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Abstract— In this work, we integrate two once separate con-
cepts for longitudinal control of heavy duty vehicles: responding
to elevation changes to improve fuel economy using preview and
reacting to the motion of preceding vehicles using feedback.
The two concepts are unified to provide a safe yet fuel efficient
connected and automated technology for heavy duty vehicles.
First, we establish an integrated control framework of the
two concepts based on barrier function theory and then we
discuss the detailed control design of each concept. Finally,
we demonstrate the benefits of the proposed design against
a naive switching controller by experimentally evaluating the
performance of a connected automated truck.

I. INTRODUCTION

It has been shown that by previewing geographical infor-
mation (i.e., elevation) one can acquire fuel optimal speed
profiles for ground vehicles [1–5]. The fuel benefits brought
by this approach is particularly beneficial for heavy-duty
vehicles. Over the years, many algorithms of different vehicle
types and powertrain configurations have been proposed to
acquire fuel optimal speed profiles, and many auto manufac-
turers, including truck makers, have put such preview-based
control algorithms into production [6]. These algorithms are
often referred to as predictive cruise control (PCC) and use
a preview distance of a few kilometers. Typically, 10-15%
reduction in fuel consumption can be achieved compared
to constant speed cruise control provided no interference
from surrounding traffic [3]. However, such fuel benefit may
not be attainable in traffic without the driving safety being
compromised.

To react to traffic perturbations, connected cruise control
(CCC) has been developed that uses motion information
from vehicles ahead obtained by sensors as well as wire-
less vehicle-to-everything (V2X) communication. While the
primary goal of CCC is to improve driver comfort and
mitigate traffic waves, one may use formal methods to
guarantee safety [7–9] and the energy efficiency may also be
improved [10]. To specifically target energy consumption, the
problem is often formulated as a receding horizon optimal
control problem [11,12] utilizing both elevation preview and
prediction about preceding vehicle’s motion in the next few
seconds. While some fuel benefit can be achieved, such an
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approach relies heavily on the ability to accurately predict
the motion of the preceding vehicle [13]. Furthermore, the
different spatial/time scales involved when responding to
elevation versus traffic limit the benefits: PCC requires
minutes of elevation preview while CCC makes decisions
at the order of seconds. Such differences can make online
optimization very challenging.

In this paper, we make an attempt to integrate the above
two concepts, i.e., PCC and CCC, in order to achieve a
safe yet fuel efficient connected automated technology. In
particular, we adjust the PCC and CCC design structures such
that they both present acceleration demands and utilizing
barrier function theory [8] we allocate the two functionalities
in real time. The remainder of this paper is organized as
follows. After briefly introducing the vehicle dynamics and
fuel consumption models in Section II, we describe the PCC
and CCC designs and their integration in Section III. Then
we describe the experimental setup in Section IV and present
the experimental results in Section V. We conclude the study
and discuss future work in Section VI.

II. MODELING

In this section, we describe the mathematical models used
in this paper, including vehicle dynamics, fuel consumption
maps and input/state constraints.

The longitudinal dynamics of the truck are derived using
classical mechanics. We assume that no slip occurs at the
wheels and that the flexibility of the tires and the suspension
can be neglected. Then using the power law we obtain

meff v̇ = −mg sinφ−γmg cosφ−k0(v+vw)
2+

ηTe + Tb

R
, (1)

see [3], where the dot denotes differentiation with respect
to time t. The effective mass meff = m + I/R2 contains
the mass of the vehicle m, the moment of inertia I of the
rotating elements, and the wheel radius R. Furthermore, g
is the gravitational constant, φ is the inclination angle, γ is
the rolling resistance coefficient, k0 is the air drag constant,
vw is the speed of the headwind, η is the gear ratio (that
includes the final drive ratio and the transmission efficiency).
The engine torque Te is assumed to be non-negative while
the braking torque Tb applied on the axle is assumed to be
non-positive. Based on (1), we have

v̇ = −a sinφ− b cosφ− k (v + vw)2 + û, (2)

where

a =
mg

meff
, b =

γ mg

meff
, k =

k0

meff
, û =

ηTe + Tb

meffR
.

(3)
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Fig. 1: (a) A truck driving behind a human-driven vehicle on a
single-lane road. (b,c) The saturation functions (6,7). (d) The range
policy function (19). (e) The saturation function (20). (f,g) The
feedback gains (21) and (22).

According to the specifications of a ProStar truck
manufactured by Navistar (see [3]) we use the
parameter values a = 9.6416[m/s2], b = 0.0578[m/s2],
k = 4.1987× 10−4[1/m] and we assume no headwind, i.e.,
vw = 0.

Since the inclination angle φ is a function of the distance
travelled s, the equation of motion becomes

ṡ = v,

v̇ = −f(s, v) + sat(u),
(4)

where s denotes the position of the rear bumper of the truck
(see Fig. 1(a)) and

f(s, v) = a sinφ(s) + b cosφ(s) + kv2. (5)

Moreover, u denotes the control input which saturates due
to the torque and power limits of the engine and the torque
limits of the brakes, that is,

sat(u) =


umin if u ≤ umin,

u if umin < u < ũmax,

ũmax if u ≥ ũmax,

(6)

where

ũmax = min
{
umax,

Pmax

meffv

}
, (7)

see Fig. 1(b,c). In this work, we enforce umax = 2[m/s2]
and umin = −3[m/s2] and we have Pmax/meff = 0.010143
[kW/kg]. Finally, the speed limit vmax is enforced according
to the position s along the road, that is, we require

0 ≤ v(s) ≤ vmax(s). (8)

Fuel consumption rates are typically given as a function of
the engine speed ωe and engine torque Te, that is, q(ωe, Te).
Given a well defined gear shift logic one may obtain the fuel
consumption as a function of the speed v and the control
input u, i.e., q(v, u); see [14]. Here we utilize the Willans
approximation (see [15]):

q(v, u) = p2v g(u) + p1v, (9)

where the nonsmooth function g(x) = max(0, x) represents
that for u < 0 the engine torque is set to zero and the
brakes are applied. To bypass this nonsmoothness in the
optimization, we define the control inputs ud and ub such
that

u = ud + ub, (10)

with the constraints

ud ≥ 0, ub ≤ 0, udub = 0. (11)

Indeed, ud is related to engine torque while ub is re-
lated to braking torque; cf. (2,3). For our truck we have
p2=1.8284 [gs2/m2], p1=0.0209 [g/m].

III. INTEGRATED CONTROL DESIGN

In this section, we first introduce our strategy to integrate
controllers of different objectives. Then we describe the
details of the predictive cruise control (PCC) that is based
on elevation preview as well as the connected cruise control
(CCC) that responds to the motion of preceding vehicles.

Considering the vehicle dynamics (4) one may design a
controller of the form

u(t) = f̃
(
s(t− ζ), v(t− ζ)

)
+ ad(t− ζ), (12)

where ζ lumps the communication delay and the actuator de-
lay; see [16,17]. The term f̃(s, v) is designed to compensate
for the resistance term f(s, v) while ad denotes the higher-
level acceleration demand. Due to their different objectives
(e.g., fuel economy vs. safety) higher level controllers may
demand different acceleration values.

Assume that there are n different control designs available
with different objectives and they each provide an accelera-
tion demand ai,d. Then we consider the integrated controller

ad = min
i=1,··· ,n

{ai,d} . (13)

Notice that this controller is independent of the individual
control designs, each of which makes its own decision
according to its own objective. This strategy is an extension
to the min-norm controller based on quadratic program (QP)
established in [8,18] and to the minimum intervention control
presented in [9]. In the min-norm controller, safety is ensured
by introducing the control barrier function condition as a
constraint to QP formulation. The optimization problem can
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be formulated in a way that the solution is optimal in the
sense of how far it deviates from a given nominal controller.
In this scenario, PCC is considered to be the nominal control,
whereas CCC is utilized to be the resulting control solution
when the barrier constraint is active, which means safety – as
defined by the barrier function – is no longer achievable with
PCC. The strategy is practical not only due to its simplicity,
but also because it can integrate designs that are inherently
different.

Specifically, assuming that both the CCC and PCC designs
provide acceleration demands, namely aCCC and aPCC, we
propose the controller

ad = min {aCCC, aPCC} . (14)

This handles the time scale difference between the CCC
design (few seconds and few hundred meters) versus the PCC
design (few minutes and few kilometers). While one may
design different switching logics based on the states used
in the individual controllers, we demonstrate below that our
integration can outperform such strategies without requiring
extensive tuning.

A. Predictive Cruise Control Algorithm

The predictive cruise control design is formulated as an
optimal control framework, that gives the fuel optimal speed
profile over a preview distance while taking into account
elevation. To reduce computational complexity, we convert
time based models to distance based ones. Combining the
models introduced in Section II, we formulate the following
optimal control problem:

min
ud,ub

J =

∫ sf

0

q(v, ud)

v
ds,

subject to
dv

ds
=
−f(s, v) + ud + ub

v
,∫ sf

0

1

v
ds ≤ tf ,

umin ≤ ub ≤ 0,

0 ≤ ud ≤ min

{
umax,

Pmax

meffv

}
,

vmin ≤ v(s) ≤ vmax(s),

v(0) = v0,

v(tf) = vf .

(15)

Here, sf is the preview distance, vmin > 0 is the lower
speed limit, v0 and vf are vehicle speeds at the time when
the optimal control problem is formulated and at the end
of preview distance, respectively. To ensure that travel time
is not sacrificed for better fuel economy, we prescribe the
upper bound tf for total travel time as a constraint. For
example, one may set the upper bound tf = sf/vCC + ∆t
where vCC is a pre-defined cruise control set speed and ∆t is
a slack variable. Previous studies have shown that such setup
is effective in providing fuel efficient speed trajectories [3].
We remark that when substituting the approximation (9) into
the cost function in (15) the second term becomes a constant.

Thus, after dropping the constant p1, one may redefine the
cost function as

∫ sf
0
ud ds.

In order to solve the above optimal control problem
we discretize space with ∆s ≈ 2.5[m] and the resulting
nonlinear programming problem is solved by the open-source
interior point solver IPOPT [19]. Apart from the control input
ud and ub, we also obtain the optimal speed profile vPCC

as function of the distance s. For real-time implementation,
this speed profile is followed using a cruise controller with
gain αCC:

aPCC = αCC(vPCC(s)− v). (16)

B. Connected Cruise Control Algorithm

The connected cruise controller is given in [10] when a
connected automated vehicle is responding to multiple vehi-
cles ahead. For the sake of simplicity here we consider the
case when the truck only responds to the vehicle immediately
ahead using the feedback law

aCCC = A
(
V (h)− v

)
+B

(
W (v1)− v

)
. (17)

Here, h denotes the distance headway, that is, the bumper-to-
bumper distance between the truck and the preceding vehicle:

h = s1 − s− l. (18)

Here l is the length of the truck and s1 denotes the position
of the rear bumper of the preceding vehicle; see Fig. 1(a).

The range policy function

V (h) =


0 if h ≤ hst,

κ(h− hst) if hst < h < hgo,

vmax if h ≥ hgo,

(19)

describes the desired velocity of the truck as a function of
its headway; see Fig. 1(d). For a small headway (h < hst),
the truck intends to stop; for a large headway (h > hgo),
it intends to travel with the speed limit vmax; between hst

and hgo the desired velocity increases linearly, with the
gradient κ. As mentioned above vmax varies according to
position s (cf. (8)) which yields hgo(s) = hst + vmax(s)/κ.
The saturation function

W (v1) =

{
v1 if v1 ≤ vmax,

vmax if v1 > vmax,
(20)

shown in Fig. 1(e) is included to enforce the speed limit even
when a preceding vehicle is speeding.

The feedback gains A and B in (17) are designed to vary
with distance in order to make a smooth transition between
CCC and cruise control:

A(h) =

{
α if h ≤ hgo + d,

αCC if h > hgo + d,
(21)

B(h) =


β if h ≤ hgo,

β
hgo + d− h

d
if hgo < h < hgo + d,

0 if h ≥ hgo + d;

(22)

see Fig. 1(f,g). We summarize the numerical values of the
parameters used in (19,20,21,22) in Table I. We remark that
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α 0.4 [1/s] κ 0.6 [1/s]
β 0.5 [1/s] d 20 [m]

umax 2 [m/s2] umin −3 [m/s2]
hst 5[m] vmin 2.24 [m/s] = 5 [mph]

TABLE I: Parameters used in this paper.

while κ and α were set considering driver comfort and safety,
parameter β was optimized to maintain good fuel economy
while responding to the motion of the preceding vehicle [13].

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to
test the above controller design. We first discuss the hardware
structure of the connected automated truck. We then briefly
introduce the lower level acceleration tracking control design.
After describing the test environment and maneuvers, we
present the evaluation method for energy efficiency.

The test truck was developed from a 2011 ProStar+
in-production truck, whose powertrain corresponds to the
parameters used in the Section II; see Fig. 2. A Navistar PCC
box with internal database of main road geometry provides
elevation previews, as well as hosts the PCC algorithm.
Vehicle-to-vehicle (V2V) connectivity is used to detect the
preceding vehicle and measure the distance h and the ve-
locities v, v1. A Speedgoat real time machine is used to run
the core algorithm as well as the lower-level controller using
MATLAB Simulink RealTime Toolbox. It receives V2V data
through user datagram protocol (UDP) while it transmits
PCC results using J1939 CAN protocol.

The engine and brake control are enabled such that they
take desired engine torque Te,d and brake pressure pbrake

as inputs through the J1939 CAN protocol. The acceleration
demand ad given by the integrated PCC and CCC design
(14) is given to a lower level controller that compensates
for the elevation using (5,12). Then with two feedforward
maps acquired from calibration, the desired engine torque
Te,d = fprop(u, v) and brake pressure pbrake = fbrake(u, v)
are calculated; see the “Algorithm” block in Fig. 2.

To conduct the experiments, we selected a route at Navis-
tar Proving Grounds, which has significant elevation changes
as shown in Fig. 3(a,b). Due to the road surface variations
and turns along the route (see Fig. 3(a)), we enforce a
customized speed limit shown by the black curve in Fig. 3(c).
This speed limit is incorporated into both the PCC and the
CCC design. Considering the elevation profile and the speed
limits, the PCC algorithm (15) provides the planned speed
profile shown by the dashed gray curve in Fig. 3(c).

To trigger the CCC functionality, a preceding vehicle is
driven along the route as shown by the purple curve in
Fig. 3(c). This speed profile is based on the behavior of the
preceding vehicle’s driver when obeying the traffic signs and
the speed limit. The symbols in Fig. 3 highlight events in the
motion of the preceding vehicle: start/finish (green triangles),
slowdowns (purple triangles), turns (blue triangles), and
complete stops (red squares). The experimental setup allows
us to record the preceding vehicle’s speed profile and replay
the data from the record. This way we can keep consistency

Fig. 2: Architecture of the connected automated truck.
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a function of the distance traveled. Green triangles – start/finish,
purple triangles – slowdowns, blue triangles – turns, red squares –
stops.

amongst subsequent experiments and compare the energy
savings of different control designs. This unique feature
resulted from our V2V based test platform setup. To assess
the effects of variations in the preceding vehicle’s motion we
also ran the experiments with the driver trying to repeat the
same speed profile.

For simplicity, we run the PCC algorithm (15) offline
to generate the optimal speed profile for the entire route
rather than using the real-time optimization. This way we
ensure that the improvement of energy efficiency is due to
the PCC and CCC integration, rather than the PCC and
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CCC algorithms themselves. The parameter tf = 400[s] is
determined based on the travel time of the preceding vehicle.

In order to evaluate the energy efficiency, we define the
cumulative energy consumption per unit mass for the truck
in time scale as

w(t) =

∫ t

0

udv dt̃ =

∫ t

0

g(u)v dt̃ =

∫ t

0

g
(
v̇ + f(s, v)

)
v dt̃.

(23)
With the conversion to spatial scale using w(t) = w(s(t)),
where s(t) =

∫ t

0
v dt̃, (23) corresponds to the cost function

in (15) with the Willans approximation (9). In the last step
we used model (4) to calculate the energy consumption
based on the kinematic quantities. The effectiveness of this
approach for designing fuel efficient control algorithms was
demonstrated in previous studies [10,13].

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results. We ran
two sets of experiments: in the first case a virtual preceding
vehicle is considered, while in the second case a real human-
driven vehicle is utilized. In both cases we ran four different
types of experiments: “PCC” tries to follow the velocity
profile vPCC(s) generated by (15) using (16); “CCC” uses
algorithm (17); the “Integrated Design” utilizes (14); while
the “Naive Switch” refers to a simple time headway-based
switch between PCC and CCC as explained further below.

Figure 4 shows experimental results for a PCC run (green)
and a CCC run (red), along with a run using the proposed
integrated design (blue). Panel (a) shows the realized speed
profiles, while panel (b) shows the corresponding energy con-
sumption. Without the presence of a preceding vehicle, the
truck closely follows the planned PCC profile; cf. green curve
on Fig. 4 and the gray dashed curve in Fig. 3(c). Indeed, the
PCC run (green) has the lowest energy consumption among
the runs shown in Fig. 4(b). One may notice though that
the executed PCC run consumes more energy compared to
the planned profile which we attribute to the fidelity of the
simple model (4) (no gear changes, no engine dynamics)
used in the optimization (15) and the time delays in (12,16).

The CCC run (red) performs the worst in terms of energy
consumption as in this case the truck keeps responding to the
motion of the preceding vehicle that is particularly obvious at
the slow downs (purple triangles) and the stops (red squares);
cf. red curve in Fig. 4 and the purple curve in Fig. 3(c).
The energy consumption of the integrated design (blue) is
close to that of the PCC (green) as the truck manages to
stay in PCC mode most of the time and only responds to the
preceding vehicle when necessary. This is particularly visible
at the slow downs and the stops where the integrated design
requires less braking and acceleration compared to the CCC,
resulting in the corresponding energy curves to deviate from
each other.

The experiments with PCC, CCC, and integrated design
were repeated multiple times to evaluate the uncertainty of
the experimental results and for each run the total energy
consumption was calculated. Table II shows the mean value
and the standard deviation of the total energy consumption as
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Fig. 4: (a) Speed profiles for PCC (green), CCC (red), and an
integrated design (blue) for a virtual preceding vehicle. (b) The
corresponding energy consumption curves as a function of distance
traveled. The gray dashed curve corresponds to the planned PCC
profile depicted in Fig. 3(c).
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Fig. 5: Total energy consumption as a function of PCC percentage
for different experiments. (a) Responding to a virtual preceding
vehicle. (b) Responding to a human-driven vehicle. The crosses
correspond to Fig. 4(b).

well as the energy savings compared to CCC. The proposed
integrated design provides approximately 18% benefit in
energy consumption, which is consistently observed over
multiple experiments. To further analyze the impact of the
integrated design, the percentage of the total PCC time over
the whole run is also calculated. Figure 5(a) summarizes
these results by plotting the total energy consumption against
the PCC percentage for all runs so that crosses correspond to
the final values in Fig. 3(b). The integrated design achieves
its benefits while spending approximately 75% of the time
in PCC.

The same set of experiments were also carried out with
a human-driven preceding vehicle trying to replicate the
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Preceding car Controller
Mean
[ J

kg ]

Standard
deviation

[ J
kg ]

Energy
saving
[%]

Virtual
CCC 948 14

Integrated design 779 12 18 ± 3

PCC 734 13 23 ± 4

Human
25 ± 4

CCC 979 19
Integrated design 804 21 18 ± 5

TABLE II: Energy consumption of the different designs.

speed profile in Fig. 3(c). This demonstrates the effects of
uncertainties in the preceding vehicle’s motion. The total
energy consumption values as a function of PCC percentage
are depicted in Fig. 5(b). Similar conclusions can be drawn
for these experiments as above: the PCC and CCC tests form
boundaries in terms of energy consumption, and the proposed
integrated design gives energy consumption values close to
the PCC runs. While having a human driver in the preceding
car results in more scatter in the energy consumption, the
results are quite similar to those obtained for virtual driver,
demonstrating the robustness of the proposed integrated
design. This is also reflected by the numbers listed in Table II
where again 18% of energy saving is observed on average.

A. Comparison to “Naive Switch”

Finally, we compare our integrated design to another
design which implements a naive switch between PCC and
CCC based on the speed v and the distance headway h. In
particular we implement the time headway-based switch

ad =

{
aCCC if h ≤ v/κsw + hsw,

aPCC if h > v/κsw + hsw.
(24)

Note that in this design the PCC and CCC functionalities are
not integrated but simply turned on and off using (24).

Experiments with the naive switch are conducted by
choosing hsw = 10 [m] and multiple different κsw values
within the interval [1/10, 3/5] [1/s]. Results are shown
by brown color in Fig. 5(a) and (b) for virtual and for
the human-driven preceding vehicles, respectively. One may
observe that increasing κsw increases the PCC percentage
and decreases the overall energy consumption, but the energy
benefits are increasing at the expense of reducing driver
comfort. Still, since not only the percentage of PCC is
important but the part of the road where it is used, the
integrated design outperforms the benchmark design in terms
of energy consumption without compromising comfort.

VI. CONCLUSION

In this paper, we proposed a simple yet effective integra-
tion of predictive cruise control and connected cruise control
to enable fuel efficient operation while maintaining safety in
traffic. Experimental results showed robust improvement in
energy efficiency by the proposed method when compared to
a time headway-based switch. In the future, we would like to
extend the design to fully loaded tractor-trailer configuration
and test in real traffic scenarios over more complex elevation
profiles.
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[12] J. Jing, E. Özatay, A. Kurt, J. Michelini, P. F. Dimitre, and Ü. Özgüner,
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