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Abstract— In this paper we perform fuel-economy optimiza-
tion for a connected automated truck that utilizes motion
information from multiple vehicles ahead via vehicle-to-vehicle
(V2V) communication. Position and velocity data collected from
a chain of human-driven vehicles is utilized to design a connect-
ed cruise controller that can respond to traffic perturbations
while maximizing energy efficiency. The results are compared
to those obtained using a high-fidelity truck model and the
robustness of the design is validated on multiple data sets. It
is shown that optimally utilizing V2V connectivity may lead
to 4%-13% fuel economy improvements compared to the best
non-connected design.

I. INTRODUCTION

Heavy-duty vehicles account for a large percentage of fuel
consumption in road transportation systems [1]. Improving
their fuel economy would benefit the trucking industry while
carrying large societal benefits. To tackle this problem one
may use geo-location information to determine optimal speed
profiles that maximize the fuel economy [2], [3]. However,
these speed profiles may be difficult to follow by trucks
in real traffic, when they need to respond to the speed
perturbations propagating from human-driven vehicles ahead.

Automated trucks may respond better to the traffic per-
turbations and achieve better fuel economy [4]. Yet the
improvements may be limited due to the fact that on-board
sensors can only obtain information within its line of sight,
and thus the controller for a sensor-based automated truck
seldom considers motion information from more than one
vehicle ahead. To further improve the fuel economy, one can
use vehicle-to-vehicle (V2V) communication to monitor the
motion of multiple vehicles ahead, and utilize beyond-line-
of-sight information [5]–[8]. While numerical optimization
methods can be used to achieve better fuel economy when the
motion of the preceding vehicles can be accurately predicted
[9], [10], the performance of such controllers may not be
ideal in real traffic [11].

In this paper, we utilize traffic data collected from a chain
of human-driven vehicles and design connected cruise con-
trollers that optimize fuel economy for heavy-duty vehicles.
We establish a design method that can ensure energy-efficient
responses to the traffic perturbations and demonstrate its
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impacts on fuel economy using high-fidelity TruckSim sim-
ulations. We show the robustness of the design by testing the
controller on multiple different data sets.

II. TRAFFIC DATA FOR CONNECTED AUTOMATED TRUCK
DESIGN

In this section, we present the speed profiles of human-
driven vehicles and analyze the characteristics of the speed
perturbations from a series of on-road experiments, in order
to design a connected automated truck that will perform well
among human-driven vehicles.
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Fig. 1: (a) Six human-driven vehicles traveling on a one-lane road
with no elevation. (b) The speed profile of the head vehicle 6. (c)
Speed profiles of the six vehicles during one braking event. (d) The
amplitude spectra of velocity profiles of vehicles 1, 2, 3 during the
experiment.

We recorded the speed and position data of six consecutive
human-driven vehicles on a segment of flat road that has
one lane in each direction; see Fig. 1(a). Vehicle 6 led
this vehicle chain with a series of mild braking events,
while its average velocity was about 20 [m/s]; see Fig. 1(b).
Such mild velocity variations have been observed frequently
in urban and highway traffic, especially when traffic jams
start to appear [12]. In Fig. 1(c), we show the velocity
profiles of the six vehicles during one mild braking event.
As the perturbation cascades along the vehicle chain, the
minimum speed decreases from around 14 [m/s] for vehicle
6 (brown) for about 9 [m/s] on vehicle 1 (red). Such a
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Fig. 2: (a) Layout of the connected vehicle system with a heavy-
duty vehicle at the tail controlled by a connected cruise control
algorithm. Each preceding vehicle is reacting to motion of the
vehicle immediately ahead while the truck utilizes V2V information
about 3 vehicles ahead. (b) The saturation function in (1). (c) The
range policy function (4).

phenomenon is an example of string instability in human-
dominated traffic, where human drivers are generally unable
to suppress the speed perturbations propagating through the
traffic flow [6]. These speed perturbations would force a
truck to deviate from fine-tuned driving strategies that may
guarantee good fuel economy under ideal driving cycles.
Therefore, to maintain desirable fuel economy in real traffic,
longitudinal controllers for trucks should be designed with
consideration of the traffic perturbations.

To extract the characteristics of these speed perturbations,
we perform fast Fourier transform and present the amplitude
spectra for vehicles 1, 2, 3 in Fig. 1(d). We observe that the
speed perturbations are mainly low-frequency oscillations.
While the frequency components of speed perturbations
may be different for different road segments, using V2V
communication we may collect motion information from
multiple vehicles ahead and obtain the amplitude spectra of
speed perturbations in real time. In this way, the connected
automated truck is able to target specific kinds of speed
perturbations and actively mitigate their influence to benefit
its fuel economy.

III. CONNECTED CRUISE CONTROL DESIGN

In this section, we design the longitudinal control for a
connected automated truck that utilizes V2V information
from multiple human-driven vehicle ahead; see Fig. 4(a).
We first model the human driving behavior as a feedback
controller, then we propose a class of connected cruise
controllers that include direct feedback on motion signals
from more than one vehicle ahead. By tuning the corre-
sponding feedback gains, a connected automated truck is able
to respond to speed perturbations while optimizing its fuel
economy.

We describe the longitudinal motion of both human-driven
vehicles and connected automated trucks with

ṡi(t) = vi(t), (1)

v̇i(t) = −fi(vi(t)) + f̃i
(
vi(t− ζi)

)
+ sati

(
ad,i(t− ζi)

)
,

where the dots denote differentiation with respect to time
t, si denotes the position of the rear bumper of vehicle i,
vi denotes its velocity, and ζi is the throttle/brake response
time that can also be approximated by a first order lag [6],
[10]; see Fig. 2(a). The term fi(vi) collects the physical
effects like air resistance and rolling resistance, while f̃i(vi)
denotes the compensation for these physical effects that is
often implemented in the lower-level controller. Finally, ad,i

denotes the higher-level acceleration command that we focus
on designing while exploiting V2V information to optimize
fuel economy. The saturation function sati(·) limits the
commanded acceleration between umin,i and umax,i based
on the engine and braking power limits; see Fig. 2(b).

A. Human acceleration control behavior

We describe the acceleration control command given by
the human driver for vehicle i as

ad,i(t) = αh,i

(
Vi
(
si+1(t− ξh,i) − si(t− ξh,i) − li

)

− vi(t− ξh,i)
)

+ βh,i

(
vi+1(t− ξh,i) − vi(t− ξh,i)

)
.

(2)

Here, αh,i and βh,i are the control gains used by the human
driver, while the time delay ξh,i is the driver reaction time,
and i = 1, ..., n− 1. In (2), the bumper-to-bumper distance

hi = si+1 − si − li (3)

is referred to as the headway of vehicle i, where li denotes
the length of vehicle i. The range policy function Vi(hi)
describes the desired velocity of vehicle i as a function of
its headway. In this paper, we use

Vi(hi) =





0 if hi ≤ hst,i,
κi(hi − hst,i) if hst,i < hi < hgo,i,
vmax if hi ≥ hgo,i,

(4)
as shown in Fig. 2(c). For a small headway (hi < hst,i), the
vehicle intends to stop; for a large headway (hi > hgo,i), it
intends to travel with the speed limit vmax; between hst,i and
hgo,i the desired velocity increases linearly, with the gradient
κi = vmax/(hgo,i − hst,i). Note that when hst,i = 0, (4)
corresponds to the constant time headway 1/κi. For more
discussions on the range policy function, see [6].

B. Connected cruise control

Here we present a framework for connected cruise control
design that explicitly uses the motion information received
from multiple vehicles ahead. In particular, we consider the
control law

ad,0(t) =α
(
V0

(
s1(t− ξ1) − s0(t− ξ1) − l0

)
− v0(t− ξ1)

)

+

n∑

i=1

βi
(
vi(t− ξi) − v0(t− ξi)

)
.

(5)

Here α and βi are the feedback gains to be tuned for a better
fuel economy. The range policy function V0(·) is given by
(4) but its gradient κ0 and distances hst,0, hgo,0 may differ
from those used by human drivers. Also, ξi represents the
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delay of information from vehicle i due to signal sampling
and communication intermittency. Note that σi = ξi + ζ0
gives the total delay in the control loop. In this paper, we
set σi = σ for i = 1, . . . , n for simplicity.

Without V2V communication, an automated truck is only
able to include feedback terms using motion information
from its immediate predecessor, vehicle 1. In this case,
n = 1 for the sum in (5). By including speed information
from vehicle i ≥ 2, that is usually beyond the perception
range of human eyes or on-board sensors, we expect to gain
more improvement in the fuel economy of the connected
automated truck.

IV. OPTIMAL CONNECTED CRUISE CONTROL FOR
TRUCKS AMONG HUMAN-DRIVEN VEHICLES

In this section, we first present an analytical method
to quantify the energy efficiency of the connected cruise
controller (5) based on experimental data. Then we use this
method to find the most energy efficient feedback gains.
Finally, a high-fidelity simulation platform is used to relate
energy efficiency to fuel efficiency.

A. Data-based optimization for energy efficiency

Here we present a method to relate the feedback gains
α and βi in the controller (5) with the energy efficiency of
the connected automated truck while considering the Fourier
spectrum of speed perturbations on road.

We consider the scenario where a connected automated
truck drives behind a chain of human-driven vehicles on a
flat road with zero grade, as shown in Fig. 2(a). The motion
of each vehicle fluctuates around an equilibrium

s∗i (t) = v∗t+ s̄i, vi(t) ≡ v∗, (6)

where vehicles travel with the same constant speed while
keeping constant distances

h∗i = s̄i+1 − s̄i − li, v∗ = Vi(h
∗
i ) (7)

for i = 0, . . . , n; see Fig. 2(a). We remark that v∗ can be
obtained from traffic data as Fourier coefficient for zero
frequency. That is, ρi(0) = v∗ for i = 1, . . . , n; see
Fig. 1(d) where v∗ ≈ 21.5 [m/s]. We define the perturbations
s̃i = si − s∗i , ṽi = vi − v∗, and assume the influence of
the physical effects fi(vi) can be negated by f̃i(vi). Then,
around the uniform flow (6), the linearized dynamics of the
connected vehicle system (1,2,5) becomes

˙̃s0(t) =ṽ0,

˙̃v0(t) =α
(
κ0

(
s̃1(t− σ) − s̃0(t− σ)

)
− ṽ0(t− σ)

)

+

n∑

k=1

βk
(
ṽk(t− σ) − ṽ0(t− σ)

)
,

˙̃si(t) =ṽi(t),

˙̃vi(t) =αh,i

(
κi
(
s̃i+1(t− τi) − s̃i(t− τi)

)
− ṽi(t− τi)

)

+ βh,i

(
ṽi+1(t− τi) − ṽi(t− τi)

)
, (8)

for i = 1, . . . , n− 1 where τi = ξh,i + ζi is the lumped time
delay in human-driven vehicles.

We approximate the velocity perturbation ṽn of vehicle n
using the m leading frequency components

ṽn(t) =

m∑

j=1

ρn,j sin(ωjt+ φn,j) , (9)

where the frequency is discretized as ωj = j∆ω with
∆ω = 0.002 [Hz], ρn,j = ρn(ωj) is the amplitude of
speed oscillation at frequency ωj , and φn,j = φn(ωj) is
the corresponding phase angle; see Fig. 1(d). Based on the
linearized dynamics of connected vehicle system (8), the
steady-state oscillation of the connected automated truck can
be expressed as

ṽ0(t) =

m∑

j=1

ρn,j
∣∣Γn(iωj ;pn)

∣∣ sin
(
ωjt+φn,j+∠Γn(iωj ;pn)

)
,

(10)
where we utilize the head-to-tail transfer function

Γn(λ;pn) =

λ

n∑

i=1

βi

n−1∏

k=i

Hk(λ) + ακ0

n−1∏

k=1

Hk(λ)

λ2eλσ + λ

(
α+

n∑

i=1

βi

)
+ ακ0

, (11)

with pn = [α, κ, β1, . . . , βn] containing the design parame-
ters and

Hk(λ) =
βh,kλ+ αh,kκk

λ2eλτk + λ(αh,k + βh,k) + αh,kκk
, (12)

for k = 1, . . . , n− 1 describe the human drivers; see [13].
We define the work per unit mass carried out to accelerate

the vehicle during the time interval [t0, tf ] as

W =

∫ tf

t0

v0(t)g
(
v̇0(t) + f

(
v0(t)

))
dt, (13)

with nonlinear function g(x) = max(0, x). It can be shown
that finding the parameter vector pn that minimizes W can
be approximated by minimizing the objective function

Jn(pn) =

√√√√
m∑

j=1

ω2
jρ

2
n,j

∣∣Γn(iωj ;pn)
∣∣2 . (14)

Thus, by computing the level sets of (14) the connected
automated truck is able to relate the values of the control
gains in (5) with its energy efficiency (at the linear level).

B. Fuel consumption optimization by high-fidelity simulation

In order to take into account realistic vehicle and pow-
ertrain dynamics of the connected automated truck, we set
up a high-fidelity truck model in TruckSim. This allows us
to estimate the fuel consumption and relate it to the energy
efficiency defined in the previous section.

Fig. 3 shows the simulation platform for the connect-
ed automated truck in MATLAB/Simulink, containing the
TruckSim module that uses specifications of a Navistar
Prostar truck [14]. We implement the higher-level connected
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Fig. 3: Conceptual block diagram of the TruckSim and MAT-
LAB/Simulink co-simulation for fuel consumption estimation.

cruise controller (5) and a lower-level controller with the
compensation function

f̃0(v0) =
1

meff
(γmg + ηv2

0) , (15)

where the effective mass meff = m + I/R2 includes the
mass of the vehicle m, the moment of inertia I of the rotating
elements, and the wheel radius R. Also, g is the gravitational
constant, γ is the rolling resistance coefficient, η is the air
drag constant [3].

Using the simulation platform shown in Fig. 3 and the
position and speed data s1, v1, . . . , vn during each experi-
ment, we are able to obtain the fuel consumption mf of the
connected automated truck for different gain combinations.
In this way, we are able to find the gains that minimize fuel
consumption.

V. DESIGN RESULTS

In this section, we consider the driving scenario shown
in Fig. 2(a), and apply the optimization methods in Section
IV to obtain desirable parameter values for the connected
automated truck.

We set the speed limit vmax = 35 [m/s], stopping distance
hst,0 = 5 [m], and gradient κ0 = 0.6 [1/s] for the range
policy function of the connected automated truck. We fix the
feedback gain α = 0.4 [1/s] so that the truck could maintain a
safe distance from its immediate predecessor. For the sake of
simplicity, we only consider connectivity with three vehicles
ahead, that is, the energy efficiency/fuel consumption will be
optimized over the design space of p3 = [β1, β2, β3].

When computing the level sets of the objective function
(14), we use the amplitude spectra shown in Fig. 1(d). For all
human-driven vehicles, we set αh,i = 0.2 [1/s], βh,i = 0.4
[1/s], κi = 0.6 [1/s], τi = 0.9 [s] based on experimental data
[7]. For the connected automated truck, we set the lumped
delay σ = 0.7 [s]; cf. (8).

When minimizing the fuel consumption using TruckSim
simulation, we set the information delay ξi = 0.1 [s]
in the higher-level connected cruise controller (5), which
corresponds to the V2V communication frequency of 10
[Hz]. For the saturation function sat0(·) of the connected
automated truck, we set umax,0 = 1 [m/s2] and umin,0 = −4
[m/s2].
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Fig. 4: (a) The value of objective function (14) as a function of
β1. (b) The total mass of fuel mf consumed by the truck in the
high-fidelity simulation as a function of β1.

A. Benchmark: only using information from one vehicle

To establish a benchmark for the proposed connected
cruise controller, we first consider the case when the truck
only uses motion information from vehicle immediately
ahead, that is, n = 1 in (5) and β1 is the only design
parameter.

For the energy efficiency evaluation, we use the amplitude
spectrum ρ1(ω) (shown in red in Fig. 1(d)) in the objective
function (14). We plot the value of (14) as a function of β1 in
Fig. 4(a) with step size 0.1 [1/s]. The minimum is marked by
the black cross at β1 = 0.4 [1/s]. For the fuel consumption
optimization, we load the motion data of vehicle 1 (cf. Fig. 1)
into the TruckSim platform, and we plot the total mass of fuel
mf consumed by the connected automated truck in Fig. 4(b)
with the same step size. Note that the curves in Fig. 4(a,b)
are qualitatively similar. In particular, the optimal design
parameter is β1 = 0.4 [1/s] for both cases. Thus, we pick
[β1, β2, β3] = [0.4, 0, 0] [1/s] as the benchmark.

B. Exploiting motion information from multiple vehicles

We now utilize motion information from vehicles 1, 2, 3
in the connected cruise controller (5). Using the speed data
and amplitude spectrum shown in Fig. 1, we compute the
energy efficiency (14) and fuel consumption mf for different
[β1, β2, β3] combinations (with 0.1 [1/s] resolution).

As an example, in Fig. 5(a), we show the level sets of
the energy efficiency (14) in the (β2, β3)-plane for β1 = 0.1
[1/s]. The minimum value is achieved at p∗

n = [β∗
1 , β

∗
2 , β

∗
3 ] =

[0.1, 0.4, 0.4] [1/s], as marked by the black cross in Fig. 5(a).
Note that not only the minimum value Jn(p∗

n) = 0.79 is
significantly smaller than the minimum in Fig. 4(a), but most
contours in Fig. 5(a) indicate better energy efficiency than
the minimum in Fig. 4(a). This shows the significant benefits
of including the speed data from vehicles farther ahead.

In Fig. 5(b) we show the level sets of mf in the (β1, β2)-
plane for β1 = 0.1 [1/s]. The fuel-optimal parameter combi-
nation is [β1, β2, β3] = [0.1, 0.2, 0.7] [1/s], as marked by the
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Fig. 5: (a) The level sets of objective function (14) in the (β2, β3)-
plane for β1 = 0.1 [1/s]. (b) The level sets of the fuel consumption
mf in the (β2, β3)-plane for β1 = 0.1 [1/s]. The black crosses
denote the location of the minima.

black cross in Fig. 5(b). This is fairly close to the energy-
optimal parameters (black cross in Fig. 5(a)). Again most
level sets in Fig. 5(b) show less fuel consumption than
the minimum in Fig. 4(b). This indicates that even with
nonlinearities in the powertrain and vehicle dynamics, adding
feedback terms from vehicles farther ahead can be beneficial
for fuel economy.

To further demonstrate the benefits of utilizing mo-
tion information from vehicles farther ahead, we plot the
time profiles corresponding to the fuel-optimal parameters
[β1, β2, β3] = [0.1, 0.2, 0.7] [1/s] in red, the energy-optimal
parameters [β1, β2, β3] = [0.1, 0.4, 0.4] [1/s] in dashed green,
and the benchmark parameters [β1, β2, β3] = [0.4, 0, 0] [1/s]
in blue in Fig. 6. In Fig. 6(a,b), the connected automated
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Fig. 6: Simulation results with different gain combinations. (a)
Time profiles of the connected automated truck’s headway h0. The
red and green dashed curve corresponds to the fuel-optimal design
when motion information from vehicles 1, 2, 3 are utilized, with red
curve using [β1, β2, β3] = [0.1, 0.2, 0.7] [1/s] while green dashed
curve using [β1, β2, β3] = [0.1, 0.4, 0.4] [1/s]. The blue curve
corresponds to the benchmark design when motion information only
from vehicle 1 is used ([β1, β2, β3] = [0.4, 0, 0] [1/s]). (b) Time
profiles of the velocity v0. (c) Time profiles of the acceleration v̇0.
(d) The mass of fuel mf consumed by the connected automated
truck as a function of time.

truck shows significantly smaller headway and speed fluc-
tuations when using the fuel-optimal parameters (red) or
energy-optimal parameters (dashed green) compared with
the benchmark parameters (blue). In Fig. 6(d), at the end
of the simulation, the both fuel-optimal and energy-optimal
design consumes about 8% less fuel compared with the
benchmark design. Fig. 6(c) highlights the reason behind
this significant improvement: the energy-efficient and fuel-
efficient designs accelerate/brake earlier and milder than the
benchmark design. With less energy dissipated in braking,
the connected automated truck requests less energy from the
engine and consumes less fuel.

VI. ROBUSTNESS OF FUEL-OPTIMAL CONNECTED
CRUISE CONTROL DESIGN

In the previous sections, we obtained the benchmark gains
for a connected automated truck using only motion informa-
tion from the vehicle immediately ahead, and energy-optimal
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and fuel-optimal gains when utilizing motion information
from three vehicles ahead. These gains are obtained by using
the speed data collected during one experiment (referred to as
Set 1 here). However, it is important that given similar speed
profiles on road, the energy/fuel-optimal gains maintain their
benefits over the benchmark gains. Such robustness against
variations in traffic data is crucial for the implementation of
connected automated trucks in real traffic. In this section, we
evaluate the fuel consumption of the connected automated
truck in TruckSim in six different data sets, and examine
the performance of the benchmark, energy-optimal, and fuel-
optimal gains determined above.

In Table I, we show the fuel consumption mf at the end
of the runs, maximum headway h, and minimum headway h
for each data set. Recall that Set 1 was used in finding the
benchmark, energy-optimal, and fuel-optimal gains. In this
case the benchmark gains consume the most amount of fuel,
while the energy-optimal gains provide 8.3% improvement
and the fuel-optimal gains provide 9.0% improvement. Also,
the energy-optimal and fuel-optimal gains have smaller max-
imum headway h and larger minimum headway h compared
with the benchmark case, indicating that better fuel economy
is achieved without sacrificing safety or traffic efficiency. For
Sets 2, . . . , 6, the energy-optimal and fuel-optimal gains still
produce 4-13% improvement in fuel economy compared with
the benchmark case, while their headway fluctuations are still
smaller. These results demonstrate that the connected cruise
controller designed under a particular data set can be used
for similar data sets to maintain high energy efficiency and
low fuel consumption.

VII. CONCLUSION

In this paper, we proposed a data-based method to op-
timize the energy efficiency and minimize the fuel con-
sumption of connected automated trucks. We collected speed
profiles of human-driven vehicles on road and obtained their
Fourier spectra. Then we proposed an analytical method
to quantify the energy efficiency of connected cruise con-
trollers by utilizing the head-to-tail transfer function. We also
established a high-fidelity simulation platform to minimize
the fuel consumption using experimental data and showed
that the energy-optimal is close to the fuel-optimal one.
We found that utilizing motion information from multiple
vehicles ahead may improve both safety and fuel economy
of connected automated trucks, and such improvements are
robust against variations in traffic data.
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and Henrik Sykora during the experiments.

REFERENCES

[1] U.S. Department of Transportation, “Commodity Flow Survey: United
States: 2012,” Tech. Rep., 2015.

Set β1 β2 β3 mf(tf)[kg] Percent h[m] h[m]
1 0.4 0 0 7.03 — 184 20
1 0.1 0.4 0.4 6.45 8.3% 125 21
1 0.1 0.2 0.7 6.40 9.0% 118 21
2 0.4 0 0 7.35 — 279 23
2 0.1 0.4 0.4 6.96 5.3% 216 26
2 0.1 0.2 0.7 7.05 4.2% 193 27
3 0.4 0 0 7.93 — 205 11
3 0.1 0.4 0.4 6.98 11.9% 180 12
3 0.1 0.2 0.7 6.87 13.4% 171 12
4 0.4 0 0 8.13 — 218 12
4 0.1 0.4 0.4 7.24 11.0% 190 12
4 0.1 0.2 0.7 7.22 11.2% 190 12
5 0.4 0 0 8.07 — 241 19
5 0.1 0.4 0.4 7.21 10.7% 202 12
5 0.1 0.2 0.7 7.26 10.1% 190 11
6 0.4 0 0 8.37 — 342 5
6 0.1 0.4 0.4 7.80 6.8% 309 5
6 0.1 0.2 0.7 7.74 7.4% 302 5

TABLE I: Performance of the connected automated truck using the
benchmark gains [β1, β2, β3]=[0.4, 0, 0] [1/s], the energy-optimal
gains [β1, β2, β3]=[0.1, 0.4, 0.4] [1/s] and the fuel-optimal gains
[β1, β2, β3]=[0.1, 0.2, 0.7] [1/s] under different traffic datasets. The
fuel-economy performance is represented by the mass of consumed
fuel mf at the end of the run, and the percentage of improvement
with respect to the benchmark case. The headway performance is
shown by the maximum headway h and minimum headway h.

[2] A. Sciarretta, G. De Nunzio, and L. Ojeda, “Optimal ecodriving
control: Energy-efficient driving of road vehicles as an optimal control
problem,” IEEE Control Systems Megazine, vol. 35, no. 5, pp. 71–90,
2015.

[3] C. R. He, H. Maurer, and G. Orosz, “Fuel consumption optimization of
heavy-duty vehicles with grade, wind, and traffic information,” Journal
of Computational and Nonlinear Dynamics, vol. 11, no. 6, p. 061011,
2016.

[4] X.-Y. Lu and S. Shladover, “Integrated ACC and CACC development
for heavy-duty truck partial automation,” in Proceeding of 2017
American Control Conference, May 2017, pp. 4938–4945.

[5] V. Turri, B. Besselink, and K. H. Johansson, “Cooperative look-ahead
control for fuel-efficient and safe heavy-duty vehicle platooning,”
IEEE Transactions on Control Systems Technology, vol. 25, no. 1,
pp. 12–28, Jan 2017.

[6] G. Orosz, “Connected cruise control: modelling, delay effects, and
nonlinear behaviour,” Vehicle System Dynamics, vol. 54, no. 8, pp.
1147–1176, 2016.

[7] J. I. Ge and G. Orosz, “Connected cruise control among human-driver
vehicles: experiment based parameter estimation and optimal control
design,” Transportation Research Part C, p. under review, 2017.

[8] J. I. Ge, S. S. Avedisov, C. R. He, W. B. Qin, M. Sadeghpour, and
G. Orosz, “Experimental validation of connected automated vehicle
design among human-driven vehicles – impacts on traffic safety and
efficiency,” Transportation Research Part C, p. under review, 2017.

[9] I. V. Kolmanovsky and D. Filev, “Terrain and traffic optimized vehicle
speed control,” in Advances in Automotive Control, 2010, pp. 378–383.

[10] S. E. Li, Q. Guo, S. Xu, J. Duan, S. Li, C. Li, and K. Su,
“Performance enhanced predictive control for adaptive cruise control
system considering road elevation information,” IEEE Transactions on
Intelligent Vehicles, vol. 2, no. 3, pp. 150–160, 2017.

[11] C. R. He and G. Orosz, “Saving fuel using wireless vehicle-to-vehicle
communication,” in Proceeding of 2017 American Control Conference,
2017, pp. 4946–4951.

[12] B. S. Kerner, The Physics of Traffic: Empirical Freeway Pattern
Features, Engineering Applications, and Theory. Springer, 2012.

[13] L. Zhang and G. Orosz, “Motif-based design for connected vehicle
systems in presence of heterogeneous connectivity structures and time
delays,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 6, pp. 1638–1651, June 2016.

[14] Navistar, “Maxxforce 11 and 13 liter engines,” Navistar Inc., Tech.
Rep., 2011.

5581


