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Abstract: This paper focuses on developing a motion planning algorithm for static obstacle
avoidance for a kinematic unicycle robot undergoing an energy-optimal point-to-point maneuver.
The standard kinematic model is redefined in the geometric center space, motivated by the
feedback linearization technique, resulting in a reduced order kinematic model. The proposed
optimal motion planning approach is decomposed into two sequential stages: pre-planning and
re-planning. In the pre-planning stage, an obstacle-free point-to-point optimal control problem
is formulated and solved. Utilizing the solution from the optimal control problem, a perturbation
controller is introduced which incorporates the nominal optimal control as a feedforward
controller and a feedback tracking controller. In the second stage, the control barrier function
method is employed to account for safety requirements, resulting in a minimum intervention
control and solved in a point-wise optimization framework that accounts for the obstacles. The
safety constraints are used as a quantitative metric to trigger trajectory re-planning, ultimately
resulting in a nearly optimal control and trajectory.
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1. INTRODUCTION

The three state kinematics model of mobile ground robotic
systems has been widely studied. Although the model
excludes the dynamics of the system, it has served as
a benchmark model to realize solutions for autonomous
ground vehicle applications (Gao et al. (2020); Werling and
Groll (2009)). Due to the complexity of the real-world en-
vironment and computational limitations of onboard com-
puters, developing efficient motion planning algorithms for
such a system is a fundamental challenge in achieving
autonomous navigation. The task of finding the optimal
trajectories for the robots traversing from one point to
another while avoiding obstacles is the main focus of this
paper.

Collision-free path planning is one of the most critical
problems in autonomous robotic applications. There is a
plethora of literature, including pioneering works such as
grid-based algorithms like Dijkstra (Dijkstra (1959)) and
A∗ (Hart et al. (1968)), continuous path planning methods
such as artificial potential field approach (Hwang et al.
(1992)), and sample-based search algorithm (LaValle and
Kuffner Jr (2001)). Nevertheless, the aforementioned clas-
sical path planning algorithms offer the benefit in achiev-
ing a collision-free path, however, they often disregard the
dynamics and kinematics of the robot. Consequently, the

1 Y. Kim: PhD Student, E-mail: ykim35@buffalo.edu.
2 C. R. He: Assistant Professor, E-mail: chaozheh@buffalo.edu.
3 T. Singh: Professor, Corresponding Author. E-mail:
tsingh@buffalo.edu.

planned path may be infeasible to implement on real-world
robotic systems.

The obstacle avoidance problem can be formulated as
a pure state-constrained optimal control problem. The
first principle-based approach to handling pure state con-
straints was introduced in (Bryson Jr et al. (1963)). Find-
ing a collision-free path often requires solving a nonconvex
optimization problem, where feasibility in obtaining the
optimal path and control may not be guaranteed. To
alleviate the feasibility issue, the minimum-penetration
trajectory generation algorithm is introduced in (Zhang
et al. (2020)), where penetration allowance is measured
through local linearization. The Hamilton-Jacobi-Bellman
principle is explored in (Sundar and Shiller (1997)) to
find the shortest collision-free path to the goal. Since the
objective of the problem is finding the shortest path, the
authors take advantage of geometry as a tool to measure
the distance between the current position and the goal to
formulate the cost to the goal. However, in this article, our
objective is to find a minimum energy collision-free path.
Solving the resulting optimal control based on intuition
may not be applicable, since following the shortest path
does not necessarily result in energy optimalality (Kim and
Singh (2021)). Solving optimal control problems with pure
state constraints, is in general a very challenging problem.
It is even more difficult to solve than the problems with
both control and state constraints. This is because of the
nature of the pure state constraints, where the constraints
do not explicitly depend on control inputs (Chachuat
(2007)).
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Given a model of the robot, obstacle avoidance problems
can also be reformulated by enforcing safety requirements,
and by monitoring the control actions for the safety re-
quirement and only intervening when such requirements
are compromised. Safety requirements can be specified
as set forward invariance constraints, or by requiring the
states of a system to remain within a prescribed set (Konda
et al. (2020)). The notion of barrier function was proposed
as a tool for checking the invariance of a set given a
model of the system dynamics (Prajna and Jadbabaie
(2004)). This notion has been recently adapted to the
context of control synthesis, yielding control barrier func-
tions (CBFs). CBFs have been demonstrated as a powerful
tool for constructively synthesizing controllers that achieve
set invariance and thus provide safety assurance (Ames
et al. (2017, 2019)). Control synthesis with CBFs derives
conditions directly from safety requirements and uses con-
vex optimization to produce safety-filters that minimally
modify a purposely-designed controller to ensure safety. It
has been successfully implemented on real-world control
systems, including mobile robot (Xu et al. (2017)), legged
robots (Grandia et al. (2021); Csomay-Shanklin et al.
(2021)), autonomous aerial vehicles (Molnar et al. (2021)),
and connected automated vehicles (Alan et al. (2023)).

Traditionally, CBFs are used as safety filters to ensure
the safety of the system by intervening in the nominal
controls. The major contribution of the work is that we
extend its utility as a quantitative metric to determine
the activation of the re-planning strategy to address safety
concerns and performance requirements. The kinematics
of the unicycle model are considered in this work to illus-
trate this fundamental contribution. This model has been
recognized as a nonholonomic system, which restricts in-
stantaneous lateral motion. To alleviate the constraints in
the control design process, the second contribution of this
work, inspired by (De Luca et al. (2002)), is applying the
feedback linearization technique to transform the model
into a simple 2-dimensional single integrator. The reduced
order model permits intuitive construction of the safety
constraints from the geometry of obstacles. Furthermore,
without modifying the standard CBFs architecture, the
constraints can be directly applied to obtain safety func-
tion.

The remainder of the paper is organized as follows. We first
describe the kinematics model of the robot considered in
this work in Section 2. We then delve into the main con-
tribution where motion planning problem formulation and
detailed description of the proposed dual-stage optimal
trajectory tracking control algorithm for collision-free nav-
igation is introduced in Section 3. Subsequently, Section 4
showcases the numerical simulation results. Lastly, the
concluding remarks and plans future work are presented
in Section 5.

2. KINEMATIC OF UNICYCLE ROBOT

In this work, we examine the kinematics of a unicycle robot
as a governing model to demonstrate the proposed motion
planning algorithm. The model is expressed as:ẋẏ

θ̇

 =

[
cos(θ) 0
sin(θ) 0

0 1

] [
V
ω

]
(1)

where V and ω are the linear and angular velocities
respectively and state x, y, and θ represent the position
and orientation of the robot, measured from the midpoint
P between the two wheels.

Assuming that the geometric center of the robot is offset
by a distance L (where |L| > 0), the original states can be
rewritten as: [

xc

yc
θc

]
=

[
x+ L cos(θ)
y + L sin(θ)

θ

]
(2)

and the kinematics of the model for the virtual actuation
point C can be derived as:[

ẋc

ẏc

]
︸︷︷︸
Ẋc

=

[
u1

u2

]
︸︷︷ ︸
U

(3)

where U = [u1, u2] are the virtual controls at point C.
It has been acknowledged that the standard kinematic
model (1) has a major restriction in which the system
is inherently nonholonomic, consequently, instantaneous
lateral motion cannot be achieved. However, by applying
a simple transformation, the proposed geometric center
model is not restricted by the kinematic constraints.

Lastly, the virtual controls map to real control V and ω
by: [

u1

u2

]
=

[
cos(θ) −L sin(θ)
sin(θ) L cos(θ)

] [
V
ω

]
. (4)

Since L is strictly greater than zero, Equation (4) allows
the virtual controls U to be mapped back to the actual
controls V and ω without encountering singularity issues.
Figure 1 illustrates the difference between the standard
kinematic model (around P) and the geometric center
model (around C). Since Equation (1) corresponds to a

Fig. 1. Schematic of the kinematics of unicycle robot

point mass model, the obstacle avoidance problem requires
inflating the obstacle bounds with the radius of a circle
centered at a point whose coordinates form the reference
for the trajectory generation problem. Clearly the point
P results in a large enclosing circle (Blue) relative to the
circle enclosing the point C, providing another motivation
for the selection of the point C to serve as the reference
center.
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3. REFERENCE TRAJECTORY TRACKING
CONTROL WITH OBSTACLE AVOIDANCE

3.1 Pre-Planning Stage: Optimal Control Problem (OCP)

Minimizing overall energy consumption while navigating
complex environments can be easily motivated by the need
to prolong service time which significantly influences the
capabilities and performance of the robotic system. Here,
the intergal of the total kinetic energy of the system is
considered as a metric to measure the energy consumption
of the vehicle:

J =

∫ tf

0

α
MV 2

2
+ β

Iω2

2
dt (5)

where M and I represent mass and inertia of the system,
respectively. And α and β are the weighting parameter
that can be selected by user to adjust contribution. Lastly,
tf is a terminal time that must be specified to avoid
degenerate solutions. For the demonstration purposes, we
selected α = 1

M and β = 1
I , resulting in:

J =

∫ tf

0

V 2 + ω2

2
dt (6)

To obtain the optimal controls for a point-to-point transi-
tion, the initial and terminal states are prescribed as:

[x, y, θ]T (t = 0) = [0, 0, 0]T (7)

[x, y, θ]T (t = tf ) = [xf , yf , θf ]
T . (8)

With the given objective, the optimal control problem can
be formulated as:

min
V,ω

J =

∫ tf

0

V 2 + ω2

2
dt (9)

Subject to :ẋẏ
θ̇

 =

[
cos(θ) 0
sin(θ) 0

0 1

] [
V
ω

]
(10)

[x, y, θ]T (t = 0) = [0, 0, 0]T (11)

[x, y, θ]T (t = tf ) = [xf , yf , θf ]
T . (12)

The proposed problem can be easily solved using the
standard numerical shooting method and also in closed
form as derived in (Kim and Singh (2021)). The resulting
solution will serve as a reference trajectory for the states
and the controls.

3.2 Re-Planning Stage: Control Barrier Function (CBF)

Using the point-to-point optimal trajectories, the controls
include a state feedback perturbation control in conjunc-
tion with the nominal control as a feedforward component:

u1 = −K1(xc − xd
c) + ẋd

c (13)

u2 = −K2(yc − ydc ) + ẏdc (14)

where the superscript (.)d refers to desired trajectories
that can be obtained from the solution of the optimal
control problem. Note that the reference trajectories and
controls can be converted one-to-one using Equation (2)
and (4). K1 and K2 denote the gains of the feedback
control. Considering the geometric center model (3), the
error dynamics of the system can be written as:

ėx +K1ex = 0 (15)

ėy +K2ey = 0 (16)

where: ex = xc − xd
c and ey = yc − ydc

which is stable as long as K1,K2 > 0. This implies asymp-
totic convergence of the closed-loop system is guaranteed.

The reference trajectories are generated assuming the
robot is navigating in an obstacle-free environment. How-
ever, to account for the obstacle and ensure safe maneuver-
ing, the following safety requirements need to be fulfilled:

(xc −Ox)
2 + (yc −Oy)

2 − r2 ≥ 0 (17)

where Ox and Oy denote the location of the obstacle in
Cartesian coordinates. Here we model the obstacle as a
circle with radius r, and r is inflated to provide safety
margins that account for the dimension of the robot as
the kinematic model assumes the robot as a point mass.

The kinematic model (3) can be rewritten in control affine
form as: [

ẋc

ẏc

]
︸︷︷︸
Ẋc

=

[
0
0

]
︸︷︷︸
f(Xc)

+

[
1 0
0 1

]
︸ ︷︷ ︸
g(Xc)

[
u1

u2

]
︸︷︷ ︸
U

. (18)

Define the control barrier function candidate:

h(Xc) = (xc −Ox)
2 + (yc −Oy)

2 − r2 (19)

which is a continuously differentiable function R2 → R.
The safe set Ω ⊂ R2 defined as the 0-superlevel set of h
yielding:

Ω =
{
Xc ∈ R2 : h(Xc) ≥ 0

}
(20)

∂Ω = {Xc ∈ R2 : h(Xc) = 0} (21)

Int(Ω) = {Xc ∈ R2 : h(Xc) > 0} (22)

where ∂Ω and Int(Ω) are the boundary and interior,
respectively, of the set Ω. To fulfill safety requirement (17)
is equivalent to guarantee the set Ω is forward invariant.

Following (Alan et al. (2023)), the condition of h being a
valid control barrier function is given by:

sup
u∈R2

Lfh(Xc) + Lgh(Xc)U+ α(h(Xc)) > 0 (23)

or equivalently:

Lgh(Xc) = 0 −→ Lfh(Xc) + α(h(Xc)) > 0 (24)

where α(.) denotes a extended class Ke
∞ which is continu-

ous strictly increasing function defined on (−∞,∞) with
α(0) = 0, limr→∞ α(r) = ∞ and limr→−∞ α(r) = −∞. In
this work, we pick a specific class Ke

∞ function in the form
of:

α(h(Xc)) = γh(Xc) (25)

where γ > 0.

Considering the affine system model (18), the Lie deriva-
tive of h(Xc) along f and g is given by:

Lfh(Xc) =
∂h

∂Xc
f(Xc) = 0 (26)

Lgh(Xc) =
∂h

∂Xc
g(Xc) (27)

= [2(xc −Ox), 2(yc −Oy)] ̸= 0, ∀Xc ∈ Ω.
(28)

Note that Xc = [Ox, Oy] ̸∈ Ω. This implies that the
proposed candidate barrier function is a valid control
barrier function.
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One may consider Equation (19) as a candidate barrier
function for the original kinematics model (1). With the
standard kinematic model, the Lie derivative of the can-
didate barrier function along g is given by:

Lgh(X) = [2(x−Ox) cos(θ) + 2(y −Oy) sin(θ), 0] (29)

when θ = arctan
(
− (x−Ox)

(y−Oy)

)
, yields:

Lgh(X) = 0 −→ Lfh(X) + α(h(X)) ≥ 0 ̸> 0 (30)

This illustrates the fact that h is not a valid control barrier
function for the original kinematics model.

The goal of maintaining the performance of the nominal
controller Un = [u1, u2] while ensuring the safety of
the closed-loop system motivates an optimization-based
safety-critical controller UQP defined as:

UQP = min
U=(u1,u2)

1

2
||U−Un||2 (31)

Subject to :

Lfh(Xc) + Lgh(Xc)U+ γh(Xc) ≥ 0 (32)

This formulation, denoted as CBF-QP, can be synthesized
through a point-wise optimization scheme. The feasibility
of controls is guaranteed as control is assumed unbound in
this study.

When the robot is distant from the obstacle, the given
QP solution coincides with the nominal controls Un,
while at every instant when safety conditions are violated,
the QP solution results in the minimal intervention that
regulates the nominal controls to navigate safely around
the obstacles. However, since the nominal controls are
defined by the pre-planned trajectory where the obstacle
is not considered, it can require a large demand for
controls to track back to the original reference trajectories
after the robot avoids the obstacle. To ensure energy-
efficient maneuvering while guaranteeing safe navigation,
we propose to re-plan for a new trajectory whenever:

Lfh(Xc) + Lgh(Xc)U+ γh(Xc) ≤ ϵ (33)

where ϵ is a small positive number. Hence, if the safety
condition is less than or equal to the threshold ϵ, the
optimal trajectories are updated by solving the following
OCP:

min
V,ω

J =

∫ tf

tr

V 2 + ω2

2
dt (34)

Subject to :ẋẏ
θ̇

 =

[
cos(θ) 0
sin(θ) 0

0 1

] [
V
ω

]
(35)

[x, y, θ]T (t = tr) = [x(tr), y(tr), θ(tr)]
T (36)

[x, y, θ]T (t = tf ) = [xf , yf , θf ]
T (37)

where tr is time when Equation (33) is triggered, and
[x(tr), y(tr), θ(tr)] represents the states at that time in-
stant. Note that it is possible to impose the threshold
bound on h(Xc), but this could lead to overly conserva-
tive solutions. The complete motion planning strategy is
summarized in Algorithm (1).

Note that re-planning occurs immediately after the inter-
vention takes place. Whenever UQP = Un, which implies
that the nominal control guarantees closed-loop safety,
then re-planning is not necessary.

Algorithm 1 OCP-CBF Replanning Algorithm

Initialize: tf ,xf ,yf , and θf
Pre-Planning: [Xd

c ,U
d]= Solve OCP (9)-(12)

while t ̸= tf do

Minimum Intervention Control:
U=Solve CBF-QP (31)-(32)

if Lfh(Xc) + Lgh(Xc)U + α(h(Xc)) ≤ ϵ then

Re-Planning: [X̃
d

c , Ũ
d
]=Solve OCP (34)-(37)

Update: [Xd
c ,U

d]=[X̃
d

c , Ũ
d
]

else

Continue

end if

end while

4. RESULTS AND DISCUSSION

We demonstrate that the robot can track the reference
trajectories while avoiding the obstacle by leveraging the
control barrier function and utilizing safety conditions as
quantitative guidance to re-plan the optimal trajectories.
This section presents the main result of the proposed idea.

To rapidly generate energy optimal trajectories, an algo-
rithmic differentiation-based software CasADi by Ander-
sson et al. (2019) is used, and the CBF-QP problem is
solved using MATLAB quadprog. The simulation results
are obtained using the following initial parameters:

[tf , L,K1,K2, γ, ϵ] = [20, 0.05, 10, 10, 1, 10−5] (38)

[x, y, θ](t = tf ) = [1, 1, 0] (39)

[Ox, Oy, r] = [0.6, 0.4, 0.2] (40)

The control gains are carefully selected such that both
methods ensure reaching the desired terminal position
within the specified maneuver time. The corresponding
simulation results are shown in Figure 2.

In the figure, the pre-defined paths are shown in green,
which provides the initial guidance to maintain energy
optimal maneuver. The path and controls resulting from
scenarios without and with re-planning strategy are repre-
sented in blue and purple, respectively. The energy costs
for the two scenarios are Jw/o = 0.799 and Jre = 0.279,
confirming that the proposed re-planning strategy sig-
nificantly reduces energy consumption. In other words,
converging back to the reference path may not be the best
near-optimal solution.

To benchmark the proposed design, the exact energy-
optimal obstacle avoidance control problem is formulated:

min
V,ω

J =

∫ tf

0

V 2 + ω2

2
dt

Subject to :ẋẏ
θ̇

 =

[
cos(θ) 0
sin(θ) 0

0 1

] [
V
ω

]
(x−Ox)

2 + (y −Oy)
2 − r2 ≥ 0

[x, y, θ]T (t = 0) = [0, 0, 0]T

[x, y, θ]T (t = tf ) = [xf , yf , θf ]
T .
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Fig. 2. Robot trajectories and controls: compression
between the re-planning method and without re-
planning

The optimal solutions are shown via the red line (Fig. 2),
and the corresponding optimal cost is J ∗ = 0.182.

To investigate the impact of γ on energy consumption, a
parametric study is conducted by increasing γ from 0.1 to
5, which is illustrated in Figure 3. The results confirm that
leveraging the re-planning mechanism results in a better
sub-optimal solution regardless of the γ value.

Fig. 3. Energy consumption with respect to γ

The major cost reduction is contributed by re-planning
can be examined by evaluating the safety condition over
time, where the results are shown in Figure 4.

In the given scenario, we assumed that the obstacle is
farther away from the initial states, allowing the minimum
intervention controls to resemble the baseline controls,
resulting in the safety condition based on pre-planned
(green), without re-planning (blue), and with re-planning
(purple) to coincide. Since the pre-planned path is gen-
erated without consideration of the obstacle, the QP so-

Fig. 4. Evolution of safety condition over time and re-
planning results

lutions continuously regulate the baseline controls until
the safety condition is satisfied. However, the proposed
re-planning method provides better reference trajectories
for the next step adapted from the previous states. If the
OCP finds a energy optimal path that is collision-free,
the minimum intervention controls revert to the baseline
controls. Figure 4 also includes the first (tr = 7.14) and
last (tr = 8.56) time when re-planning occurs, confirming
that when tr = 8.56 the OCP provides a collision-free path
to goal, and revealing that the final trajectories (dashed-
line) coincided with the final re-planned path.

The proposed algorithm can be extended to complex
maneuver scenarios where multiple obstacles exist in the
environment. The configuration of the obstacles is shown
in Table 1, and corresponding simulation results are shown
in Figure 5.

Table 1. Obstacle Configuration

Ox Oy r

Obstacle 1 0.5 0.2 0.2

Obstacle 2 1.4 1.1 0.3

Obstacle 3 1.8 1.5 0.1

Obstacle 4 2.4 1.4 0.4

The re-planning method yields an energy cost of Jre =
0.94, while without re-planning, the cost increases to
Jw/o = 6.32. Compared to the optimal cost of J ∗ =
0.52, the proposed re-planning method shows substantial
improvement in terms of energy savings.

5. CONCLUSION

This article introduces an algorithmic approach to solve
state-constrained optimal control problems utilizing the
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Fig. 5. Robot trajectory with multiple obstacles

control barrier function and optimal control. The con-
trol barrier function is a passive approach that handles
state constraints by regulating the baseline control in a
minimum intervention scheme but can compromise the
overall performance. In contrast, solving the obstacle con-
strained optimal control ensures optimality, but solving
state-constrained optimal control problems are generally
computationally expensive, and depending on the com-
plexity of the problem, feasibility of obtaining real-time
optimal solutions is uncertain. To address the limitations
of both methods, we introduced a re-planning mechanism
based on control barrier functions that ensures safe maneu-
vering while accomplishing nearly optimal performance.
The energy-optimal obstacle avoidance problem is formu-
lated as a benchmark scenario to demonstrate the pro-
posed algorithm, confirming that the proposed re-planning
strategy maintains near-energy optimality while satisfying
the safety requirement. Future work will use the proposed
algorithm to consider both state and input constraints,
and validate in experimental testing.
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