints are
applied to control input ad, and no traffic penalties are considered
(rðs; vÞ � 0 in Eq. (14)). Then, the necessary and sufficient condi-
tion to maintain f¼ 0 has a constant speed v �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð2pjÞ3

p
, which

can be calculated by setting _v � 0 and using Eq. (25).
LEMMA 2. If the gradient h0ðsÞ is such that 0 � a h0ðsÞ þ b

þ j v2 < minfamax;U=vg for s 2 ½0; sf � and we assume
vð0Þ ¼ vðtfÞ ¼ v0, then the singular control input (35) keeps the
speed constant along the whole route.

According to these lemmas, if the combined effect of the
grade, rolling resistance, and wind is small, then limiting the
acceleration (by traveling with constant speed) is the best strat-
egy to minimize the fuel consumption. On the other hand, it

will be demonstrated below that when the external effects are
significant, the optimal controller switches between the mini-
mum and maximum of ad.

In the rest of this paper, we will use the vector notation

X ¼ ½s; v; ks; kv�T (37)

Then, the BVP (2), (3), (8), (25), and (26) can be summarized
as

_s
_v
_ks
_kv

2
664

3
775 ¼

v
�a h0ðsÞ � b� j v2 þ ad

kva h00ðsÞ � @srðv; sÞ
�ks þ 2 kvj v� p ad � @vrðv; sÞ � l1@vC1 � l2@vC2

2
664

3
775

(38)

sð0Þ
sðtfÞ � sf

vð0Þ � v0

vðtfÞ � vf

HðsðtfÞ; vðtfÞ; ksðtfÞ; kvðtfÞ; adðtfÞÞ

2
66666664

3
77777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
BðXð0Þ;XðtfÞÞ

¼

0

0

0

0

0

2
6666664

3
7777775 (39)

There is no general existence and uniqueness conditions for
BVPs, even for smooth dynamic systems [39]. Therefore, whether
a solution exists is unknown when setting the parameter values.
Even if (27), (38), and (39) consist of smooth subsystems,
switches make the system nonsmooth. Moreover, varying the
parameter r changes the boundary condition (39), and conse-
quently, changes the optimal solution. We also remark that Eqs.
(27), (38), and (39) essentially give a multipoint boundary value
problem (MBVP) since the switching times tk 2 ð0; tfÞ, where
the switching function fðtÞ vanishes, are not known a priori.
Standard numerical methods like the shooting method cannot
be applied directly to solve this problem as the system may
become very sensitive to initial conditions due to the switches
at the interim points. In this paper, we bypass this issue by
using smoothing techniques and apply collocation to obtain the
solutions. These combined with pseudo-arclength continuation
allow us to trace the optimal solution while varying parame-
ters. To obtain an initial guess of the solution, we analyze the
switching structure of the optimal controller for a simplified
linearized model.

Alternatively, one can discretize the problem by using a
large number of grid points and solve the resulting nonlinear
programing problem, e.g., by the interior-point optimization
code IPOPT [40] that is implemented using the applied modeling
programing language [41]. We use this direct “discretize and
then optimize” approach to check the solutions provided by
the proposed “collocation and continuation” method explained
above. However, we remark though that the direct method
requires much finer time mesh to obtain the optimal solution.
In Sec. 4, we present the analytical solution for a simplified
problem where nonlinearities are neglected. This analytical so-
lution will be used to initialize our numerical solver proposed
in Sec. 5.

4 Analytical Solution of the Linear Damped System

In this section, we simplify the BVP (27), (38), and (39) to
a linear system with simple constraints and derive the analytical
solution. This allows us to characterize how the optimal solution
changes with the parameter r. Moreover, the analytical solution
will be utilized in Sec. 5 to initialize the numerical continuation
when solving the original nonlinear BVP. Here, the air drag is
substituted by linear damping, i.e., jv2 is replaced by jv0v,
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where v0 ¼ vð0Þ. Furthermore, traffic penalty is omitted by setting
rðs;vÞ�0 in Eq. (14). Finally, the constraints (13) are substituted
by 0�ad�amax. Thus, Eq. (38) is simplified to the affine equations:

_s

_v
_ks

_kv

2
66664

3
77775 ¼

0 1 0 0

�2a
hR

s2
R

�jv0 0 0

0 0 0 2a
hR

s2
R

0 0 �1 jv0

2
6666664

3
7777775

s

v

ks

kv

2
66664

3
77775

þ

0

2a
hR

sR

� bþ ad

0

�pad

2
6664

3
7775 (40)

which can be solved analytically, given the control input ad.

According to Eq. (27), the input ad stays at its maximum amax or
minimum 0 when f 6¼ 0. Therefore, we obtain the solution in the
form when ad is constant

sðtÞ
vðtÞ
ksðtÞ
kvðtÞ

2
666664

3
777775 ¼

F1ðs0; v0; t; adÞ
F2ðs0; v0; t; adÞ

F3ðks0; kv0; t; adÞ
F4ðks0; kv0; t; adÞ

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FðX0;t;adÞ

(41)

where we used the abbreviated notation: sð0Þ ¼ s0; vð0Þ
¼ v0; ksð0Þ ¼ ks0; kvð0Þ ¼ kv0; X0 ¼ ½s0; v0; ks0; kv0�T. Note that,
when ad changes in time, we may still get an expression similar to
Eq. (41), but the right-hand side becomes a functional. In this
case, the dynamics of s, v and the dynamics of ks; kv are not
decoupled anymore, but the control law (27) makes them coupled
through switching. Even though we cannot guarantee that a
unique solution exists, we assume that the boundary condition
(39) allows at least one solution.

If the system does not satisfy the conditions in Lemma 2, the
control input switches between the cases in Eq. (27). Switches may
occur in six different ways as illustrated in Fig. 4 where the switch-
ing surface f¼ 0 is also depicted. The control input ad either
switches from the maximum amax to minimum 0 (trajectories 1 and

2) or vice versa (trajectories 4 and 5). Trajectories 3 and 6 do not
cross the switching surface but attach to it and leave to the same
side, so the control input stays at the minimum (trajectory 3) or at
the maximum (trajectory 6). We call them grazing scenarios.
Trajectories 1 and 5 are named traverse scenarios since these tra-
jectories go through the switching surface. On the other hand, tra-
jectories 2 and 4 attach to the plane, travel along it, and leave it on
the other side. We name these tangential scenarios. We remark
that the switching structure is determined by the boundary condi-
tions, and in general, multiple switches may occur.

By solving the affine equation (40) analytically, the linear sys-
tems (27), (39), and (40) can be transformed to a system of nonlin-
ear algebraic equations. By using the notation defined in Eqs. (39)
and (41), for the traverse scenario we obtain

BðX0;XfÞ ¼ 0

X1 ¼ FðX0; t1; ad1Þ

Xf ¼ FðX1; tf � t1; adfÞ

(42)

where ad1; adf 2 f0; amaxg such that ad1 6¼ adf . Solving these equa-
tions, we obtain t1; tf ; ks0; kv0. On the other hand, for the tangential
and grazing scenarios, we have

BðX0;XfÞ ¼ 0

p _v þ _kv ¼ 0; for t 2 ½t1; t2�
X1 ¼ FðX0; t1; ad1Þ
Xf ¼ FðX2; tf � t2; adfÞ

(43)

where ad1; adf 2 f0; amaxg such that ad1 6¼ adf for tangential sce-
narios and ad1 ¼ adf for grazing scenarios. Solving these equa-
tions, we obtain t1; t2; tf ; ks0; kv0. The overall solution of the
MBVP will be a series of segments that are given analytically.

As an example, we consider the case vðtfÞ ¼ vð0Þ ¼ 25 m=s
and amax ¼ 0:6 m=s2. We set amax at this value since it is close to
the minimum value of U/v in the velocity range we consider, cf.
Fig. 2. With these parameters, all the types of switches shown in
Fig. 4 can be obtained except trajectory 6. Meanwhile, solutions
with multiple switches also appear.

The range of parameter r is divided into six domains, and the
appearing six different types of solutions are shown in Fig. 5.
Dashed curves represent analytical solutions, while solid curves
represent numerical simulations for the same initial condition, and
they match very well. We compared these trajectories with those
using a direct method “discrete and optimize” method mentioned
in Sec. 3, and they essentially give the same results.

When r 2 ½0; 1:05�g=s, the optimal solution is of transverse sce-
nario 1, and the control input switches from minimum to maximum,
see case A in Fig. 5. When r 2 ½1:05; 3:71� g=s, the optimal solution
is of attached scenario 2, and the control input changes from mini-
mum to maximum but the trajectory attaches to the surface f¼ 0 in
the middle, see case B in Fig. 5. When r � [3.71, 4.33] (g/s), the
optimal solution is of grazing scenario 3, and the control input starts
from minimum and ends at minimum while attaching to the plane
f¼ 0 in the middle, see case C in Fig. 5. When r � [4.33, 9.43] (g/
s), trajectories with two switches exist so that the transverse scenario
5 is followed by the attached scenario 3, see case D in Fig. 5. When
r � [9.43, 12.73] (g/s), the optimal solution is of attached scenario
4, see case E in Fig. 5. Finally, when r 2 ½12:73;þ1Þ g=s, the opti-
mal solution is of transverse scenario 5, see case F in Fig. 5.

The terminal time tf and total fuel consumption Q are plotted in Fig.
6 as a function of r, where the total fuel consumption is defined as

Q ¼
ðtf

0

qðv; adÞ dt ¼
ðtf

0

ðp2vad þ p1vþ p0Þ dt (44)

cf. Eqs. (1) and (11). The six domains explained above are sepa-
rated by the black vertical lines, with the numbers 1–5 indicating

Fig. 4 Six possible scenarios involving one switch. For trajecto-
ries 1 and 2, ad switches from maximum to minimum (i.e.,
f 5 pv1kv switches from negative to positive). For trajectories 4
and 5, ad switches from minimum to maximum (i.e., f 5 pv 1 kv

switches from positive to negative). Trajectories 1 and 5 represent
transverse scenarios, while trajectories 2 and 4 show tangential
scenarios. Trajectories 3 and 6 are for the grazing scenarios,
where the minimum and the maximum control input is main-
tained, respectively. Bold segments and crosses indicate f 5 0.
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the solution type corresponding to those in Fig. 4, while letters
A–F correspond to the cases in Fig. 5. Note that the solution
r> 12.73 g/s, the trajectories for s, v, and ad are essentially the
same as those for r¼ 15 g/s.

The analysis of this simplified problem shows that by varying
the system parameters, the optimal solution may change qualita-
tively. To experience the trade-off between travel time and fuel

consumption, one shall set r � [3, 15], where, indeed, better fuel
economy leads to a longer traveling time. Meanwhile, it is possible
to use the analytical solution to start the numerical continuation and
gradually steer the system to the original nonlinear system. We will
introduce the numerical technique in Sec. 5.

5 Numerical Solution of the Full Nonlinear System

In this section, we investigate the original nonlinear BVP (27),
(38), and (39) using numerical continuation. This technique was
originally developed to compute solutions of systems of parame-
terized nonlinear equations [42]. The idea is to start from a solu-
tion with certain set of system parameters and gradually change
the parameters until the target parameters are reached, see
Appendix B for a brief overview of the method. We start from the
solution of the simplified systems (27), (39), and (40) and add
nonlinearities gradually until we reach (27), (38), and (39) by
varying the parameters. Besides the nonlinear bang–bang control-
ler (27), the original problem also has other types of nonlinearity:
nonlinear input constraint aUðvÞ in Eq. (13), air drag in Eq. (8),
and traffic penalty r(v, s) in Eq. (1).

Instead of starting from U !1, we set U¼ 100 m2/s3, so that
U=v� amax ¼ 0:6 m=s2, cf. Fig. 2. Then, we decrease U until we
reach U ¼ Pmax=meff ¼ 10:14m2=s3. After that we change the
maximum acceleration gradually from amax ¼ 0:6 m=s2 to
amax ¼ 2 m=s2, though this last step does not change the optimal
trajectories in the cases considered here. The nonlinear air drag
term is added by varying ~j from 0 to j in ~jv2 þ ðj� ~jÞv0v. The
traffic penalty (14) is introduced in similar manners. For speed
limit r1, initially we set vlim in Eq. (15) to be large and gradually
decrease it to the target value while q1 is kept fixed. For penalty r2

corresponding to the deviation from the traffic speed, we intro-
duce it gradually by increasing q2.

Since continuation requires a certain level of smoothness, we
derive an approximate system by smoothing Eqs. (27), (38), and
(39). Specifically, the smoothed version of constraint (12) is
written as

Fig. 6 The upper panel gives the terminal time tf as a function
of r, while the lower panel shows the fuel consumption Q (44)
as a function of r, for vðtfÞ5 vð0Þ5 25 m=s; amax 5 0:6 m=s2 for
the systems (27) and (40). The dashed vertical lines separate
six regions of qualitatively different solutions, with the numbers
corresponding to those in Fig. 4. Points A–F correspond to the
cases in Fig. 5.

Fig. 5 Time evolution of the speed v (left column), the corresponding control input ad (middle column), and the switching variable
f (right column) for different values of the parameters r as indicated. The rows correspond to the points A–F marked in Fig. 6. Red-
dashed curves represent analytical solutions, while solid curves represent numerical solutions and they match very well.

Journal of Computational and Nonlinear Dynamics NOVEMBER 2016, Vol. 11 / 061011-7



~aU vð Þ ¼ amax þ U=v

2
� amax � U=vð Þ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ amax � U=vð Þ2

q (45)

while the smoothed version of the switching rule (27) is given as

ad ¼
1

2
aU vð Þ 1� fffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ f2
p !

(46)

where e1 and e2 are the small parameters with units (m2/s4) and
(g2 s2/m2), respectively. In Fig. 7, the nonsmooth functions (12)
and (27) (black-dashed curves) are compared to Eqs. (45) and (46)
(solid curves), for e1¼ 0.001 m2/s4, e2¼ 0.01 g2 s2/m2, and

amax ¼ 0:6m=s2. Indeed, the smoothed curves approximate the
nonsmooth ones well.

Our BVP solver is based on pseudo-arclength continuation
algorithm. We discretize the BVP using collocation method [43]
which results in a large system of nonlinear equations that also
depends on parameters. Then, a continuation algorithm is used to
solve these nonlinear equations while varying parameters. To
speed up the computation, we use adaptive steps. When solving
BVPs with singular arcs with other methods like the shooting
method, see Refs. [22,39,44], difficulties often arise due to the
sensitivity with respect to initial values. The collocation method
can bypass this problem because it tunes the whole solution,
that is, distributes the sensitivity along the whole trajectory.
In this paper, we use the collocation method with 400 points
e1 ¼ 10�6m2=s4 and e2 ¼ 0:01g2s2=m2.

The time evolution of the system (27), (38), and (39) is shown
in Fig. 8 for different values of r as indicated (different from
those used in Figs. 5 and 6 for better illustration of the switching
structure). The solid curves are the trajectories acquired by the our
BVP solver based on pseudo-arclength continuation method using
the smoothed controller (45) and (46), while the dashed curves are
generated by a direct method using the nonsmooth controller (27).
The two trajectories in each panel are close to each other, imply-
ing that the smoothed controller represents the original nonsmooth
one with a good accuracy. Note that when applying our method
we used 400 points to represent the trajectory, whereas for the
direct method we used 10,000 points which increases the compu-
tational demand significantly. The numerical solutions of the non-
linear system maintain the same trend as the analytical solutions
of the linear system. That is, as r increases, the controller starts
with minimum to maximum bang–bang type controller. Then, a
singular arc appears. Eventually, it becomes a bang–bang type
again but with maximum to minimum switch. We also plot the
terminal time tf and the total fuel consumption Q (cf. Eq. (44)) as
a function of r in Fig. 9. Compared with Fig. 6, besides the
change in values of terminal time and total fuel consumption, the
transition region expands in the r direction due to the
nonlinearities.

We summarize the above results in Table 1, where we show the
terminal time tf and the total fuel consumption Q for different r

Fig. 7 Visualization of the nonsmooth functions (12) and (27)
(black dashed) and the corresponding smooth functions (45)
and (46) (solid)

Fig. 8 Time evolution of the speed v (left column), the corresponding control input ad (center column), and the switching variable
f for different values of the parameter r (right column) as indicated. The rows correspond to the points A, G, H, I, and J marked in
Fig. 9. The solid curves are associated with the trajectories acquired by our BVP solver based on pseudo-arclength collocation
method using the smoothed controllers (45) and (46), and the dashed curves are those generated by direct method.
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values for vð0Þ ¼ vðtfÞ ¼ 25 m=s. For comparison, we also show
the results for constant speed (that can be maintained using stand-
ard cruise control). When r is small, the optimal solution con-
sumes approximately 11.9% less fuel compared to the constant
speed scenario. On the other hand, when the weight on terminal
time is large, the truck reaches its destination earlier but consumes
more fuel. Again, we can identify the region r � [3, 30], where
one has a trade-off between travel time and fuel consumption. We
remark that in order to maintain the constant speed, braking and
large engine torque may be needed (i.e., the constraints (13) may
be violated). Therefore, the constant speed driving profile is not

necessarily in the function space for the optimal control problem.
Finally, we remark that increasing the speed of headwind will
increase the length of the time domain where maximum available
control input is applied.

6 Traffic Information

In this section, we investigate the effect of the penalty term on
traffic. In particular, we study the effects of the speed limit and
the traffic flow speed separately. We first study the penalty on
speed limit by setting q1¼ 0.1 g/s and q2¼ 0 gs/m2 and using con-
stant vlim along the route, cf. Eq (15). We start from the solution
with r¼ 30 g/m (cf. Fig. 8, case J, where the maximum speed
reaches �39 m/s) and continue the solution while changing vlim

from 40 m/s to 30 m/s. The results are shown in Fig. 10, where the
same notation is used as in Fig. 8. As the speed limit decreases,
the maximum speed of the optimal speed profile decreases in
response. Notice that to achieve the optimal profile, complicated
switching structure may be required for the control input. For
example, when vlim¼ 30 m/s, minimum control, singular control,
and maximum control are all needed.

In order to investigate the effect of traffic flow penalty, we set
r¼ 30 g/s and q1¼ 0 g/s, and consider vtraf to be constant along
the route, cf. Eq. (16). We start from the solution with r¼ 30 g/m
(cf. Fig. 8, case J) and change q2 from 0 to 1. The results with dif-
ferent vtraf values are shown in Fig. 11, where again the same
notation is used as in Fig. 8. Four different values of the constant
traffic speed vtraf are considered along the road, and the results
imply that the optimal trajectories settle down to different speed
profiles. When vtraf is small, the speed profile is similar to the
solution without traffic penalty, cf. Fig. 8, case A. This is because,
according to the results in Sec. 5, the solution is the one with the
lowest average speed, so the controller cannot bring the vehicle to
lower speed. Note that lower desired traffic speed vtraf can be
achieved by adjusting problem parameters (e.g., the boundary
condition (3) and the constraints (4)) but such analysis is beyond
the scope of this paper. As vtraf increases, the speed profile comes
closer to vtraf and the penalty cost is reduced. However, as a result
of the multi-objective optimization considering fuel consumption,
travel time, and traffic speed, the optimal profile requires nontri-
vial control action including multiple switches between maxi-
mum, minimum, and singular control.

Finally, in Fig. 12 we show the ratio between traffic cost and
the total cost (1) as a function of the weight q2. When it is achiev-
able by control, the speed profile gets closer to the traffic flow
speed (as in the second two rows of Fig. 11) and therefore
ðv� vtrafÞ2 goes to zero as q2 increases. As a result, the ratio
between traffic cost and the total cost will converge to a constant
value, as shown by the black dotted and magenta dashed–dotted
curves in Fig. 12. On the other hand, if the traffic flow speed can-
not be followed by the vehicle using any feasible control (as in the
first two rows of Fig. 11), then the speed profile remains

Fig. 9 The terminal time tf (upper panel) and the fuel consump-
tion Q (44) (lower panel) as a function of r for vðtfÞ5 vð0Þ
5 25 m=s. The corresponding trajectories are shown in Fig. 8
for the points marked A, G, H, I, and J.

Table 1 Terminal time tf and fuel consumption Q for multiple r
values (cf. Fig. 8), compared with the fuel consumption and
time of cruise control, with conditions vð0Þ5vðtfÞ525 m=s

tf (s) Q (g)

r¼ 0 (case A) 162.1 1071.1
r¼ 5 (case G) 160.1 1080.2
r¼ 10 (case H) 145.2 1208.9
r¼ 20 (case I) 121.3 1545.7
r¼ 30 (case J) 115.6 1676.2
Cruise control 160.0 1222.3

Fig. 10 Effect of the speed limit penalty with different values of vlim as indicated. The same notation is used as that in Fig. 8.
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significantly different from the traffic flow as q2 increases. As a
result, the ratio between traffic cost and the total cost will keep
growing as q2 increases, since ðv� vtrafÞ2 converges to a constant
value, as demonstrated by the solid and dashed curves in Fig. 12.
These results show that increasing the weight on traffic may not
force the vehicle to approach the desired speed given by the traffic
conditions. Also, we emphasize that this desired speed does not
correspond to the speed of a particular vehicle. To take into
account such effects (e.g., to address safety), a different descrip-
tion is needed and it is left for future research.

7 Conclusion and Future Work

In this paper, we proposed a framework for fuel economy opti-
mization of HDVs that can incorporate road elevation, headwind,
desired terminal time, and traffic information. We established a
systematic approach in order to solve the arising multi-objective
control problem while varying the system parameters. First, we
solved a simplified problem analytically that allowed us to charac-
terize the switching structure of the resulting bang–bang controller
or bang-singular-bang controller. Then, we used this knowledge
to initialize our numerical continuation software.

We demonstrated that varying the weight on the desired termi-
nal time causes qualitative changes in the switching structure of
the controller. We also identified a parameter region where one
can balance the fuel economy and the traveling time. Moreover,
we investigated the effects of traffic dynamics and identified the
conditions (in terms of the traffic speed and the weigh on the traf-
fic cost) that allow the truck to balance between fuel economy and
adaptation to traffic conditions. These were achieved by nontrivial
control actions that cannot be obtained intuitively.

For fuel-efficient driving in heavy traffic conditions, reacting to
the motion of individual vehicles in the neighborhood may be
important. Merging such a Lagrangian description with the Euler-
ian description used in the paper is a challenging task and is left
for future research. Future goals also include implementing our
method using a rolling horizon setup and incorporating V2V
information from multiple vehicles ahead.
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Appendix A: Table of Parameter of Navistar Truck

Appendix B: Pseudo-Arclength Continuation Method

Our BVP solver developed is based on pseudo-arclength contin-
uation. Given a BVP problem, the solver first uses a collocation
method to transform the ODE to a set of algebraic equations. Con-
sider the BVP in the form

Fig. 11 Traffic flow penalty with different values of vtraf as indicated. The same notation is used as that in Fig. 8.

Fig. 12 The ratio between the traffic cost and the total cost (1)
as a function of the weight q2

Table 2 Data of a 2012 Navistar ProStar truck [32]

Parameter Value

Mass (m) 29,484 (kg)
Air drag coefficient (k) 3.84 (kg/m)
Tire rolling radius (R) 0.504 (m)
Tire rolling resistance coefficient (c) 0.006
Maximum acceleration (amax) 2 (m/s2)
Engine rotational inertia (I) 39.9 (kg m2)
Gravitational constant (g) 9.81 (m/s2)
Number of forward gears 10
First gear ratio/efficiency 12.94/0.97
Second gear ratio/efficiency 9.29/0.97
Third gear ratio/efficiency 6.75/0.97
Fourth gear ratio/efficiency 4.9/0.97
Fifth gear ratio/efficiency 3.62/0.97
Sixth gear ratio/efficiency 2.64/0.97
Seventh gear ratio/efficiency 1.90/0.97
Eighth gear ratio/efficiency 1.38/0.98
Ninth gear ratio/efficiency 1/0.99
Tenth gear ratio/efficiency 0.74/0.98
Final drive ratio/efficiency 4.17/0.98
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_x ¼ f ðx; t; pÞ; t 2 ½0; tf �
0 ¼ gðxð0Þ; xðtfÞ; pÞ

(B1)

where x 2 Rn is the state, and p 2 R is the system parameter.
The boundary condition g contains n equations, assuming that the
terminal time tf is given.

We define N collocation points xðtiÞ ¼ xi at time
ti ¼ i � ðtf=N � 1Þ; i ¼ 0; 1;…;N � 1. Using the trapezoidal rule,
we arrive at the algebraic equations

xiþ1 � xi ¼
tf

2 N � 1ð Þ f xiþ1; tiþ1; pð Þ þ f xi; ti; pð Þ
� 	

0 ¼ g x0; xN ; pð Þ
(B2)

g. Therefore, the collocation method of order N transforms the
original BVP to an algebraic equation of dimension Nn that can
be written to the form

Fðx; pÞ ¼ 0 (B3)

where x 2 RNn contains all the components xi 2 Rn;
i ¼ 0;…;N � 1. Note that the terminal time tf may be a variable
as well, and in this case, g shall contain nþ 1 equations, and the
resulting nonlinear equations will be of dimension Nnþ 1.

The key idea behind continuation is that one may solve the
BVP for a particular value of p and then use the corresponding
solution as an initial guess when solving the BVP for the nearby
parameter pþ dp. This way the solution can be continued while
the parameter is varied [45]. Continuation is based on the implicit
function theorem, which guarantees that Eq. (B3) can be solved
for x(p). However, there may be points where implicit function
theorem is violated. For example, in Fig. 13, the curve (B3) is
shown in the ðp; kxkÞ-plane. The implicit function theorem is vio-
lated at the fold points where the partial derivative of F with
respect to x is 0. In order to be able to continue the curve through
these points, we apply the so-called pseudo-arclength continuation
method [46]. Throughout the description of the algorithm, we use
the subscript k to denote the iteration number. In the kth iteration,
the point ðxðkÞ; pðkÞÞ lies on the curve with tangent vector zðkÞ. Let
us consider the arc-length step ds.

Then, we follow the steps:

(1) Compute the predicted value for the (kþ 1)th step

x
ðkþ1Þ
pred

p
ðkþ1Þ
pred

2
4

3
5 ¼ xðkÞ

pðkÞ

" #
þ zðkÞds (B4)

(2) Solve the following system of augmented nonlinear
equations:

0 ¼ Fðxðkþ1Þ; pðkþ1ÞÞ

0 ¼ zðkÞT �
xðkþ1Þ � x

ðkþ1Þ
pred

pðkþ1Þ � p
ðkþ1Þ
pred

2
4

3
5 (B5)

for ðxðkþ1Þ; pðkþ1ÞÞ given ðxðkþ1Þ
pred ; p

ðkþ1Þ
pred Þ.

(3) Find the tangent zðkþ1Þ to the curve for the (kþ 1)th point
by solving the linear equations

@F

@x
x kþ1ð Þ; p kþ1ð Þ

 �

;
@F

@p
x kþ1ð Þ; p kþ1ð Þ

 �

z kð ÞT

2
64

3
75z kþ1ð Þ ¼

0

�

0

1

2
66664
3
77775

with kz kþ1ð Þk ¼ 1:

(B6)

In this paper, we use the classical Newton method [47] to solve the
nonlinear algebraic equation (B5). These steps are demonstrated in
Fig. 13. It can be seen that the pseudo-arclength continuation
method may allow one to continue the curve through the fold points.
Finally, we remark that the step size ds can be adapted during the
process, e.g., can be chosen larger where Eq. (B3) is “flat.”
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