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Abstract—While building a testbed with a working Au-
tonomous Vehicle (AV) running an open-source Autonomous
Driving Stack (ADS) is essential for supporting AV-related
research and experiments, it is also challenging, especially for
academic researchers. In particular, academic researchers often
have both limited funds to acquire the latest hardware and soft-
ware components, and limited human resources and experience
to integrate these components into a testbed. In this paper,
we report the steps taken and lessons learned in upgrading
the ADS on our 2017 Lincoln MKZ to the latest Autoware
version (Universe), as well as associated efforts in localization,
generating HD maps, integrating with simulators, and building
digital twins. We describe the challenges encountered, including
current deficiencies in Autoware Universe, and some of the
solutions to overcome these challenges. We also present results
obtained from our experiments and point out future research and
experimental work. The source code of our work can be found
at https://github.com/ub-cavas/ub-lincoln-docker. We believe that
this paper could provide the community working on AV research
useful insights into both building and using an AV experimental
platform based on an open-source autonomous driving stack.

Index Terms—autonomous, vehicle, autoware, hd-map, digital-
twin

I. INTRODUCTION

Autonomous Vehicle (AV) technology has emerged as a
transformative innovation with the potential to revolutionize
transportation systems. However, the complexity of AV sys-
tems and the stringent safety requirements necessitate rigorous
testing and validation before deployment. A robust testbed
that integrates both real-world and simulation-based evaluation
environments is crucial for accelerating AV development while
ensuring safety and reliability [1]. Autonomous vehicle com-
panies such as Waymo, Motional, Aurora, and Plus, working
with vehicle manufacturers and suppliers, spend hundreds of
millions of dollars annually to maintain their test vehicle fleet
so as to support technology development. However, matching
such effort in academia is difficult, if not outright impossible,
due to the lack of funding, resources, and technological know-
how. While there are a few papers describing open-source,
academic research-oriented platforms [1], [2], and many more
papers that report research results, to our best knowledge, no
work on maintaining a robust and up-to-date AV testbed, and

in particular, upgrading an ”old” vehicle platform with a “"new”
open-source autonomous driving stack (ADS) exists.

In this paper, we report our effort in developing and
maintaining an AV testbed, allowing it to support AV research
continuously. Our AV testbed development and maintenance
efforts focus on meeting two goals: 1) to have a vehicle plat-
form, built upon an old” car (2017 Lincoln MKZ), with the
latest open-source ADS Autoware Universe; and 2) to have a
simulation platform of the physical test track. With the vehicle
and simulation platforms, we aim to develop a cohesive testbed
designed to address the challenges faced during AV technique
development: scalability, cost-effectiveness, and safety of AV
testing. By combining real-world operations with advanced
simulation capabilities, this testbed will continue to serve as a
powerful tool for advancing the development of autonomous
vehicles and their associated technologies.

Specifically, the vehicle platform leverages the open-source
ADS called Autoware, providing a flexible and scalable
foundation for controlling and operating a real vehicle. By
utilizing Autoware, the platform benefits from a modular
architecture that supports various hardware configurations and
advanced autonomous driving functionalities. Complementing
this, the simulation platform employs a digital twin of the
test track to replicate the physical environment virtually. This
integration enables seamless transitions between physical and
simulated testing, allowing developers to refine algorithms,
validate safety protocols, and assess performance under diverse
scenarios. The contributions of the work are as follows:

e We detailed the maintenance process of updating a
testbed with an outdated ADS to the latest version

e« We provide the recipe to configure and calibrate the
updated stack and can deliver satisfactory baseline per-
formance with the testbed

o We provide a guideline on building a simulation tool with
instructions on building digital twins for a customized test
track

We believe these contributions can provide insight to the
research community on conducting AV research with a testbed
using an open-source autonomous driving stack (ADS).



The remainder of this paper is organized as follows: In
Section II, we provide background on open-source ADSs
and a brief survey of related work. Section III discusses our
AV platform setup and the stack update steps. Section IV
describes the steps that enable driving the vehicle with ADS
and demonstrates the performance. Section V describes the
steps to establish a simulation environment for the testbed,
including the steps to build a digital twin for the test track. In
Section VI we discuss our learning, suggest needs for further
system improvements and project future work. We conclude
the paper in Section VII.

II. BACKGROUND

In this section, we survey common architecture for au-
tonomous driving stack (ADS) and survey three of the widely
used open-source ADSs in academia.

A. Autonomous Driving Stack Overview

Autonomous driving stacks provide a comprehensive frame-
work enabling vehicles to drive autonomously. These stacks
integrate multiple layers of software that work together to
perceive the environment, make decisions, and control the
vehicle. The main components of the system and how they
work together are described below and summarized in Fig. 1.

1) Perception: This component processes data from sensors
such as LiDAR, RADAR, and cameras to detect and identify
objects, lanes, pedestrians, and other vehicles in the environ-
ment. Sensor fusion algorithms can combine data from mul-
tiple sensors to create a cohesive and accurate understanding
of the vehicle’s surroundings.

2) Localization: Accurate localization is essential for au-
tonomous driving. This component helps the vehicle determine
its exact position in space relative to its environment. Localiza-
tion measurement hardware such as Global Navigation Satel-
lite Systems (GNSS), Inertial Measurement Units (IMU), and
visual/wheel odometry can help refine the vehicle’s position
in relation to a high-definition map.

3) Mapping: High-definition maps store detailed informa-
tion about the driving environment, including lane markings,
traffic signals, and other key features. Autonomous stacks
often use these maps as a reference to help the vehicle
understand its drivable environment and route.

4) Planning: The planning component is responsible for
path planning and decision-making. It includes route planning,
which decides the best path to reach a destination and motion
planning, which determines how to follow that path smoothly
while avoiding obstacles.

5) Control: The control component converts planned routes
and maneuvers into actuator actions by managing the vehicle’s
steering, acceleration, and braking. The control component
also ensures the vehicle follows the planned path accurately
and safely.

6) Simulation and Testing: Many autonomous stacks sup-
port simulation environments for testing algorithms and sce-
narios safely. This allows developers to refine the system
in virtual environments before deploying it in real-world
situations.
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Fig. 1: Autonomous Driving Stack Data Flow [3]

B. Open-Source Autonomous Driving Stacks

An autonomous driving stack provides a foundational
framework that accelerates the research of autonomous driving
technologies. By offering prebuilt modules for critical systems
such as perception, localization, planning, and control, a
stack allows researchers to focus on innovation in specific
modules of interest. Furthermore, open-source stacks foster
collaboration and knowledge sharing, allowing researchers
to leverage a community of contributors and access state-
of-the-art algorithms. Additionally, compatible open-source
simulation tools are available, which not only enable safe and
cost-effective means for research complementary to real-world
testing, but also open research opportunities to those who may
not have access to a vehicle platform. Here, we briefly describe
three popular open-source ADSs.

1) Autoware: Autoware, developed by Tier IV, is a promi-
nent open-source software stack designed for autonomous
vehicles [3]. Originally developed for academic research and
prototyping, it has grown into a modular and robust platform
suitable also for industrial and commercial applications. Au-
toware provides end-to-end solutions, including localization,
perception, planning, and control. The stack has multiple
versions, each with unique features. Autoware.Al, launched
in 2015, was the original version of the platform developed
by Nagoya University. Built on ROS, it provided an all-in-
one solution for autonomous driving, including modules for
perception, localization, planning, and control. While it gained
traction in academia and research, its monolithic structure
and lack of scalability presented challenges for deployment
in production environments. Autoware.Auto, introduced in late
2018 under the guidance of the Autoware Foundation, aimed
to address the limitations of its predecessor by adopting ROS2
for better modularity, real-time performance, and security. It
was designed to comply with safety standards like ISO 26262,
making it suitable for production environments in industrial
and commercial applications such as autonomous shuttles and
logistics. Autoware Universe, released in 2021, serves as a
transitional platform, merging features from Autoware.Al into
a ROS2-based framework. It offers backward compatibility for
developers transitioning from Autoware.Al while incorporat-



ing advancements from Autoware.Auto. This hybrid approach
makes it a flexible solution for developers exploring both
prototyping and real-world deployments.

2) Apollo: Apollo, developed by Baidu, is a comprehensive
and scalable open-source platform for autonomous driving
[4]. It provides a full-stack solution, covering everything
from hardware integration to high-level algorithms for per-
ception, planning, and control. Apollo’s capabilities include
HD mapping, real-time localization, advanced sensor fusion,
and robust simulation tools for testing and validation. Its
modular architecture and extensive hardware support make it
suitable for various applications, including autonomous taxis,
delivery robots, and research initiatives. As a community-
driven platform, Apollo benefits from extensive contributions
and testing from both commercial and academic partners,
which accelerates its development and helps it maintain a high
level of performance and reliability in real-world applications.
Like Autoware, Apollo has released several versions, each
adding more capability to its feature set.

3) OpenPilot: OpenPilot, created by Comma.ai, is an open-
source software stack that focuses on Advanced Driver As-
sistance Systems (ADAS) and provides a pathway to semi-
autonomous driving [5]. It is designed for aftermarket in-
stallation on compatible vehicles, enabling features like lane-
keeping, adaptive cruise control, and driver monitoring. Open-
Pilot is lightweight and utilizes end-to-end learning tech-
niques to enhance its functionality continuously. Actively
maintained and frequently updated, it has gained popularity
among individual developers and car enthusiasts looking to
add autonomous capabilities to their personal vehicles. With
its ease of use and robust performance, OpenPilot represents
an accessible entry point into self-driving technology.

III. VEHICLE PLATFORM

In this section, we describe the original vehicle platform that
we start with, highlight the challenges, and report the updates
we made on the vehicle software system and configurations to
run the latest Autoware stack. The original vehicle platform is
a 2017 Lincoln MKZ retrofitted by AutonomouStuff [6] with
the hardware and software listed below.

A. Hardware

1) Computer: The ADS runs on an industrial PC (IPC)
which is a Neousys Nuvo-6108GC with an Intel Xeon CPU
(3.60GHz x 8), 32 GB of RAM, several 1TB SSDs and an
NVIDIA GeForce GTX 1080 Ti.

2) LiDAR: The vehicle platform sensor stack includes a
Velodyne LIDAR model VLP-32C with a 360-degree field of
view and 32 scanning lines, each with a range of up to 200m.

3) GNSS with RTK & IMU/INS: The localization stack
includes a NovAtel GNSS unit model PwrPak7D with dual an-
tenna providing a high precision position and heading solution.
The GNSS is capable of processing real-time kinematic (RTK)
corrections for centimeter-level positioning. The localization
stack also has an STIM300, a high-precision IMU that aids
in positioning in the Inertial Navigation System (INS). The

INS uses data from an IMU to calculate position, velocity,
and attitude. When combined with GNSS, the two systems
complement each other, with the INS providing stable relative
positioning during periods when the GNSS signal is degraded
or unavailable.

4) Dataspeed Drive-By-Wire Kit: The gateway to the ve-
hicle is provided by a Dataspeed Drive-By-Wire (DBW) kit.
The 2017 Lincoln MKZ is designed for DBW and with the
Dataspeed DBW interface, we can send commands directly
to the vehicle to control it, and read the data back from the
vehicle for feedback [2].

B. Software

The original software on the vehicle platform ran on Ubuntu
16.04 using an early version of Autoware.Al with ROS. Each
of the sensors also had an associated driver node to interface
with the hardware and was open-source when we received the
vehicle.

C. Challenges

1) Hardware Challenges: As this hardware was origi-
nally installed when the vehicle was retrofitted, the sensors
(GNSS/LiDAR) and vehicle control hardware (DBW) have
aged. While most of the hardware had firmware updates that
improved usability and stability, updating firmware, requires a
manual update and reconfiguration of the software drivers that
interface between Autoware and the hardware. Such processes
are non-trivial, tedious, and mostly missing clean unified
instructions.

2) Software Challenges: The original Autoware.Al stack
had only minimal base features, and the overall performance
was unstable. Since then, official update releases have been
applied selectively with non-trivial efforts each time. Despite
the features added with the new updates, due to the backward
compatibility issues with older hardware, the overall system
became even less stable. Meanwhile, staying with the older
version while avoiding the upgrade work would have limited
the research capability of the AV platform.

D. Software & Configuration Updates

1) Software Systems: The onboard IPC OS was upgraded
to Ubuntu 22.04 LTS using Autoware Universe with ROS2.
While each of the sensors had a drive node available for ROS,
the migration to ROS2 made finding, adapting or converting
older ones necessary through the upgrade process. This was
also complicated with hardware firmware version changes as
newer drivers sometimes required newer firmware, which may
not provide data in the same format Autoware required it.

2) Vehicle Configuration Setup: To enable Autoware Uni-
verse to run properly on a vehicle, two main configurations
need to be setup so the stack has the required information.
This part is critical as the configurations are specific to the
vehicle platform and sensor layout.



a) Vehicle Specifications: The vehicle specification con-
figuration contains all of the parameters required to define
the vehicle that Autoware will use. This includes vehicle
measurements such as tire_wheel_radius and other base ve-
hicle dimensions. This configuration also describes how the
vehicle behaves in simulation and contains the 3D model
for simulation. While some of these configuration values
were used in older versions of Autoware each major upgrade
required them to be enhanced, updated and put into different
locations of the ADS.

b) Sensor Kit: The sensor kit configuration describes the
layout and types of sensors used in the ADS mounted on the
vehicle. Similar to the Vehicle Specifications, the Sensor Kit
contains the dimensional parameters of the sensors being used,
their location with respect to the vehicle, and the 3D models
used for them in simulation.

3) Interface Nodes: We created two interface nodes that
translate and/or transform ROS messages between Autoware
nodes and the Dataspeed DBW interface. This is needed
because the messages that Autoware is expecting are different
than what the DBW interface provides/accepts. Fig. 2 illus-
trates the workflow between Autoware and these nodes. This
involves ROS topic renaming, data conversion, and message
remapping similar to what was reported in [2].

a) Dataspeed Bridge Node: The Dataspeed bridge node
ensures control messages (gear, steering, and speed control)
are converted between Autoware-compatible ROS2 messages
and DBW-compatible ones.

b) Data Transform Node: The data transform node is de-
signed to listen to data streams from multiple sensors, includ-
ing the NovAtel GNSS, LiDAR sensor, and vehicle velocity.
The LiDAR data undergoes preprocessing to remove points
in close proximity to the vehicle, which could otherwise be
falsely identified as obstacles. Additionally, GPS coordinates
are transformed into (X, Y, Z) coordinates. These transformed
coordinates play a critical role in localizing the vehicle and
ensuring accurate navigation within the environment.

Novatel GPS
Velodyne Transform Bridge Dataspeed Vehicle
Lidar Data

Fig. 2: Autoware/Dataspeed Bridge & Data Transform Nodes

4) Firmware Upgrades:
a) GNSS/RTK/INS: The firmware on the GNSS receiver
needed to be updated to fix issues with configuration changes

not being saved and RTK correction streaming. The new
firmware required a new configuration in order to enable the
RTK corrections from our local Continuously Operating Ref-
erence Station (CORS) network. This also required changes in
the above Data Transform Node as the messages had changed
between firmware versions.

b) Dataspeed DBW System: The Dataspeed DBW sys-
tem was also updated with firmware. This enabled more ways
to communicate data to the DBW, simplifying some of our
control conversions. This firmware update was not an open-
source but proprietary and a charged service by Dataspeed.

5) Validation: Initially, the control part of this setup was
tested and validated in the vehicle platform in a parking lot.
The objective of the test was to ensure that the vehicle could
respond accurately to the control commands sent by Autoware.
To achieve the full stack baseline driving performance with
ADS, an HD map is essential for localization and planning
module in the ADS. The next section will cover the process
of map creation, along with the calibration of LiDAR and
GNSS sensors.

IV. DRIVE WITH AUTOWARE ADS

In this section, we describe the effort that enables driving
the vehicle with Autoware ADS. Specifically, we report the
steps to generate an HD map of our designated test track and
report the autonomous driving performance of the Autoware
ADS stack on the test track.

A. HD Map Generation

The latest Autoware ADS localizes the vehicle by matching
the LiDAR scan with the HD map. Thus, an HD map is
needed to execute autonomous driving with Autoware ADS in
a certain area. HD maps are necessary for many autonomous
driving functions such as lane-level navigation, behavior plan-
ning, and traffic sign recognition for rule enforcement, etc.

The steps to create an HD map are the following:

o calibrate the LIDAR and GNSS/INS

o generate a LiDAR point cloud map from raw LiDAR scan
results when driving in the target area

o generate vector map using the point cloud map and the
road map of the target area

The vector map generated at the last step along with the point
cloud map will serve as our completed HD map that can be
used by Autoware.

1) LiDAR and GNSS/INS Calibration: The LiDAR and
GNSS/INS must be calibrated to generate a high-quality
LiDAR point cloud map without duplication or ghosting of
the real objects. A multi-stage extrinsic calibration method,
LiDAR2INS [7], was used that effectively utilizes environmen-
tal planar features to enable fast and accurate calibration. This
process requires data of repeated figure-8 maneuvers by the
vehicle; see Fig. 3. The calculated calibrated parameters by
LiDAR2INS based on the recorded data by our vehicle are
summarized in Table I.



Fig. 3: LiDAR and GNSS/INS Calibration, Figure-8 Pattern

TABLE I: LiDAR and GNSS/INS Calibration Parameters

Extrinsicrrans = { 1.471 2.293 1.278 J

0.99925572  —0.00225209  0.02664469
Extrinsicrot = | —0.00166006  0.99485878  —0.01421335
—0.03853884 —0.10124692  0.99954392

0.9974 0.0 0.0720

Extrinsicrpy = 0.0 1.0 0.0

—0.0720 0.0 0.9974

2) Point Cloud Map Creation: With the LiDAR and
GNSS/INS calibrated, we can properly collect route LiDAR
data of the target area. Data collection requires driving the
full route of the target area while continuously recording the
LiDAR, GNSS, and INS data. Once the route LiDAR data has
been collected, post-processing is complete, which optimizes
the point cloud by removing duplicate points that are very
close to each other and creating a map that starts and ends at
the same point in 3D space. During the collection process,
the point cloud scans can slowly drift from each other. If
the full route during the data collection was a loop, the start
and end points may not align. To address this misalignment
and achieve loop closure, the LIO-SAM mapping framework
was used [8]. Adapted from LeGO-LOAM [9], which uses an
iterative closest point method, LIO-SAM formulates LiDAR-
inertial odometry using a factor graph, enabling the integration
of various relative and absolute measurements, including loop
closures, from multiple sources as factors into the system.
Fig. 4 illustrates the LiDAR point cloud map overlay on the
Google Map view of our test track. As it can be seen, the
point cloud matches with the landscape well after the post-

processing.

Fig. 4: Google Map of our test track overlaid with post-
processed LiDAR point cloud

3) Vector Map Creation: The final step in the process
involves using the post-processed point cloud map as a basis to
create the vector map. The vector map will contain information
about road geometry, lane boundaries, traffic control devices
and rules (e.g. traffic stop signs, speed limits), crosswalks,
and other critical features at user preference. We use the
Vector Map Builder tool by Tier IV [10], which takes the
post-processed LiDAR point cloud and allows for the manual
creation of a vector map. Once imported, we set the Military
Grid Reference System (MGRS) zone information for the
point cloud and set the output format to be the Autoware
compatible “Lanlet2”. We use the target area road map as a
guide to manually draw lane lines overlaid on the point cloud
map, indicating the drivable lane area. Other road information
may also be added to the map, such as speed limits for lane
segments, direction of travel, traffic control devices, etc. Fig. 5
illustrates the drivable lane area created in Vector Map Builder.

Fig. 5: Vector Map Lane Creation

With the point cloud and vector map generated, we now
have the two pieces that form the HD map, Autoware’s
localization module can function properly. The module first



leverages GNSS-based coordinates to provide an estimate of
the vehicle’s position in the point cloud. It then uses the
normal distribution transformation (NDT) matching technique
to align point cloud data with the point cloud in the HD map,
further refining the localization result. Fig. 6 shows the NDT
matches and the vehicle being placed in the map based on
those matches.

b A . -k,

Fig. 6: NDT Localization on Test Track

B. Autonomous Driving Performance

The procedure for driving with Autoware ADS is as follows.
First, all necessary drivers and nodes are properly launched.
An RViz window will launch, visualizing the target area with
the vehicle properly localized. Then, a goal pose can be set
in the RViz window, which serves as the destination point
and pose for the vehicle. Once the goal pose is configured,
Autoware planning modules generate an optimal path from
the current location to the target while staying within the
allowable area. Once the path is generated, the system then
transitions to autonomous mode, enabling the vehicle to fol-
low the planned path using real-time localization, perception,
and control inputs. The perception and localization modules
operate in real time, accounting for moving obstacles within
the environment. In Fig. 7, a screenshot of the RViz window is
shown, which is when the Autoware ADS is driving the vehicle
autonomously. The object detected (if any) will be shown in
the view. The green arrow indicates the planned path while its
color (green means accelerating, red means decelerating), and
the steering speedometer and indicator light arrows show the
control actions.

Fig. 7: Planned Drive To Goal

The successful operation of these procedures demonstrates
that the software and configuration updates, along with the
calibration and HD map generation we reported, are function-
ing properly. This means a working vehicle platform testbed
that can serve as the baseline for further research is available.

To showcase the drive performance, we conduct test runs
on our test track. A point cloud map of the test track loop is
shown in Fig. 8. Our test run will start at the beginning of
our test track loop, drive around the loop, make three right
turns, then stop at a stop sign, and make a final left turn
back to the starting position. In order to create a baseline
comparison, and because of the manual process of creating the
vector map lanes, we decided to drive the test track two times,
once manually by a human and once in autonomous mode. The
manual drive serves as our human baseline & ground truth
trajectory, with us driving down the center of the lane, just as
we set our vector map to have the vehicle drive down while
in autonomous mode. We recorded the position of the vehicle,
using the onboard GNSS system with RTK corrections giving
us position down to 3 cm, along with the vehicle’s steering
angle and velocity, from the vehicle DBW, for both runs.

Fig. 8: Point Cloud Map of our Test Track

In Fig. 9 the comparison results of the test drives are plotted.
In all panels, the autonomous run by Autoware is plotted as red



dashed curves, while the baseline run by human is plotted as
green solid curves. As shown in panels (a) - (c), the drives were
very similar with little deviation, indicating that the Autoware
ADS can drive the vehicle following the center of the lane
well. In panel (d), the speed profile is plot against the distance
traveled. The Autoware run followed the speed limits (target
speed, shown as the blue dashed line) on each road segment, as
we set them in the vector map, while the human driver drove at
a higher speed. We remark that at a distance of 880 [m], there
is a stop sign, and Autoware ADS detected it, and executed a
stop briefly according to the traffic rule, then resumed driving.
There are three right turns followed by one left turn in the
loop. In panel (e) the steering angle profile are plotted against
distance traveled. As can be seen, the steering maneuvers by
the Autoware ADS closely mimic those of humans, both in
magnitude and timing. Overall, the performance of Autoware
ADS is satisfactory and can serve as a baseline for further
research and development.

V. SIMULATE WITH AUTOWARE ADS

In this section, we report our effort to establish a simulation
environment to develop and test with Autoware ADS. We
describe our survey of simulation platforms before making
a design selection, and showcase our progress in creating a
realistic digital twin of our test track.

Autonomous driving simulation tools enable researchers to
validate and compare ADS design choices on a variety of cus-
tomizable scenarios in a safe and efficient way. Researchers,
including those who do not have access to a real vehicle,
can reuse real-world test cases or generate new scenarios
to conduct research on autonomous driving techniques. As a
result, simulation tools play a pivotal role in the research and
development of autonomous driving and the development of
these tools account for a major stream of autonomous driving
research.

Our goal with simulation is to pick one open-source sim-
ulation tool, integrate it with Autoware ADS, and establish
a realistic representation of our test track, therefore allowing
productive research and development of autonomous driving
techniques. To this goal, our major effort has been spent on
simulation tool evaluations, digital twin building of our test
track, and integration into the simulation tool.

A. Simulation Environments

Our ideal simulation tool needs to satisfy the following
two requirements: For one, it should support an accurate
scenario representation for the target research orientation. For
a full stack ADS development, this means good graphical
and scene representation (e.g., road geometry, weather and
lighting conditions), simulated sensor kits, as well as realistic
pedestrian and traffic behavior. This requirement mitigates the
design gap and enables a seamless transition from validating
in simulation to validating in the real world. For the other, it
should seamlessly integrate with an ADS. For a full stack
ADS development, this means that the input and output
definition and specification for the ADS are identical between
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Fig. 9: Test Track Drive Results

the simulation and the real vehicle, i.e., zero implementation
gap between the simulation and the real vehicle.

With these two requirements in mind, we surveyed popular
open-source simulation tools to identify a foundation for
our digital twin. Specifically, to meet the first requirement
when evaluating the tools, we also look at their capability of
integrating with other specialized simulators for certain scene
representations, such as SUMO for traffic flow representation
[11] or NS-3 for network communication representation [12].

1) RoadRunner: RoadRunner by MathWorks (formerly by
VectorZero), is a 3D environment modeling and simulation
tool designed for creating and testing scenarios for au-
tonomous driving systems, advanced driver-assistance systems
(ADAS), and other transportation applications [13]. It provides
tools for designing detailed, realistic virtual environments, in-
cluding roads, intersections, traffic signs, and complex terrains.
These environments are used to simulate and validate vehicle



perception, planning, and control algorithms. RoadRunner can
be a useful tool for developers working on safety-critical
systems, enabling cost-effective testing and development in
virtual environments before deploying on physical roads.

When we started working on building the digital twin of
the test track, we used RoadRunner to create our model. The
ability to import a road network from OpenStreetMap (OSM)
was very helpful to get started. We eventually determined
that OSM did not provide us with enough fidelity to create
a useful digital twin. The simulation portion of RoadRunner
also had some deficiencies as we were unable to integrate
with our other simulators, SUMO & NS3, as data sources. As
we started looking at the next simulator, we found that we
were able to export most of our model via OpenDRIVE &
OpenSCENARIO into CARLA, and chose to migrate to that
platform.

2) CARLA: CARLA (CAR Learning to Act) is an open-
source simulator designed for the development, training, and
validation of autonomous driving systems [14]. It provides
a platform for researchers, developers, and industry profes-
sionals to simulate urban and highway driving environments,
test driving policies, and validate algorithms in a realistic
yet controlled setting. CARLA is widely used by academia
and industry for developing autonomous driving technologies,
enabling a risk-free and cost-effective approach to validate
algorithms before real-world deployment.

When we started working with CARLA, we were able
to import most of our models from RoadRunner. CARLA
provided better support for working with multiple data sources,
including SUMO. Although this got us up and running quickly,
we also ran into different issues. The process of keeping the
RoadRunner model up to date, just to export and import into
CARLA, became tedious and problematic. Anything that was
created directly in CARLA would be lost on the next import of
an updated RoadRunner model. We also found that our road
network, originally imported from OSM, was incomplete or
changed during the import process. This occasionally required
several import attempts before success. One of our issues with
CARLA was its lack of integration with the newest versions
of Autoware. Since one of our requirements for the simulation
tool is that it can assist in the Lincoln MKZ Autoware Universe
update, we moved on from CARLA.

3) AWSIM & AWSIM Labs: Our Autoware difficulties
were eventually relieved with the integration of AWSIM,
which provided the same benefits as CARLA while remaining
compatible with Autoware Universe. AWSIM [15], an open-
source Unity-based simulator developed by Tier IV, was
designed to integrate seamlessly with Autoware. It features
realistic physics, sensor models (LiDAR, cameras, GNSS,
IMU), and support for dynamic objects like pedestrians and
traffic. AWSIM enables testing and evaluating perception,
planning, and control algorithms in a safe virtual environment.
It is optimized for ROS2 communication, making it ideal for
working with Autoware.

AWSIM Labs [16] is a specialized fork of AWSIM, devel-
oped by the Autoware Foundation to foster autonomous driv-

ing innovation. While it builds on AWSIM’s core capabilities,
it emphasizes enhanced simulation features, such as detailed
traffic environments and high-definition digital twins. AWSIM
Labs uses a more efficient rendering pipeline compared to
AWSIM. AWSIM Labs is a newer development and we are
still evaluating its benefits over AWSIM.

We surveyed three simulation tools, and chose AWSIM
as the tentative tool for our digital twin. After comparing
RoadRunner, CARLA, and AWSIM we decided AWSIM of-
fers comparable graphics quality and integrates with Autoware
Universe more tightly than RoadRunner or CARLA. We are
actively using the AWSIM simulation engine while attempting
to maintain portability to other engines as new developments
arise.

B. Digital Twin for Test Track

With AWSIM selected and configured as the simulation
tool, we now shift focus to creating a realistic digital twin
model of the test track. We want to leverage the perception
and localization capability of the Autoware ADS running on
the physical vehicle to achieve a realistic digital twin model
for full-stack ADS research and development.

Specifically, the Poisson surface reconstruction algorithm
[17] by the open-source tool CloudCompare [18] is applied
on the point cloud map used for HD map generation, which
outputs a mesh representation of the environment. Once im-
ported into the digital twin, the mesh is used for localization
purposes with the virtual LIDAR sensor also hidden from the
camera’s view. This allows us to separately develop the visuals
of the simulator without loss of localization accuracy.

Without an accurate visual mapping from the physical to
the digital world, certain test results, findings, and validations
derived from the digital twin are less valuable. To reliably
extrapolate discoveries made using a digital twin, reality must
be mirrored as closely as possible. Now that we have a
working digital twin of our test bed, our focus has moved
to improving the graphical fidelity of the simulator. Next, we
explore using Open Street Maps, Google Earth, and Gaussian
Splatting for the 3D reconstruction and present results to
demonstrate that evolution.

1) Open Street Maps: Open Street Map [19] (OSM) pro-
vides a strong visual foundation for the digital twin. OSM
models have proven useful throughout development by out-
lining the relative location and scale for higher-fidelity visual
models while remaining computationally inexpensive. Fig. 10
(a) illustrates the preliminary OSM models that we imported
into our digital twin.

2) Google Earth: Due to OSM’s lack of precise model
geometry and accurate texturing, we upgraded the digital
twin’s graphics to a quality comparable to Google Earth [20].
Our initial solution was to run photogrammetry techniques
on screenshots taken from Google Earth using MeshRoom
[21]. Although this method provided higher quality results
than OSM, the process was not scalable and only produced
quality renderings at the object level (capturing one building
as opposed to capturing the entire scene).



To address the scalability concerns, we queried Google
Earth textured models using a web browser and utilized open-
source tools RenderDoc [22] and MapsModellmporter [23]
to capture and export the Google Earth textured models.
This pipeline was more streamlined than the photogrammetry
method and provided a means for scene-level reconstruction,
resulting in a faster asset turnaround time. Most of the visuals
in the current version of our digital twin utilize this recon-
struction technique, see Fig. 10 (b). Although a significant
improvement from OSM, the issue of poor texture quality and
imprecise model geometry remains. This deficiency becomes
most apparent when objects are observed from the perspective
of the vehicle.

3) Gaussian Splatting: Gaussian Splatting is an emerging
3D reconstruction technique with unprecedented capabilities
that can “achieve state-of-the-art visual quality while main-
taining competitive training times and importantly allow high-
quality real-time[...] novel-view synthesis at 1080p resolution.”
[24]. To experiment, we flew a DJI Mavic Pro drone over
the test track and generated a splat of a building on the
route, using the published code. Fig. 10 (c) shows a Gaussian
Splat rendering of this reconstruction. This method has by far
provided the best visual quality and supports import directly
into Unity via a third-party plugin [25].

4) Running the Simulation with the Digital Twin: After se-
lecting a simulation tool and creating a preliminary digital twin
model of our test track, we gained the ability to experiment
and validate in our simulation environment. Fig. 11 shows our
virtual vehicle localizing in our test track digital twin.

VI. DISCUSSION & FUTURE WORK
In this section, we summarize the lessons learned and
propose future research directions.

A. Autoware

While working with Autoware throughout this paper, a few
shortcomings were identified and in some instances provided
us with larger than expected challenges. We detail those here
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Fig. 11: Using AWSIM with our Digital Twin Model

in hopes of bringing them to light so future users are aware
and as improvement notes for developers.

1) Missing or Incomplete Features: While building out this
testbed, we would often run into a missing feature that we
thought would be important. We found ourselves building
out these features, which detracted from our time developing
the rest of the testbed. Features were often released as we
were progressing on a parallel path. Two of these examples
are pure GNSS localization and GNSS / LiDAR fusion-based
localization, both of which were not available when we started
this project. With such features available now, we can focus
on integrating rather than reinventing them.

2) Documentation: The other roadblock was incomplete or
missing documentation of the needed module or process with
respect to their usage and configuration. This is slowly being
addressed and may differ currently from how we originally
configured our testbed. While this allows us to try some of
the methods in a different way in the future and conclude
the pros and cons of each method, it hinders our progress
toward developing AV technologies. This is one of the main
motivations of this paper, and we urge the community to spend
time on documentation regarding setup and configuration, in
order to benefit other researchers.

3) Build Management: Another challenge that was a chore
to manage was making sure the research team was building
the same version and using the same builds across various



computer setups. This is complicated further when we have
students joining and leaving the team, and getting new mem-
bers up and running quickly and efficiently. Because of this,
we are in the process of using Autoware’s Docker container
system, which should make this effort much more manageable.

B. Simulation and Digital Twin

Developing a digital twin that can be trusted to validate an
ADS is not a trivial task. As long as there remains a disparity
between the physical and simulated environments, there is
potential to improve the simulation. This project resulted in
a working digital twin that serves to benefit both autonomous
vehicles and other digital twins that require graphical recon-
structions. We will continue focusing on refining the digital
twin and simulation pipeline.

1) Gaussian Splatting: With the successful import of our
test track digital twin into our simulation environment, and
with emerging research surrounding Gaussian Splatting [24],
we intend to update our digital twin model to fully support
Gaussian Splats as the primary graphical component of the
simulation. In doing so, we hope to expand the digital twin
to integrate with splats sourced from the cameras and LiDAR
onboard the Lincoln MKZ. We believe the use of Gaussian
Splatting technology in AV simulators is crucial to developing
a visually robust and more accurate digital twin model. Our
future efforts also intend to expand Gaussian Splatting to
reconstruct graphical environments from autonomous vehi-
cle datasets. We see great potential for further research on
Gaussian Splat integration, with work to be done on dynamic
Gaussian Splatting, optimization, and unbounded scenes.

VII. CONCLUSION

In this paper, we reported our effort on enabling our old
2017 Lincoln MKZ to be able to drive and simulate with
the latest Autoware Universe autonomous driving stack. We
detailed the steps in setting up localization, creating an HD
map, setting up a simulation pipeline, and building digital
twins of the test track. We demonstrated satisfactory baseline
performance in the vehicle and in our digital twin simulation.
We also discussed on the lessons learned, current limitations
and future project research directions in maintaining the
testbed.
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