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 Abstract—The emerging connected and automated vehicle (CAV) 
technologies present opportunities to improve traffic safety, 
economy, and efficiency. However, the diverse uncontrollable 
human-driven vehicles (HDVs) will continue to predominate 
traffic for a long time, resulting in coexisting CAVs and HDVs in 
the form of mixed vehicle platoons. This study proposes a mixed 
vehicle platoon forming method based on a two-stage control 
framework to adapt to dynamic mixed traffic environments. The 
platoon formation generation stage creates feasible formation (i.e., 
a spatially coordinated mix of CAVs and HDVs ensuring safe and 
efficient platoon control.) appropriate for mixed traffic based on 
the empirical formation method. The multi-agent reinforcement 
learning is used in the second stage for realizing the platoon 
forming control safely and efficiently with the guidance of feasible 
formation. Finally, extensive simulations are conducted using the 
Highway-env simulator to evaluate the effectiveness of the 
proposed method. The results demonstrate that the proposed 
method can effectively control CAVs in conjunction with HDVs to 
form a mixed vehicle platoon, achieving an average energy 
efficiency improvement of up to 10.69% and a reduction in travel 
time by up to 2.73% compared to benchmark strategies. 
 

Index Terms—Connected and automated vehicle, mixed traffic, 
reinforcement learning, platoon forming, energy-efficient driving. 

 

I. INTRODUCTION 
The emerging connected and automated vehicle (CAV) 

technologies present opportunities to significantly improve 
traffic safety [1], economy [2], and efficiency [3]. However, the 
diverse uncontrollable human-driven vehicles (HDVs) will 
continue to predominate traffic for a considerable amount of 
time, resulting in mixed CAVs and HDVs presence in the form 
of mixed vehicle platoons [4]. In contrast to the pure CAV 
platoon [5, 6], the efficient control of a mixed vehicle platoon 
is extremely difficult due to the highly random and 
unpredictable driving behaviors of HDVs [7, 8].  

 By regulating the CAVs, mixed vehicle platoon control 
seeks to maximize vehicle driving safety, energy efficiency, 
and traffic efficiency. To accomplish these objectives, Mousavi 

et al. [9] proposed a gain-scheduled control strategy that guides 
the acceleration of a single CAV to improve traffic flow 
stability, i.e., mitigating traffic disruptions and coping with 
parametric uncertainties. Xue et al. [10] implemented a 
distributed optimal cooperative control algorithm for multiple 
CAVs to enhance traffic efficiency in mixed traffic. However, 
these studies mentioned above only focus on the optimization 
of CAVs, while neglecting the impact of HDV driving 
behaviors. As a result, the efficient driving control potential of 
mixed vehicle platoon is largely unexplored and is not even an 
optimal solution for the platoon as a whole. To this end, Wang 
et al. [11] and Li et al. [12] presented adaptive cruise control 
for mixed traffic strategies with the consideration of the impact 
of CAV’s efficient driving on the following HDVs, the unified 
optimization framework with reinforcement learning (RL) is 
formulated for improving the holistic energy efficiency of the 
mixed vehicle platoon. Li et al. [13] reduced collision risks near 
freeway bottlenecks for mixed traffic in two-lane scenarios, 
which is realized by the dynamic speed control of all CAVs 
with the consideration of HDVs. In addition, recent research has 
focused on developing methods to model and control the 
propagation of disturbances and ensure safety within mixed 
vehicle platoons [14, 15]. These efforts aim to address 
uncertainties introduced by HDVs while optimizing 
coordination among all vehicles in the platoon. 

Despite the valuable studies of mixed traffic regulation that 
have been provided, they predominantly concentrate on specific 
platoon formations, which are the fixed spatial distribution of 
CAVs and HDVs in the platoon. For example, HDV–CAV–
HDV [11], HDV–CAV–HDV–CAV–HDV [12], and CAV–
HDV–HDV–… [16]. The study done by Zheng et al. [17] and 
Yang et al. [18] demonstrated that vehicle driving safety, 
energy efficiency, and traffic efficiency of mixed traffic flow 
are affected by the spatial distribution of CAVs. In this context, 
a hindrance-aware platoon formation method for mixed traffic 
was presented by Zhu et al. [19]. It aimed to coordinate CAVs 
to maximize overall traffic flow while lowering collision risk 
and fuel usage. Jin et al. [20] explored the impact of three 
formations on energy and traffic efficiencies in mixed traffic. 
Li et al. [21] investigated the platoon formation of CAVs 
impact traffic performance from the standpoint of set-function 
optimization, which considered uniform distribution formation, 
random formation, and platoon formation. Jin et al. [20] and Li 
et al. [21] both indicate that the spatial distribution of platoons 
in mixed traffic flow has a significant impact on overall energy 
consumption and traffic efficiency. 

The spatial distribution of HDVs and CAVs is random in 
real-world traffic. Even though the aforementioned research has 
produced insightful studies on mixed vehicle platoons, they 
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have not taken into consideration the forming process by which 
platoons form from a disordered distribution of HDVs and 
CAVs to a designated distribution. Practical traffic flow 
typically has time-varying states and the HDV drives 
dynamically due to stochastic lane-changing and lane-keeping 
behaviors [22], which influences the CAV motion trajectory 
control. This poses the challenge of how to control the motion 
of CAVs to form the designated formation of mixed traffic. For 
this problem, Woo et al. [23] and Cai et al. [24] designed a 
platoon organization strategy for mixed traffic, which can form 
a pure CAV platoon in designated lanes from randomly 
distributed CAVs in multiple lanes. However, the method of 
specifying CAVs to form a pure CAV platoon formation may 
not be able to achieve the holistic optimal of mixed traffic. Few 
studies have been conducted on mixed vehicle platoon forming, 
Wu et al. [25] designed a cooperative strategy to harmonize the 
spatial distribution of CAVs in mixed traffic, to improve the 
crossing efficiency of unsignalized intersections. Maiti et al. 
[26] developed Ad-hoc platoon formation and dissolution 
strategies to encourage heavy-duty vehicles to drive in platoons 
for multi-lane highways, which can reduce fuel usage. The rule-
based mixed vehicle platoon forming method proposed by Wu 
et al. [25] and Maiti et al. [26] is computationally efficient; 
however, it cannot adapt to the dynamic mixed traffic due to the 
irregular spatial distribution in HDVs and CAVs as well as the 
random driving behaviors of HDVs.  

This study proposes a mixed vehicle platoon forming method 
using multi-agent reinforcement learning (MARL) that 
considers both the dynamic driving behaviors of HDVs and 
designated spatial distribution. The major contributions are 
threefold. First, a hierarchical control framework is proposed 
for achieving mixed vehicle platoon forming control in 
dynamic mixed traffic, which includes two stages, i.e., mixed 
vehicle platoon formation generation and forming control. 
Second, considering CAVs as agents, an efficient mixed vehicle 
platoon forming method is proposed using MARL to address 
the challenging CAV regulation problem in the presence of 
random HDV perturbations. The third contribution is a 
comprehensive evaluation conducted on various perspectives of 
mixed vehicle platoon, including forming success, driving 
safety, and energy and traffic efficiencies. The dynamic mixed 
traffic is simulated using the Highway-env simulator [27]. 

The rest of this paper is organized as follows. Section II 
provides a description of the traffic scenario, mixed platoon 
model, and RL theory. Section III introduces the research 
problem and the control framework. In Section IV, the 
methodology of the mixed vehicle platoon forming control is 
formulated. The performance of the proposed method is 
evaluated by simulations in Section V. Finally, Section VI 
concludes this study. 

II. PROBLEM STATEMENT AND CONTROL FRAMEWORK 

A. Problem Statement 
Some studies have provided optimal mixed vehicle platoon 

formations that can improve traffic safety, economy, and 
efficiency [20]. However, forming the designated platoon 
formation from a disordered spatial distribution of CAVs and 
HDVs poses two challenges in real-world traffic. This is a result 

of the irregular spatial distribution in HDVs and CAVs as well 
as the random driving behaviors of HDVs.  

1) Challenge 1: How to determine the order in which CAVs 
form the platoon? The initial position of CAVs in traffic is 
random, and as Fig. 1(a) illustrates, CAVs in Lane 1 and Lane 
3 can merge into Lane 2 to form the mixed vehicle platoon. The 
spatial distribution of CAVs in a mixed vehicle platoon varies 
according to the platoon formation; selecting which CAV to 
merge into a given position is an extremely challenging 
decision-making task that impacts traffic safety and platoon 
forming effectiveness. 

2) Challenge 2: What is the suitable CAV driving trajectory 
for platoon forming? As shown in Fig. 1(b), the CAV in the 
Lane 3 is controlled to merge into the Lane 2 to form a mixed 
vehicle platoon. Three different trajectories are possible for the 
CAV lane-changing trajectory, denoted as No.1, No.2, and No. 
3. However, due to the random driving behavior of HDVs, only 
the No.2 trajectory is practical because of the risk of collision 
from surrounding HDVs in Lane 2 and Lane 3. Planning a 
suitable driving trajectory is difficult since CAVs are formed 
into platoons with a range of driving trajectories. These 
trajectories differ in terms of traffic safety and efficiency, which 
are affected by the surrounding vehicles and the movement of 
rear vehicles in the target lane. 

Therefore, the control of CAVs during platoon forming is not 
only determined by designated formation but also influenced by 
the surrounding vehicles. In addition, the CAV driving 
trajectory affects the following vehicle’s behavior. These 
factors increase the risk of collision and potentially disturb 
traffic flow. 

B. Control Framework 
This study proposes a mixed vehicle platoon forming method 

using a hierarchical control framework to realize safe and 
efficient platoon forming control, as shown in Fig. 2. The 
proposed method is composed of two stages, i.e., mixed vehicle 
platoon formation generation and forming control. In the first 
stage, the feasible formation sequence is generated based on the 
empirical formation method and the current states of CAVs and 
HDVs, which is the guidance of the platoon forming control. 
Note that a feasible formation refers to a coordination of CAVs 
and HDVs, designed based on their spatial distribution to 
ensure safe and efficient control of the mixed vehicle platoon. 
MARL is used in the second stage for realizing the platoon 
forming control efficiently. Following the platoon formation 
requirements, CAVs in different lanes perform lane-changing 
or lane-keeping operations under the policy obtained from 
MARL to drive into the designated positions within the mixed 
vehicle platoon in dynamic traffic. 

III. PRELIMINARIES 

A. Traffic Scenario 
We define a generic route with three lanes that includes 

mixed traffic flow, as shown in Fig. 3, where the lane numbers 
from the outside to the inside of the road are 𝑖𝑖 = 1, 2, 3, the 
width of each lane is 𝐷𝐷𝑙𝑙 , and the maximum and minimum speed 
limits of the road are 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, respectively. 
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(a) How to determine the order in which CAVs form the platoon? 

 
(b) What’s a suitable CAV driving trajectory for platoon forming? 

Fig. 1. Schematic diagram of CAV driving for mixed vehicle platoon forming 
control. Here, the dark-colored vehicles indicate the state at time 𝑡𝑡 and the 
light-colored vehicles indicate the state at time 𝑡𝑡 + Δ𝑡𝑡.  

 

 

 

Fig. 3. Scheme of the route with mixed traffic flow. 

 
The mixed traffic flow consists of both controllable CAVs 

and uncontrollable HDVs. In the environment of the Internet of 
Vehicles, the CAVs can be connected using vehicle-to-vehicle 
communication. The HDVs’ states and traffic flow states can 
be sensed by roadside cameras and uploaded to the Cloud. 
Additionally, high-precision maps stored in the cloud can be 
utilized to acquire road geometry data [28]. Leveraging the 
Internet of Vehicles technology, essential data for mixed 

vehicle forming control, such as road geometry, traffic flow 
states, and surrounding vehicle states, can be gathered. Based 
on this information, control commands are generated in the 
cloud, enabling the efficient coordination of CAVs. 

The route can be divided into two zones. The first zone is 
called forming zone 𝑆𝑆𝑓𝑓 , which is the zone where CAVs and 
HDVs transition from a disordered spatial distribution to a 
designated spatial distribution. Afterward, the mixed vehicle 
platoon is formed. The numbers of CAVs and HDVs in the 
forming zone are 𝑁𝑁𝑐𝑐 and 𝑁𝑁ℎ, respectively, and total number of 
vehicles is 𝑁𝑁 = 𝑁𝑁𝑐𝑐 + 𝑁𝑁ℎ . Additionally, the vehicles in each 
lane are indexed as 𝑗𝑗 = 1, 2,⋯, according to the distance from 
near to far the end of the forming zone. Then, all vehicles are 
labeled with a unique number, with the lane and position serial 
number, and the spatial distribution of the vehicles in each lane 
can be determined for further analysis of platoon formation. 
The second zone is cruising zone 𝑆𝑆𝑐𝑐, where the mixed vehicle 
platoon is cruising after the designated platoon formation is 
formed in the forming zone. 

The lane-changing operation of CAVs is directly tied to the 
safety and efficiency of mixed vehicle platoon forming control 
[29], as it is influenced by surrounding vehicles and road 
geometry. In multi-lane traffic scenarios, the choice of the 
target roadway for platoon forming impacts the overall 
performance of mixed traffic flow. We have chosen the middle 
lanes for platoon forming to avoid continuous lane changes by 
CAVs, thus enhancing the safety and efficiency of the process. 
However, the target roadway can be adjusted to other lanes 
depending on specific traffic conditions. Additionally, we 
assume that HDVs are willing to accommodate CAVs merging 
into the same lane to form a platoon. This assumption is 
reasonable in highway traffic, where lane changes are relatively 
infrequent [30]. By doing so, it mitigates disruptive lane-
changing behaviors of HDVs that could interfere with the 
platoon forming process. 

B. Vehicle Kinematics  
It is necessary for CAVs to carry out lane-keeping or lane-

changing operations in platoon forming control. The bicycle 
model can be employed to characterize the longitudinal and 
lateral motion of vehicles, as shown in Eqs. (1) and (2). This 
model simplifies vehicle dynamics by reducing the complexity 
of a four-wheeled vehicle to a two-wheeled representation, 
consisting of a front wheel and a rear wheel. It is widely used 
in vehicle dynamics research due to its general applicability and 
reduced complexity [31, 32]. 

𝑥̇𝑥(𝑡𝑡) = 𝑣𝑣(𝑡𝑡)cos�𝜃𝜃(𝑡𝑡) + 𝛽𝛽(𝑡𝑡)� (1) 

𝑦̇𝑦(𝑡𝑡) = 𝑣𝑣(𝑡𝑡)sin�𝜃𝜃(𝑡𝑡) + 𝛽𝛽(𝑡𝑡)� (2) 

with 

𝜃̇𝜃(𝑡𝑡) =
𝑣𝑣(𝑡𝑡)sin𝛽𝛽(𝑡𝑡)

𝐿𝐿𝑟𝑟
 

𝛽𝛽(𝑡𝑡) = arctan 
𝐿𝐿𝑟𝑟 tan 𝛿𝛿(𝑡𝑡)
𝐿𝐿𝑓𝑓 + 𝐿𝐿𝑟𝑟

 

where 𝑣𝑣 is the speed, 𝜃𝜃 is the heading angle, 𝛽𝛽 is the sideslip 
angle at the vehicle mass center, and 𝛿𝛿 is the steering angle of 
the front wheel. 𝑥𝑥  and 𝑦𝑦  are the longitudinal and lateral 

 
Fig. 2. The control framework of mixed vehicle platoon forming method. 
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positions, respectively. 𝐿𝐿𝑓𝑓  and 𝐿𝐿𝑟𝑟  are the distances from the 
vehicle mass center to the front and rear axles, respectively.  

C. Fundamental of RL 
RL constitutes a pivotal branch of machine learning, which 

has been widely used in the field of vehicle intelligent decision-
making [4, 11]. The framework of RL is formulated using the 
Markov Decision Process (MDP) [33], which enables an agent 
to learn behavior through trial-and-error interactions with a 
dynamic environment. During each time 𝑡𝑡 of MDP, the agent 
observes the state 𝓈𝓈(𝑡𝑡) and chooses an action 𝒶𝒶(𝑡𝑡) based on its 
policy 𝜋𝜋(𝒶𝒶(𝑡𝑡)|𝓈𝓈(𝑡𝑡)) , leading to subsequent states 𝓈𝓈′(𝑡𝑡)  and 
rewards 𝓇𝓇(𝑡𝑡). The objective of RL is to learn an optimal policy 
𝜋𝜋∗(𝓈𝓈(𝑡𝑡)) that maximizes the expected cumulative reward from 
each 𝓈𝓈(𝑡𝑡)  over all possible policies [34]. The value of 𝓈𝓈(𝑡𝑡) 
under the 𝜋𝜋∗(𝓈𝓈(𝑡𝑡)) is given by the optimal state value function 
𝒱𝒱∗(𝓈𝓈(𝑡𝑡)), and the value of taking an action under the 𝜋𝜋∗  is 
given by the optimal action-value function 𝒬𝒬∗(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)). The 
𝒱𝒱∗(𝓈𝓈(𝑡𝑡)) and 𝒬𝒬∗(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)) are calculated by Eqs. (3) and (4). 

𝒱𝒱∗�𝓈𝓈(𝑡𝑡)� = max
𝒶𝒶

  𝒬𝒬∗(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)) (3) 

𝒬𝒬∗�𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)� = (4) 

ℛ(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)) + 𝛾𝛾 �  
𝓈𝓈′(𝑡𝑡)

𝒫𝒫(𝓈𝓈′(𝑡𝑡)|𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡))𝒱𝒱∗(𝓈𝓈′(𝑡𝑡)) 

where 𝛾𝛾 ∈ (0,1]  is the discount factor, ℛ(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡))  is the 
immediate reward received after taking action 𝒶𝒶(𝑡𝑡)  in state 
𝓈𝓈(𝑡𝑡), 𝒫𝒫(𝓈𝓈′(𝑡𝑡)|𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)) is the transition probability that 𝓈𝓈(𝑡𝑡) 
transformed to 𝓈𝓈′(𝑡𝑡)  after taking action 𝒶𝒶(𝑡𝑡) . Given the 
optimal action-value function 𝒬𝒬∗�𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)� , the 𝜋𝜋∗(𝓈𝓈(𝑡𝑡)) 
can be derived by selecting the action that maximizes 
𝒬𝒬∗�𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)�, i.e., 

𝜋𝜋∗�𝓈𝓈(𝑡𝑡)� = argmax
𝒶𝒶

  𝒬𝒬∗�𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)� (5) 

Each CAV acts as an agent in the mixed vehicle platoon 
forming control. The state variables include the position and 
speed of the CAV and surrounding vehicles. The action 
variables are multiple vehicle operations, i.e., acceleration, 
deceleration, left lane-changing, right lane-changing, and 
cruising. A large number of state variables and actions makes it 
extremely sophisticated for model-based RL methods to solve 
this multi-agent control problem.  

In addressing the difficulty in the multi-agent and 
decentralized platoon forming control, the model-free 
Advantage Actor-Critic (A2C) algorithm is used in the RL. The 
A2C algorithm applies to decentralized systems since it 
employs both an individual actor network (policy) and a critic 
network (value) to optimize the learning process, where the 
actor determines the actions to be taken given the current state, 
and the critic evaluates the performance of the chosen actions. 
A2C utilizes neural networks 𝜋𝜋𝜎𝜎�𝒶𝒶(𝑡𝑡)�𝓈𝓈(𝑡𝑡)�  for policy 
representation, where 𝜎𝜎 is the learnable parameters [35], which 
is updated by optimizing the objective function Eq. (6).  

𝐽𝐽(𝜃𝜃) = 𝔼𝔼[log 𝜋𝜋𝜎𝜎(𝒶𝒶(𝑡𝑡)|𝓈𝓈(𝑡𝑡)) ⋅ 𝒜𝒜(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡))] (6) 

 

(a) Uniform distribution. 

 

(b) Centralized distribution. 

 

(c) Random distribution. 

Fig. 4. Three typical formations of a mixed vehicle platoon.  

 
where 𝒜𝒜(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)) = 𝒬𝒬𝜋𝜋𝜎𝜎�𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)� − 𝒱𝒱𝜔𝜔

𝜋𝜋𝜎𝜎�𝓈𝓈(𝑡𝑡)�  is the 
advantage function to update the weights, which can 
significantly enhance the stability of the training process [36].  

A2C has several limitations, including potential biased 
gradient estimates due to bootstrapping in the critic’s value 
function, sensitivity to hyperparameters leading to instability, 
and scalability issues with synchronous updates. High variance 
in gradient estimates can also affect learning stability. These 
problems can affect the training efficiency and success rate of 
the CAV control policy for platoon forming. To address these 
issues, this study employs experience replay to reduce biased 
gradients [37], uses grid search to optimize hyperparameters 
[38], adopts asynchronous variants to improve scalability [39], 
and applies entropy regularization to encourage exploration and 
stabilize learning [40]. 

IV. MIXED VEHICLE PLATOON FORMING METHOD 

A. Mixed Vehicle Platoon Formation Generation 
CAVs are distinguished by over-the-horizon perception, 

sensitive responsiveness and almost identical driving behaviors, 
whereas HDVs are characterized by longer reaction times, 
perception errors, and a variety of driving styles. The spatial 
distribution of CAVs and HDVs affects the mixed vehicle 
platoon’s performance in terms of driving safety, energy 
consumption, and travel time due to these differences. 

Generating a feasible platoon formation is the prerequisite of 
platoon forming control. There are three common mixed 
vehicle platoon formations, i.e., uniform, centralized, and 
random distribution of CAVs, as shown in Fig. 4. In particular, 
platoon formation with uniform distribution has shown the best 
performance in stabilizing the traffic flow and enhancing traffic 
efficiency [20, 21]. This is because CAVs can guide and 
stabilize the driving behavior of following HDVs. In addition, 
according to Yao et al. [41], a mixed vehicle platoon in which 
the lead vehicle is a CAV will improve the platoon’s energy and 
traffic efficiency because of the controllability of CAVs. 

The traffic states (i.e., the original spatial distribution and 
movement of CAVs and HDVs) must also be considered while 
generating platoon formation. Four priority-based guidelines 
(in the order of priority) are designed to determine the feasible 
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mixed vehicle platoon formation ℱ  based on the empirical 
formation method. This method accounts for vehicle states to 
ensure collision avoidance while adhering to the guidelines of 
platoon operation. It leverages the capabilities of CAVs to 
guide HDVs toward energy-efficient driving [42].  

1) A CAV prefers merging to the nearest possible position in 
the platoon formation [43]; 

2) A CAV prefers staying ahead of at least one HDV in the 
platoon formation [44]; 

3) The leader vehicle in the mixed platoon is a CAV [44]; 
4) The CAVs are distributed uniformly within the mixed 

vehicle platoon [21].  
Based on the above guidelines, we propose the mixed vehicle 

platoon be formed through the following three steps:  
Step 1: Searching the feasible spaces and sequence numbers 

for forming the mixed vehicle platoon. The number of CAVs, 
the number of vehicles in the target lane where the mixed 
vehicle platoon is formed, and the intervehicle headway in the 
target lane are used to derive the feasible spaces and numbers 
for forming the platoon. We assume the speed of HDVs is 
constant in every time step during the search process, given that 
the time step is small and vehicle speed fluctuations are 
minimal over short durations in highway traffic [11, 45]. More 
specifically, the feasible space is behind the last vehicle and in 
front of the lead vehicle. Within the vehicle group, a space is 
feasible when the headway exceeds the maximum headway 
𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 . According to guidelines 1)-4), the feasible space is 
selected only from the front to the back based on the number of 
CAVs. Then, feasible space numbers are determined by using 
the sequence number of the mixed platoon.  

Step 2: Calculating the priority of each CAV merges into 
each feasible space. The priority of each CAV determines 
which one merges into the specific space. As guideline 1), the 
priority assigned to every feasible space is ascertained by 
measuring the distance of each CAV from the feasible space; 
the greater the distance, the lower the priority. Furthermore, for 
guidelines 2) and 3) that are met, the priority is raised by one to 
attain uniform distribution and leader CAV formation. Finally, 
the priority sequence corresponding to all CAVs for each 
feasible space can be obtained. 

Step 3: Ensuring the feasible mixed vehicle platoon 
formation. The CAVs with the highest priority are arranged at 
feasible spaces in order from front to back in the target lane. 
Combined with the original vehicle positions in the target lane 
and newly arranged CAVs, then ℱ can be determined. 

The implementation of the mixed vehicle platoon formation 
generation based on the above three steps is summarized in 
Algorithm 1. In this algorithm, 𝑥𝑥𝑧𝑧 𝑣𝑣𝑧𝑧, 𝑇𝑇ℎ,𝑧𝑧 are the longitudinal 
position, longitudinal speed, and headway of 𝑧𝑧th vehicle from 
front to back in the target lane, respectively. 𝑁𝑁𝑙𝑙 is the current 
number of vehicles in the target lane, ℋ is the feasible space 
sequence set which stores the sequence number of spaces in the 
platoon, 𝑁𝑁𝑁𝑁𝑁𝑁(ℋ) is the number of elements in ℋ, 𝒽𝒽𝑚𝑚 is the 
𝑚𝑚th element from front to back in ℋ, 𝓍𝓍𝑚𝑚 is the longitudinal 
position of 𝑚𝑚th space, 𝒹𝒹𝑘𝑘𝑘𝑘 is the longitudinal distance between 
𝑘𝑘th CAV and 𝑚𝑚th space, 𝓅𝓅𝑘𝑘𝑘𝑘 is the priority of the 𝑘𝑘th CAV 
for the 𝑚𝑚th space, 𝜆𝜆𝑘𝑘𝑘𝑘 is the indices obtained by sorting 𝒹𝒹𝑘𝑘𝑘𝑘 
of all CAVs at 𝑚𝑚 th space in descending order, 𝜇𝜇𝑘𝑘𝑘𝑘  is the 

indices obtained by sorting 𝑥𝑥𝑘𝑘 of all CAVs in ascending order, 
𝓃𝓃𝑚𝑚 is the number of HDVs following 𝑚𝑚th space in target lane. 

After determining the ℱ , each CAV’s safe and effective 
driving control for platoon forming is thoroughly explained in 
Section IV. B. Note that the ℱ  is calculated every five 
simulation steps until all CAVs merge into the target lane to 
form a mixed vehicle platoon, to account for the impacts of 
random driving behaviors of HDVs. 

 
Algorithm 1 Mixed vehicle platoon formation generation 
Input: 𝑁𝑁𝑐𝑐, 𝑁𝑁𝑙𝑙, 𝑥𝑥𝑧𝑧 𝑣𝑣𝑧𝑧, and 𝑇𝑇ℎ,𝑧𝑧 

Output: ℱ 

1: Initialize ℋ ← [1] 

2: for 𝑧𝑧 ←  2 to 𝑁𝑁𝑙𝑙 do 

3: Calculate 𝑇𝑇ℎ,𝑧𝑧 

4: If 𝑇𝑇ℎ,𝑧𝑧 ≥ 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑁𝑁𝑁𝑁𝑁𝑁(ℋ) < 𝑁𝑁𝑐𝑐 do 

5:  ℋ ← ℋ⋃[𝑧𝑧] 

6: end if 

7: end for 

8: If 𝑁𝑁𝑁𝑁𝑁𝑁(ℋ) = 𝑁𝑁𝑐𝑐 − 1 do 

9:  ℋ ←ℋ⋃[𝑁𝑁𝑙𝑙 + 1] 

10: end if 

11: for each 𝒽𝒽𝑚𝑚 in ℋ do 

12: Extract 𝓍𝓍𝑚𝑚 for 𝑚𝑚th space labeled by ℋ 

13: for 𝑘𝑘 ← 1 to 𝑁𝑁𝑐𝑐 do 

14:  𝓅𝓅𝑘𝑘𝑘𝑘 ← 0 

15: Calculate 𝒹𝒹𝑘𝑘𝑘𝑘 

16: end for  

17: Sort 𝒹𝒹𝑘𝑘𝑘𝑘 and update 𝓅𝓅𝑘𝑘𝑘𝑘 ← 𝓅𝓅𝑘𝑘𝑘𝑘 + 𝜆𝜆𝑘𝑘𝑘𝑘 

18: if 𝑚𝑚th space is followed by HDV do 

19: Update 𝓅𝓅𝑘𝑘𝑘𝑘 ← 𝓅𝓅𝑘𝑘𝑘𝑘 + 𝜆𝜆𝑘𝑘𝑘𝑘 +𝓃𝓃𝑚𝑚  

20: end if 

21: if 𝑚𝑚th space is the leader do 

22: Sort 𝑥𝑥𝑘𝑘 and update 𝓅𝓅𝑘𝑘𝑘𝑘 ← 𝓅𝓅𝑘𝑘𝑘𝑘 + 𝜇𝜇𝑘𝑘𝑘𝑘  

23:   end if 

24:   Select the CAV with the highest 𝓅𝓅𝑘𝑘𝑘𝑘 as the feasible occupant of the 𝑚𝑚th 
space in the platoon, and update ℱ 

25: end for  

26: return ℱ 

B. Mixed Vehicle Platoon Forming Control 
The CAV’s lane-changing trajectory and speed profile are 

controlled for it to move from its original position to the target 
position at the right moment, and then form the designated 
platoon formation with the HDVs. Given that multiple CAVs 
often need to be controlled and highly random and 
unpredictable driving behaviors of HDVs in mixed vehicle 
platoon forming, a MARL framework is developed for mixed 
vehicle forming control with multiple CAVs. The MARL 
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framework is defined as a partially observable MDP, where 
each agent (i.e., CAV) can only observe part of the states from 
the surrounding traffic environment to reduce the redundancy 
of states and improve learning efficiency. This is because the 
forming control for CAVs is closely related to surrounding 
vehicle states. Then, each agent follows a decentralized policy 
to choose 𝑎𝑎 at time 𝑡𝑡, achieve safe and efficient forming. The 
definition of the partially observable MDP is as follows: 

1) State Space: The state space of agent 𝑘𝑘 is 𝓈𝓈𝑘𝑘, which is a 
6 × 4  matrix. The subscript 𝑘𝑘 = 1, 2,⋯ ,𝑁𝑁𝑐𝑐  indicates the 
vehicle number of CAVs. The number of rows in the 𝓈𝓈𝑘𝑘  is 
defined by considering the agent 𝑘𝑘 and the five nearest vehicles 
around it. The number of columns is defined by considering the 
position and speed both longitudinally and laterally of each 
vehicle. Then, the first row of 𝓈𝓈𝑘𝑘  represents the states of the 
agent 𝑘𝑘 and the remaining five rows represent the states of the 
five nearest vehicles. 

2) Action Space: The action space 𝒶𝒶𝑘𝑘  of agent 𝑘𝑘  includes 
five operations based on the vehicle dynamics: accelerating, 
braking, cruising, changing lanes to the left, and changing lanes 
to the right. The maximum acceleration and deceleration are 
used for accelerating and braking at each step respectively, to 
simplify system complexity and facilitate efficient training in a 
discrete-time environment. With a time step of 0.1s in the 
simulation, using fixed maximum values for acceleration and 
deceleration is reasonable based on the designs in [46]. This 
small interval allows the model to make frequent adjustments, 
enabling nuanced control over longer periods. When cruising or 
changing lanes, the vehicle speed remains constant from the 
start of the operation. The action space combination for all 
CAVs is defined as 𝒶𝒶 = 𝒶𝒶1 × 𝒶𝒶2 × ⋯× 𝒶𝒶𝑁𝑁𝑐𝑐.  

3) Reward Function: The reward function covers multiple 
objectives including vehicle driving safety, traffic efficiency, 
energy efficiency, and success of platoon formed. Then, the 
reward 𝓇𝓇𝑘𝑘(𝑡𝑡) for the agent 𝑘𝑘 at time 𝑡𝑡 is defined in Eq. (7). 
𝓇𝓇𝑘𝑘(𝑡𝑡) = (7) 

𝜛𝜛𝑐𝑐𝓇𝓇𝑐𝑐,𝑘𝑘(𝑡𝑡) + 𝜛𝜛ℎ𝓇𝓇ℎ,𝑘𝑘(𝑡𝑡) + 𝜛𝜛𝑠𝑠𝓇𝓇𝑠𝑠,𝑘𝑘(𝑡𝑡) 
+𝜛𝜛𝑒𝑒𝓇𝓇𝑒𝑒,𝑘𝑘(𝑡𝑡) + 𝜛𝜛𝑝𝑝𝓇𝓇𝑝𝑝,𝑘𝑘(𝑡𝑡) 

where 𝜛𝜛𝑐𝑐 , 𝜛𝜛ℎ , 𝜛𝜛𝑠𝑠 , 𝜛𝜛𝑒𝑒 , and 𝜛𝜛𝑝𝑝  are weighting coefficients for 
avoiding collision, keeping safe headway, ensuring suitable 
speed, reducing energy consumption, and promoting platoon 
forming, respectively. Each reward is defined as follows. 

Collision avoidance reward 𝓇𝓇𝑐𝑐,𝑘𝑘(𝑡𝑡) : CAVs need to avoid 
collisions with surrounding vehicles while traveling for platoon 
formatting, and the 𝓇𝓇𝑐𝑐,𝑘𝑘(𝑡𝑡) is defined in Eq. (8). 

𝓇𝓇𝑐𝑐,𝑘𝑘(𝑡𝑡) = �−1 collision
0 safe  (8) 

Headway keeping reward 𝓇𝓇ℎ,𝑘𝑘(𝑡𝑡): A small time headway 
increases the risk of collision between the CAV and the 
preceding vehicle, while a large time headway reduces traffic 
capacity. Then, the 𝓇𝓇ℎ(𝑡𝑡) is defined in Eq. (9). 

𝓇𝓇ℎ,𝑘𝑘(𝑡𝑡) = log
𝑇𝑇ℎ,𝑘𝑘(𝑡𝑡)
𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚

 (9) 

where 𝑇𝑇ℎ,𝑘𝑘(𝑡𝑡) is the headway between the 𝑘𝑘 th CAV and its 
preceding vehicle. 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum time headway. 

Suitable speed ensuring reward 𝓇𝓇𝑠𝑠,𝑘𝑘(𝑡𝑡) : The traffic 
efficiency is determined by the speed at which a CAV travels; 
if CAV moves too slowly, it will not only lengthen its travel 
time but will also cause delays for the following vehicles. To 
stimulate the CAV travel at high speed, the 𝓇𝓇𝑠𝑠,𝑘𝑘(𝑡𝑡) is 

𝓇𝓇𝑠𝑠,𝑘𝑘(𝑡𝑡) = min �
𝑣𝑣𝑘𝑘(𝑡𝑡) − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

, 1� (10) 

Energy consumption reduction reward 𝓇𝓇𝑒𝑒,𝑘𝑘(𝑡𝑡): Less energy 
consumption is expected to improve vehicle energy efficiency, 
leading to form the sustainable transportation, where energy 
efficiency is defined by comparing energy consumption of the 
CAV to energy consumption of average traffic flow. Then, the 
𝑟𝑟𝑒𝑒,𝑘𝑘(𝑡𝑡) is defined in Eq. (11).  

𝓇𝓇𝑒𝑒,𝑘𝑘 =  
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝐸𝐸𝑘𝑘(𝑡𝑡)

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)
 (11) 

where 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟  is the reference energy consumption, which is 
calculated using the average traffic flow speed.  

Platoon forming promoting reward 𝓇𝓇𝑝𝑝,𝑘𝑘(𝑡𝑡): This reward is 
used to promote platoon forming, which depends on where the 
CAV is located inside the designated formation. Note that if 𝑘𝑘th 
CAV not in the target lane, 𝓇𝓇𝑝𝑝,𝑘𝑘(𝑡𝑡) = 0. If the 𝑘𝑘th CAV is both 
the designated and actual leader vehicle, then 𝓇𝓇𝑝𝑝,𝑘𝑘(𝑡𝑡) is 

𝓇𝓇𝑝𝑝,𝑘𝑘(𝑡𝑡) = �2 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇ℎ,𝑘𝑘(𝑡𝑡) < 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚
1 others

 (12) 

If the 𝑘𝑘th CAV is the follower vehicle and in its designated 
position in the platoon, the reward is defined with the 
consideration of the platoon sequence and CAV position, i.e., 

𝓇𝓇𝑝𝑝,𝑘𝑘(𝑡𝑡) = 𝓇𝓇𝑝𝑝𝑝𝑝,𝑘𝑘(𝑡𝑡) + 𝓇𝓇𝑝𝑝𝑝𝑝,𝑘𝑘(𝑡𝑡) (13) 

where 𝓇𝓇𝑝𝑝𝑝𝑝,𝑘𝑘(𝑡𝑡) and 𝓇𝓇𝑝𝑝𝑝𝑝,𝑘𝑘(𝑡𝑡) are the rewards benefit from the 
platoon sequence and the CAV position, respectively. The 
𝓇𝓇𝑝𝑝𝑝𝑝,𝑘𝑘(𝑡𝑡) and 𝓇𝓇𝑝𝑝𝑝𝑝,𝑘𝑘(𝑡𝑡) are given by 

𝓇𝓇𝑝𝑝𝑝𝑝,𝑘𝑘(𝑡𝑡) = �
1
0
−1

if 𝜗𝜗𝑝𝑝,𝑘𝑘(𝑡𝑡) = 0 and 𝜗𝜗𝑟𝑟,𝑘𝑘(𝑡𝑡) = 0
if 𝜗𝜗𝑝𝑝,𝑘𝑘(𝑡𝑡) = 1 and 𝜗𝜗𝑟𝑟,𝑘𝑘(𝑡𝑡) = 0 

others
 (14) 

𝓇𝓇𝑝𝑝𝑝𝑝,𝑘𝑘(𝑡𝑡) = �1 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇ℎ,𝑘𝑘(𝑡𝑡) < 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚
0 others

 (15) 

where 𝜗𝜗𝑝𝑝,𝑘𝑘(𝑡𝑡) and 𝜗𝜗𝑟𝑟,𝑘𝑘(𝑡𝑡) are the preceding and rear vehicle 
type flags of the 𝑘𝑘th CAV, respectively. A value of 1 indicates 
that the vehicle is a CAV, while a value of 0 indicates the HDV. 

It should be noted that vehicle driving safety is achieved 
using collision avoidance and safe headway-keeping rewards. 
The traffic efficiency is ensured using suitable speed ensuring 
reward, while the vehicle energy efficiency is improved using 
energy consumption reduction reward. The designated 
formation is successfully formed using platoon forming 
promoting reward. 

4) Safety Supervisor: The process of RL training involves 
some unavoidably risky actions of CAVs, which impact the 
speed and success of RL training. In this context, we define 
three safe driving rules: 1) Prohibiting two or more consecutive 
lane-changing operations; 2) Considering the states of 
surrounding vehicles in action decision to avoid rear-end and 
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side-side collisions; 3) Avoiding heavy braking or acceleration 
when the CAV is too close to the preceding and rear vehicles. 
Filtering the calculated actions 𝒶𝒶𝑘𝑘 using safe driving rules and 
historical action 𝒶𝒶ℎ,𝑘𝑘 yields supervised action 𝒶𝒶𝑠𝑠,𝑘𝑘. For clarity, 
the implementation algorithm for the safety supervisor is given 
in Algorithm 2. 

 
Algorithm 2 Safety supervisor 
Input: 𝑁𝑁𝑐𝑐, 𝑇𝑇ℎ,𝑘𝑘,  𝒶𝒶𝑘𝑘, and 𝒶𝒶ℎ,𝑘𝑘 

Output: 𝒶𝒶𝑠𝑠,𝑘𝑘 

1: Initialize 𝑘𝑘 ← 1, 𝒶𝒶𝑠𝑠,𝑘𝑘 ← 𝒶𝒶𝑘𝑘  

2: while 𝑘𝑘 ≤ 𝑁𝑁𝑐𝑐 do 

3:     if 𝒶𝒶𝑘𝑘 is lane-changing and 𝒶𝒶𝑘𝑘 ∈ 𝒶𝒶ℎ,𝑘𝑘  then 

4:         𝒶𝒶𝑠𝑠,𝑘𝑘 ← cruising 

5:     else 

6:         if 𝑇𝑇ℎ,𝑘𝑘 < 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑚𝑚 then 

7:         𝒶𝒶𝑠𝑠,𝑘𝑘 ← braking 

8:         end if 

9:     end if 

10:     𝑘𝑘 ← 𝑘𝑘 + 1 

11: end while 

12: return 𝒶𝒶𝑠𝑠,𝑘𝑘 

 
Algorithm 3 Mixed vehicle platoon forming 
Input: ℳ, 𝒯𝒯, 𝒟𝒟, and ℱ 

Output: 𝜋𝜋𝜎𝜎(𝓈𝓈(𝑡𝑡)) 

1: for episode ←  1 to ℳ do 

2: Initialize 𝒟𝒟 ← {}, 𝑡𝑡 ← 0 

3: while 𝑡𝑡 ≤ 𝒯𝒯 do 

4: Calculate the ℱ using Algorithm 1 

5: for 𝑘𝑘 ← 1 to 𝑁𝑁𝑐𝑐 do 

6:   Calculate 𝒶𝒶𝑘𝑘(𝑡𝑡) using 𝜋𝜋𝜎𝜎(𝓈𝓈(𝑡𝑡)) 

7:   Update 𝒶𝒶𝑠𝑠,𝑘𝑘(𝑡𝑡) using Algorithm 2 

8:   𝑘𝑘th Agent executes 𝒶𝒶𝑠𝑠,𝑘𝑘(𝑡𝑡) 

9:   Calculate 𝓇𝓇𝑘𝑘(𝑡𝑡) based on ℱ, 𝒶𝒶𝑠𝑠,𝑘𝑘(𝑡𝑡) and 𝓈𝓈(𝑡𝑡) 

10:   Transition to 𝓈𝓈𝑘𝑘(𝑡𝑡 + 1) 

11: end for 

12:     𝑡𝑡 ← 𝑡𝑡 + ∆𝑡𝑡 

13: end while 

14: Calculate 𝒬𝒬𝜋𝜋𝜎𝜎�𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)� and 𝒜𝒜(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)) 

15: Store {𝓈𝓈(𝑡𝑡),𝒶𝒶𝑠𝑠,𝑘𝑘(𝑡𝑡),ℱ,𝒬𝒬𝜋𝜋𝜎𝜎�𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡)�,𝒜𝒜(𝓈𝓈(𝑡𝑡),𝒶𝒶(𝑡𝑡))} into 𝒟𝒟 

16: Shuffle the order of 𝒟𝒟 

17: Select different groups of 𝒟𝒟  to update the policy and state value 
networks, resulting in updated 𝜋𝜋𝜎𝜎(𝓈𝓈(𝑡𝑡)) for each agent 

18: end for 

19: return 𝜋𝜋𝜎𝜎(𝓈𝓈(𝑡𝑡)) 

  
5) Network Structure: The A2C network of each agent is 

shown in Fig. 5. The inputs of the A2C network include 𝑆𝑆𝑖𝑖 and 
the designated mixed vehicle platoon formation, while the 

output is actions of all agents. In the A2C network, each type of 
input divided by the physical definition (i.e., vehicle 
longitudinal and lateral speed and position) is firstly fed into 
one 64-neuron fully connected (FC) network. The 5 
independent FC networks form the hidden layer. Subsequently, 
all outputs in the hidden layer are combined and fed into the 
128-neuron FC network. Then the actor-critic network will 
update the policy and value with the learned features. 

We are setting each agent to have the same A2C network 
structure, to formulate the multi-agent network. As shown in 
Fig. 6, each agent has its actor network that makes decisions 
based on a combination of local observations and actions from 
all the agents. The critic network is centralized and has access 
to the actions and states of all agents, enabling it to evaluate the 
joint action-value function. This approach, known as 
Centralized Training with Decentralized Execution [47], can 
accommodate both the complex training process of MARL and 
the autonomy in execution by individual agents. The mixed 
vehicle platoon forming method is summarized in Algorithm 3, 
where ℳ is the number of episodes, 𝒯𝒯 is the number of policy 
steps per episode, and 𝒟𝒟  is the memory buffer. Each agent 
selects an action using the shared policy, updates actions 
according to the safety supervisor, and accumulates experience 
such as the states, chosen actions, and feasible platoon 
formation at each policy step to update the policy. 

V. SIMULATION AND RESULTS 
To verify the performance and necessity of forming mixed 

vehicle platoons, several simulations are conducted using 
MATLAB (version 9.14, 2023a) on a computer with an Intel 
Core i7-13700KF @ 3.40 GHz CPU, 64GB RAM, and NVIDIA 
RTX 4080 GPU. First, the parameters for traffic scenarios and 
typical vehicles are defined. Next, various MARL algorithms 
are compared to find the best one for developing the mixed 
vehicle platoon forming control policy. Finally, the 
effectiveness of the proposed method is evaluated based on the 
platoon formation success rate and improvements in energy and 
traffic efficiencies. 

A. Traffic Scenario and Vehicle Setup 
1) Traffic Scenario: The highway traffic is constructed using 

the Highway-env simulator [27], to test the effectiveness of the 
proposed method. This simulator offers extensive flexibility in 
configuring highway scenarios to meet experimental needs. It 
provides access to a variety of traffic information and supports 
integrated vehicle and traffic decision-making processes, 
making it widely applied in studies of CAVs and mixed traffic 
control using RL [11]. 

The parameters of the traffic scenario are listed in Table I. In 
the forming zone, three CAVs with randomly dispersed initial 
positions and lanes within 100m of the starting position. There 
are also three HDVs distributed in the center lane randomly. 
Other surrounding HDVs are randomly distributed on the road. 
In addition, the initial speed of each vehicle is randomly 
distributed around the average traffic flow speed. Note that the 
chosen number of vehicles and CAVs is representative. A 50% 
CAV penetration rate maximizes mixed vehicle platoon 
configurations, thoroughly validating the proposed method’s 
performance. The number of vehicles in the platoon, which 
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directly affects computational complexity, is determined based 
on the capabilities of our simulation computer. Naturally, the 
proposed method remains applicable to both larger and smaller 
platoon sizes.  

2) Typical Vehicles: The vehicle’s energy consumption is 
calculated using the widely accepted wheel-to-distance model 
[48], as expressed in Eq. (16).  

𝐸𝐸𝑒𝑒 = (𝑚𝑚𝑚𝑚𝑚𝑚 cos𝜓𝜓 + 0.5𝐶𝐶𝑑𝑑𝐴𝐴𝜌𝜌𝜌𝜌2 + 𝑚𝑚𝑚𝑚sin𝜓𝜓 + 𝑚𝑚𝑣̇𝑣)𝑣𝑣𝑣𝑣𝑣𝑣 (16) 

 

 
Fig. 5. Actor-critic network and its interaction with environment. 

 

  

Fig. 6. Multi-agent network. 

 
TABLE I 

TRAFFIC SCENARIO PARAMETERS 

Parameter Value Parameter Value 

Average traffic flow speed 25m/s Minimum speed 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 5m/s 

Cruising zone length 𝑆𝑆𝑐𝑐 9400m Number of CAVs 𝑁𝑁𝑐𝑐 3 

Forming zone length 𝑆𝑆𝑓𝑓 600m Number of HDVs 𝑁𝑁ℎ 8-10 

Maximum speed 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 33m/s Width of lane 𝐷𝐷𝑙𝑙 4m 

 

TABLE III 
TRAFFIC SCENARIO PARAMETERS 

Parameter Value Parameter Value 

Batch size  64 Learning rate 0.0002 

Collision avoiding 
weighting 𝜛𝜛𝑐𝑐 

200 Platoon forming 
weighting 𝜛𝜛𝑝𝑝 2 

Energy reduction 
weighting 𝜛𝜛𝑒𝑒 

1 Suitable speed 
ensuring weighting 𝜛𝜛𝑠𝑠 

1 

Headway keeping 
weighting 𝜛𝜛ℎ 1 Time discount factor 0.99 

 

 

Fig. 7. Collision rate of mixed vehicle platoon forming. 

 

 

Fig. 8. Success rate of mixed vehicle platoon forming.  

 
where 𝑚𝑚  is the vehicle mass, 𝑓𝑓  is the rolling resistance 
coefficient, 𝐶𝐶𝐷𝐷  is the aerodynamic drag coefficient,  
𝐴𝐴 is the frontal area, 𝜌𝜌 is the air density, and 𝜓𝜓 is the road slope. 

Given the variety of vehicle types in real-world traffic, we 
selected six typical vehicles to simulate the platoon 
heterogeneous, encompassing the most common passenger 
vehicle categories found in real-world traffic [49]. The 
parameters of six typical vehicles are listed in Table II. In 
addition, the maximum deceleration and acceleration are -4 
m/s2 and 4 m/s2, respectively. The range of steering angle is 
from -1rad to 1rad. The minimum and maximum headway are 
0.8s and 2s, respectively. Note that the type of each vehicle is 
determined by a random distribution of six typical vehicles. The 
car-following behavior of HDVs is simulated using the 
Intelligent Driver Model [50] with random sampling in the 
distributions of headway. The lane-changing behavior is 
captured by using the Microscopic Online Behavior Model [51].  

B. MARL Setup and Evaluation 
1) MARL Setup: The traffic scenario definition states that 

three CAVs must merge into the target lane and form the mixed 
vehicle platoon with HDVs. Consequently, there are three 
agents in MARL. The parameters of MARL are listed in Table 
III. Note that if an episode is completed or a collision occurs, 
the traffic environment will be reset to its initial state and 
change random seeds to start a new epoch.  

TABLE II 
TYPICAL VEHICLE PARAMETERS 

Parameters Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

Vehicle mass m 1545kg 1015kg 1375kg 1430kg 1067kg 1155kg 

Body length 5.21m 3.85m 4.23m 4.25m 3.92m 4.03m 

Body width 2.04m 1.71m 1.98m 2.10m 1.78m 1.83m 

Rolling resistance f 0.020 0.022 0.019 0.021 0.023 0.024 

 Frontal area A 2.33m2 2.19m2 2.40m2 2.46m2 2.14m2 2.04m2 

Air drag coefficient Cd 0.31 0.33 0.29 0.37 0.33 0.32 
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2) Evaluation of Different MARL Algorithms: To identify a 
suitable MARL algorithm for mixed vehicle platoon forming 
control, three candidates are evaluated: Multi-agent Proximal 
Policy Optimization (MAPPO) [52], Multi-agent Actor-critic 
using Kronecker-Factored Trust Region (MAACKTR) [53], 
and Multi-agent Deep Deterministic Policy Gradient 
(MADDPG) [54]. Three candidates are evaluated with the same 
traffic environment, reward, and hyper-parameter settings. The 
collision rate and success rate of the platoon forming control 
after about 10000 episodes are shown in Figs. 7 and 8, 
respectively. Note that the success rate in this context includes 
collision incidents, where any collision is considered a failure. 

In Fig. 7, using the MAACKTR during RL training results in 
the highest collision rate, i.e., up to 9.2%. Compared to 
MAACKTR, the collision rates of MAPPO and MADDPG 
decreased by 19.6% and 4.3%, respectively. This suggests that 
the MAPPO yields the lowest collision rate with advantages in 
efficient exploration under safe driving concerns in dynamic 
traffic. Note that the collision rate is not zero because these tests 
did not include the safety supervisor model. This model adds an 
extra layer of safety by monitoring and intervening to prevent 
collisions. Without it, the algorithms rely solely on their learned 
policies to avoid collisions, resulting in higher collision rates. 
In addition, using the MADDPG results in a 68.8% platoon-
forming success rate, as illustrated in Fig. 8. The highest 
success rate is 77.4% when the MAPPO is employed. In 
summary, MAPPO improves mixed vehicle platoon forming 
success rate while guaranteeing driving safety, which performs 
better than MAACKTR and MADDPG. Therefore, MAPPO is 
used to train the forming control policy for CAVs.  

C. Evaluation of Platoon Forming  
1) Rule-based Method: The rule-based method for mixed 

vehicle platoon forming is defined as a benchmark to evaluate 
the platoon forming success rate of the proposed method, which 
is designed by Maiti et al. [26]. In the rule-based method, the 
leading vehicle toward the movement direction is selected as 
the platoon leader. Other CAVs are incorporated into the 
platoon as followers, according to the descending order of their 
positions. When the requirements for driving safety are satisfied, 
all CAVs are encouraged to merge into the platoon. 

2) Results: For the proposed method, the training consists of 
40,000 episodes using MAPPO. Fig. 9 illustrates the average 
reward and the upper and lower limits of reward in ten repeated 
RL training. In Fig. 9, the reward fluctuates and changes, 
increases gradually, and converges to 180 finally. This shows 
that the RL training process is effective and reasonable. 

In the comparison tests, 1000 random traffic scenarios are 
used for the comparative analysis, and the rule-based and 
proposed methods are tested separately in each traffic scenario. 
The CAV position and speed trajectories at one of the 
comparison tests are depicted in Figs 10 and 11, respectively, 
and the formed platoon is shown in Fig. 12. In addition, Figs. 
13 (a) and 13 (b) give the distributions of platoon forming time 
and energy consumption, respectively. Table IV lists the 
success rate of platoon forming the random formation and 
optimal formation (i.e., uniform distribution of CAVs). 

 

 

Fig. 9. The rewards and boundaries of 40,000 episodes in RL training. 

 

 
Fig. 10. The position trajectory of HDVs and CAVs. 

 

Fig. 11. The speed trajectory of HDVs and CAVs. 

 

 

Fig. 12. The formed mixed vehicle platoon using rule-based and proposed 
methods. 
 

  

(a) forming time (b) energy consumption 

Fig. 13. The time and energy consumption of mixed vehicle platoon forming. 

 

TABLE IV 
RESULTS OF SUCCESS RATE 

Method Random formation Optimal formation 

Rule-based 87% 4% 

Proposed 85% 11% 
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Fig. 14. The average speed of all vehicles in the forming zone. 

 

 
Fig. 15. The average energy of all vehicles in the forming zone. 

 

 

Fig. 16. The average energy of mixed vehicle platoon in whole travel. 

 

 
Fig. 17. The average travel time of mixed vehicle platoon in whole travel. 

 
As shown in Figs. 10 and 11, the CAVs started from either 

the leftmost or the rightmost lanes. Under the control of rule-
based and proposed methods, CAVs can change lanes to merge 
into the middle lane and collaborate with the HDVs to form a 
mixed vehicle platoon. In contrast to the rule-based method, as 
shown in Fig. 12. which can only form a mixed vehicle platoon 
with the random distribution of CAVs, the proposed method 
can form a mixed vehicle platoon with a uniform distribution of 
CAVs. 

The range of platoon forming time for the rule-based method 
is 13.6s-15.1s, and 14.2s-16.1s for the proposed method, as 
indicated in Fig. 13 (a). The average platoon forming time is 
comparable between the rule-based method (14.4s) and the 
proposed method (15.2s). However, the proposed method saves 
7.19% in energy consumption during platoon forming 

compared to the rule-based method, as shown in Fig. 13 (b). 
This is because the speed trajectory of the proposed method is 
smoother than the rule-based method, as shown in Fig. 11, 
which improves the energy efficiency of the CAVs. Table IV 
shows that the proposed method increases the optimal 
formation achievement rate by 175% over the rule-based 
method, without compromising platoon forming success rate. 

The above findings indicate that both the rule-based and 
proposed methods can rapidly control the CAVs to form the 
mixed vehicle platoon in dynamic traffic. However, the 
proposed method is more energy-efficient, while having a 
higher success rate in forming optimal formations. 

D. Evaluation of Energy and Traffic Efficiencies  
The investigation involves 1000 individual simulation trials 

with random traffic scenarios to analyze the impact of the 
proposed method on energy and traffic efficiency. This 
evaluation covers both the platoon forming zone and the whole 
travel including forming and cruising zones. 

1) Cruising Speed Optimization: Once the mixed vehicle 
platoon has formed the designated formation, the driving speed 
of the mixed vehicle platoon has an impact on the platoon's total 
energy consumption and travel time. The leader CAV speed 
optimization and the car-following speed control of followers 
are the two parts of cruising speed control. The trigonometric 
speed profile is used to derive the vehicle energy-saving driving 
speed of the leader CAV in a mixed vehicle platoon, which is 
widely used in vehicle eco-driving control [31, 32]. 

The car-following behaviors between vehicles in a platoon 
can be categorized into three types based on the kind of leading 
and trailing vehicles, i.e., HDV-HDV, HDV-CAV, CAV-HDV, 
and CAV-CAV. If both the preceding and following vehicles 
are HDVs or the preceding vehicle is a CAV and the following 
vehicle is an HDV, the HDVs’ car-following behavior is 
captured using the intelligent driver model [50]. The adaptive 
cruising control strategy [41] is employed to identify CAV’s 
car-following behavior in the CAV-HDV type. If both the 
preceding and following vehicles are CAVs, the cooperative 
adaptive cruising control strategy [41] is utilized to simulate the 
car-following behavior of the following CAV. 

2) Strategy Design: To evaluate the energy and traffic 
efficiencies of the proposed method, four strategies, named 
Strategies A, B, C, and D, are compared, where the proposed 
forming method is used in Strategies C and D. Platoon forming 
control is not considered in Strategies A and B. All CAVs and 
HDVs driving freely in Strategy A. In Strategy B, the CAVs use 
the same trigonometric speed profile model [31] to derive 
energy-saving speed as the proposed method, but the HDVs are 
free to drive. In Strategies C and D, the platoon forming control 
is identical to the proposed method, but the leader vehicle in the 
mixed vehicle platoon drives at the constant average traffic flow 
speed in Strategy C and drives at optimized speed using the 
trigonometric speed profile model in Strategy D. Furthermore, 
when the preceding vehicle is encountered in Strategies A, B, 
C, and D, the car-following behavior is controlled via the 
intelligent driver model [50], adaptive cruising, and cooperative 
adaptive cruising control strategies [41].  

3) Results of Forming Zone: To evaluate the impact of CAVs 
on the energy and traffic efficiencies of surrounding vehicles 
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during the mixed platoon forming, the average speed and 
energy consumption of all vehicles in the forming zone are 
collected, as shown in Figs. 14 and 15, respectively. Note that 
Strategy D is not included in this evaluation since Strategies C 
and D share the same platoon forming strategy. The percentages 
of Strategies B and C are shown in Figs. 14 and 15 are 
calculated as the relative reductions in average speed and 
energy consumption compared to Strategy A. 

As shown in Fig. 14, compared to Strategy A, the average 
speed of all vehicles decreases by 2.35% under Strategy B due 
to the optimized speed profile, and by 4.31% under Strategy C 
due to the control of mixed vehicle platoon formation. In Fig. 
15, Strategy C improves energy efficiency by an average of 
1.3% and Strategy B improves by an average of 4.71% 
compared to Strategy A. The results indicate that during the 
forming of mixed vehicle platoon, CAVs need to change lanes 
under control, which affects the movement of surrounding 
vehicles. However, the impact on surrounding vehicles is not 
significant, so the average speed and energy differences among 
all vehicles are not substantial. 

4) Results of the Whole Travel: The average energy 
consumption and travel time for 1000 individual simulations of 
a mixed vehicle platoon throughout the whole travel, are 
displayed in Figs. 16 and 17, respectively. Note that the energy 
consumption here refers to the sum of the energy of the six 
vehicles planned to form the mixed vehicle platoon, and the 
travel time is the time taken by the last of these vehicles to 
arrive at the destination. The percentages of Strategies B, C, and 
D in Figs. 16 and 17 are calculated as the relative reductions in 
average energy consumption and time compared to Strategy A. 

As shown in Fig. 16, the energy consumption of Strategy B 
is reduced by 5.06% compared to Strategy A. This indicates that 
the CAV drives at optimized vehicle speeds can improve the 
energy efficiency of mixed traffic. However, when forming the 
mixed vehicle platoon, Strategy C improves the holistic energy 
efficiency of the mixed vehicle platoon by 10.23% and 5.44% 
compared to Strategies A and B, respectively. This indicates 
that forming a mixed vehicle platoon can effectively improve 
the vehicle energy efficiency. In addition, in Strategy D, thanks 
to the adoption of the optimized speed of leader CAV, the 
energy consumption is further reduced by 0.51% compared to 
Strategy C. Nonetheless, there is a minor improvement in travel 
time reduction between Strategies C and D., as displayed in Fig. 
17, forming a mixed vehicle platoon contributes to the 
improvement of traffic efficiency, and the time-saving 
performance of the mixed vehicle platoon is further improved 
when the optimized speed control is employed. 

In summary, it is highly advantageous to enhance the energy 
and traffic efficiency than disorganized mixed traffic by 
controlling CAVs in conjunction with HDVs to create a mixed 
vehicle platoon. Furthermore, properly regulating the speed 
profile of CAVs in platoons of mixed vehicles could improve 
overall energy performance and traffic efficiency, which 
maximizes the benefit of forming a mixed vehicle platoon from 
random traffic flow. 

VI. CONCLUSION 
To energize the potential of CAVs in traffic safety, economy, 

and efficiency improvement for mixed traffic flows, this study 

proposes the mixed vehicle platoon forming method that 
considers the dynamic HDVs and CAVs driving behaviors. It 
uses a two-stage hierarchical control framework to realize safe 
and efficient platoon forming control in dynamic mixed traffic. 
The mixed platoon formation generation stage creates the 
feasible formation appropriate for the traffic scenario based on 
the empirical formation method and the states of CAVs and 
HDVs, which is the guidance of the platoon forming control. 
The MARL is used in the second stage for realizing the platoon 
forming control efficiently. By the formation requirements, 
CAVs in different lanes perform lane-changing operations 
under the control of the MARL to drive into the designated 
positions in the mixed vehicle platoon.  

Extensive simulations are conducted using the Highway-env 
simulator to evaluate the effectiveness of the proposed method. 
The platoon forming success rate evaluation results show that 
the proposed method can rapidly control the CAVs to form the 
designated formation in dynamic mixed traffic while saving 
vehicle energy. Furthermore, it is extremely beneficial to 
control CAVs in tandem with HDVs to form a mixed vehicle 
platoon, which will improve energy and traffic efficiency 
compared to disorderly mixed traffic.  

Future research will focus on integrating collision avoidance 
mechanisms and dynamic lane-changing behaviors of HDVs 
into mixed vehicle platoon forming. This integration aims to 
enhance the adaptability of the design method to more complex 
traffic scenarios, such as urban traffic and dense traffic flows. 
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