
Machine learning-based steering control for automated vehicles
utilizing V2X communication

Sergei S. Avedisov, Chaozhe R. He, Dénes Takács, and Gábor Orosz

Abstract— A neural network-based controller is trained on
data collected from connected human-driven vehicles in order
to steer a connected automated vehicle on multi-lane roads. The
obtained controller is evaluated using model-based simulations
and its performance is compared to that of a traditional non-
linear feedback controller. The comparison of the control laws
obtained by the two different approaches provides information
about the naturalistic nonlinearities in human steering, and this
can benefit the controller development of automated vehicles.
The effects of time delay emerging from vehicle-to-everything
(V2X) communication, computation, and actuation are also
highlighted.

I. INTRODUCTION

Autonomous driving is one of the most intricate challenges
for automotive engineering. Engineers are facing complex,
safety critical tasks including localization of the vehicle
and obstacles based on multiple sensors and their fusion,
decision making, path planning, and motion control of the
vehicle. Each of the above mentioned tasks has its own
bottleneck which requires solid research efforts. For example,
localisation of the vehicle and obstacles around based on
optical sensors can be problematic in inclement weather
conditions. Decision making and path planning often suffers
from the lack of human intuition. Motion control has to
consider passenger comfort and safety while having limited
information about road conditions and need to take into
account time delays in the control loops.

In this paper, we focus on scenarios where wireless
vehicle-to-everything (V2X) communication can provide so-
lutions for the above mentioned problems. We consider the
case when a connected automated vehicle (CAV) follows
a connected human-driven vehicle (CHV) along a highway
while receiving V2X messages (containing GPS position,
speed and heading angle [1]); see Fig. 1. In this case the CAV
may utilize the trajectory of the CHV as a “target path” and
such strategy can be particularly beneficial during adverse
weather conditions when the performance of optical sensors

S. S. Avedisov, C. R. He and G. Orosz are with the Department of
Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109,
USA {avediska,hchaozhe,orosz}@umich.edu

D. Takács is with the Department of Applied Mechanics, Bu-
dapest University of Technology and Economics, H-1111, Hungary
takacs@mm.bme.hu

S. S. Avedisov is also with the Toyota Motor North America R&D –
Infotech Labs, Mountain View, CA 94043, USA

C. R. He is also with the Navistar Inc., Lisle, IL 60532, USA
D. Takács is also with the MTA-BME Research Group on Dynamics of

Machines and Vehicles, Budapest, H-1111, Hungary
G. Orosz is also with the Department of Civil and Environmental

Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Fig. 1. The physical layout of the connected vehicle system. A connected
human-driven (CHV) vehicle is driven along a straight road while exe-
cuting lane change maneuvers and followed by another connected vehicle
(CHV/CAV). Data is collected when the following vehicle is driven by a
human driver and the collected data is used to train a neural network-based
controller to steer the vehicle when it is automated.

deteriorate. Rather than constructing separate decision mak-
ing, planning, and control algorithms, here we take an “end-
to-end” approach [2], [3]. Namely, V2X data collected from
human-driven vehicles is used to train a neural network and
the corresponding controller is deployed on the CAV. This
approach allows us to capture the naturalistic behavior of
(attentive) human drivers and may enhance performance in
terms of safety and passenger comfort.

While traditionally control design relies on a detailed
vehicle model, supervised learning is emerging as a viable
alternative. In particular, neural networks have the capability
of fitting complex functions [4], which is beneficial when
learning human behavior [5]. The performance of the con-
troller can be still evaluated by using a first principle-based
vehicle model, similar to the approach in [6], [7]. Comparing
the neural network-based controller to a traditional nonlinear
feedback controller allows us to gain some intuition of how
the trained neural network steers the vehicle, which can be
used to enhance the traditional nonlinear controllers. In this
paper, beyond the comparison of the control laws, we also
analyze the robustness of the controllers against time delay
originated in communication, computation and actuation.

The rest of the paper is organized as follows. The data col-
lection and the neural network architecture including training
and hyperparameter tuning are discussed in Sec. II. A first
principle-based vehicle handling model used for evaluation
and the traditional nonlinear feedback controller design are
presented in Sec. III. The two different control approaches
are compared in Sec. IV where the advantages of the new
approach are highlighted. We conclude the paper in Sec. V
and lay out some future research directions.

2021 IEEE Conference on Control Technology and
Applications (CCTA).
August 8-11, 2021. San Diego, California

2021 IEEE Conference on
Control Technology and

Applications (CCTA).
August 8-11, 2021. San

978-1-6654-3643-4/21/$31.00 ©2021 IEEE 253

20
21

 IE
EE

 C
on

fe
re

nc
e

on
 C

on
tro

l T
ec

hn
ol

og
y

an
d

A
pp

lic
at

io
ns

 (C
C

TA
) |

 9
78

-1
-6

65
4-

36
43

-4
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

C
TA

48
90

6.
20

21
.9

65
89

72

II. NEURAL NETWORK-BASED STEERING CONTROLLER

In order to obtain a steering controller that utilizes the
V2X communication, we use experimental data to fit a two-
layer neural network. In this section we lay out the data
collection and processing procedure followed by the neural
network design and performance evaluation.

A. Data collection and processing

The data used both for training and testing is collected in
real driving scenarios. Two production passenger vehicles
(shown in Fig. 2(a)) were driven by human drivers and
both vehicles were equipped with V2X on-board units (see
Fig. 2(b)) that recorded motion information with 10 Hz sam-
pling frequency, This included the GPS positions of the rear
axle center points R and R1 (see Fig. 1), the heading angles
θ = ^vR, θ1 = ^vR1, and the speeds v = |vR|, v1 = |vR1|
of the vehicles. The GPS positions were converted to the
positions (xR, yR) and (xR1, yR1) in the ground-fixed coor-
dinate system whose x-axis is aligned with the lanes on the
test track; see Fig. 1. The steering angle γ of the following
vehicle was also collected through the CAN bus and it was
synchronized with the GPS data.

The vehicles were driven on the straight highway segment
of the Mcity test track (see Fig. 2(c)). The preceding vehicle
carried out lane change maneuvers (green trajectory) and
the following vehicle “copied” the motion (black trajectory)
imitating low-visibility scenarios where human drivers use
nearby vehicle’s motion as guidance. Data were collected
from 15 lane changes, including 8 changes to the left lane
and 7 changes to the right lane. We use 7 left lane changes
and 7 right lane changes to train the network, and reserve
a single left lane change for evaluation. This results in total
206.3 seconds of data (N = 2063 data points) for training
and validation as well as 18.3 seconds of data (183 data
points) for testing.

Because we desire the neural network to steer the follow-
ing vehicle with respect to the leading vehicle, we train it
based on the relative positions, angles, and velocities. The
features and the output of our neural network are defined as

X =

xR1 − xR
yR1 − yR

sin θ1 − sin θ
v1 − v

 , Y = γ , (1)

respectively. To improve convergence of the training and to
minimize the chance of the backpropagation algorithm being
stuck at a local optimum, we normalize the features and the
output:

X̃ = GX(X−Xmin)−14 , Ỹ = GY (Y −Ymin)−1 . (2)

Here Xmin collects the minimum values of the features in
the training data, Ymin is the minimum value of the output,
and 14 is a vector of 1’s in R4. The matrix GX ∈ R4×4 and
scalar GY are defined as

GX =diag(. . . ,
2

X
(j)
max −X(j)

min

, . . .) , GY =
2

Ymax − Ymin
,

(3)

where Xmax and Ymax correspond to the maximum values
of the features and the output. The matrix GX and scalar
GY map the range of the features and the output to [−1, 1].

B. Neural network design and performance evaluation

To achieve the desired steering control we use a single
hidden layer neural network with a finite number of neu-
rons. Such networks can approximate arbitrary continuous
nonlinear functions while having a simple architecture [8].

The input is the scaled feature vector X̃ ∈ R4, and the
hidden layer contains M nodes – a hyperparameter which
will need to be tuned. The scalar variable zj for the j-th
neuron in the hidden layer is then given by

zj = tanh
(
wT
j X̃ + bj

)
, (4)

for j = 1, . . . ,M , where tanh(·) is used as the activation
function, while wj ∈ R4 and bj contain the weights and the
bias for neuron j. The output of the network is given by

ˆ̃
Y =

M∑
j=1

Wjzj +B =

M∑
j=1

Wj tanh
(
wT
j X̃ + bj

)
+B , (5)

where Wj is the weight for neuron j and B is the bias.
Let us denote the square prediction error

Et(ϑ) =
(
Ỹt −

ˆ̃
Y t

)2
, (6)

where t = 1, . . . , N stand for the discrete time identifying
the t-th data point while ϑ collects the weights and biases
(wj , bj ,Wj , B). Let us use the mean square error as the
objective function and seek for the weights and biases that
minimize the objective, i.e.,

ϑ∗ = arg min
ϑ
EMSE(ϑ) = arg min

ϑ

1

N

N∑
t=1

Et(ϑ) . (7)

To solve this optimization problem, we consider two
backpropagation methods: the gradient descent and the
Levenberg-Marquardt algorithms.

When using gradient descent we initialize the weights and
biases using a uniform random distribution and backpropa-
gate ϑ according to

ϑk+1 = ϑk − αk∇ϑEMSE(ϑ) , (8)

where ∇ϑ denotes the gradient, k counts the epochs, and
αk = 0.05/(1 + 0.05k) is the applied learning rate. The
process is repeated until the validation error stops decreasing
over several iterations or we surpass 200 epochs.

We also use the Levenberg-Marquardt algorithm [9], [10]
which is a second-order algorithm similar to Newton’s
method. We back propagate ϑ according to

ϑk+1 = ϑk −
(
JTJ + µI

)−1
JT
(
Y − Ŷ

)
, (9)

where J ∈ RN×(6M+1) denotes the Jacobian of EMSE(ϑ)
with the t-th row being Jt = ∇ϑEt(ϑ), µ is an adjustable
damping parameter, and Y and Ŷ are column vectors with
the t-th entry being Ỹt and ˆ̃

Y t, respectively. When imple-
menting this method we initialize the weights and biases

254

Fig. 2. Experimental setup. (a) Vehicles used in the experiments. The GPS antennas are mounted over the center of the rear axle of each vehicle. (b)
V2X communication device used in the experiments. (c) Mcity test track with representative trajectories of experiments.

using the Nguyen-Widrow method [11]. This distributes the
active regions of the M neurons more evenly over the feature
space to yield faster convergence and smaller final mean
square error.

A comparison between gradient descent and Levenberg-
Marquardt algorithms is shown in Fig 3(a), for a network
with M = 20. The Levenberg-Marquardt method achieves a
root mean square error (RMSE) of 0.159 degrees for the
steering angle in 40 epochs while gradient descent only
achieves 0.478 degrees. In fact, the gradient descent still has
an RMSE of over 0.350 degrees after 200 epochs of train-
ing. According to these results, we choose the Levenberg-
Marquardt method in the MATLAB neural network toolbox
to perform subsequent training, validation, and tuning.

In order to tune M we train and validate the network
for various values of M between 1 and 100. In each case
we randomly select 70% of the data for training and use
the rest for validation. The results are shown in Fig. 3(b)
where we applied the Levenberg-Marquardt backpropagation
with the the Nguyen-Windrow initialization scheme. Both
the training and the validation errors decrease with M but
above M = 25 disparity between the training and validation
errors becomes significant, indicating overfitting. Based on
this we chose M = 20 and we retrain a network for 200
epochs yielding the final RMSE 0.152 degrees. This network
is used for analysis and testing in the rest of the paper.

Traditionally, the performance of a neural network is
evaluated by computing the RMSE for a randomly selected
test run, in our case a lane change to the left. For this run we

Fig. 3. (a) Comparison between the training errors of the
gradient descent algorithm with random initilization and the
Levenberg-Marquardt algorithm with Nguyen-Widrow initialization
for M = 20 neurons in the hidden layer. (b) Training and validation
errors for various M values using 70%-30% training-validation split
in the Levenberg-Marquardt algorithm.

Fig. 4. Measured steering angle (gray dashed) vs steering angle
predicted by (10) (black solid) for the test run.

predict the steering angle using the trained neural network:

γ̂ =Ymin +
B∗ + 1

GY

+
1

GY

(M∑
j=1

W ∗
j tanh(w∗T

j (GX(X−Xmin)− 14) + b∗j)

)
,

(10)

cf. (2) and (5), where the asterisks indicate that we are using
the optimized values of the weights and biases.

The time profiles of the measured and predicted steering
angles are shown in Fig. 4 for the test run. The RMSE
between the predicted and the measured signals is 0.424 de-
grees, which is significantly higher than the training RMSE
for the final network. This is due to the human driver’s
varying reaction across different runs and that we did not
use any points from the entire test run to train the network.
More importantly, Fig. 4 shows that although at a given time
the predicted and measured steering wheel angles have large
deviations, the time profiles look qualitatively similar. This
indicates that the RMSE may not be the best performance
indicator for this application. Lastly, since the vehicle is a
dynamic system, any difference between the measured and
predicted steering angles will affect where the vehicle will be
located subsequently. Thus, the actual features in the steering
maneuver performed by the neural network will differ from
the those measured during the test run.

In order to properly evaluate the performance of the neural
network-based controller, we perform a dynamic simulations
where the neural network steers the following vehicle. We
construct a model-based simulation environment that uses
first principle-based vehicle handling model. We also use
this environment to construct a traditional nonlinear feedback
controller that can serve as a basis of comparison for the
neural network-based controller.

255

III. FIRST PRINCIPLE-BASED FEEDBACK DESIGN

Once using a neural network-based controller, it may be
difficult to interpret the control law and to provide formal
guarantees of stability and safety for the closed-loop system.
To resolve this, we compare the controller designed above
with a first principle-based nonlinear controller. In particular,
we demonstrate that comparing the two different controllers
can give information about the linear stability of the trained
neural network-based controller.

A. Mechanical model

In order to describe the lateral dynamics of the vehicle
involved in the experiments, we use the in-plane single-
track vehicle model with front wheel drive shown in Fig. 5.
The mass and the mass moment of inertia about the center
of gravity G are denoted by m and JG, respectively. The
wheelbase of the vehicle is l while the distance of the center
of gravity G from the rear axle is b; see Table I for the
parameters used in this paper. The lateral forces at the front
and rear tires are denoted by FF and FR, respectively, and we
neglect the effects of the self-aligning moments of the tires.
The motion of the vehicle is described by three generalized
coordinates: the position coordinates xR and yR of the center
point R of the rear axle and the yaw angle ψ. The steering
angle γ is considered as time dependent parameter, an input
that we can assign.

In our model we consider constant driving speed V ,
namely, the longitudinal speed of the front wheel is kept
constant. This leads to the kinematic constraint:

ẋR cos(ψ + γ) + ẏR sin(ψ + γ) + lψ̇ sin γ = V . (11)

To derive the equations of motion of the vehicle, we apply
the Appell-Gibbs formalism (see [12], [13]), which requires
us to choose two so-called pseudo velocities. Here we choose
σ (the lateral velocity of the rear axle center point R) and ω
(the yaw rate), that is,

σ = −ẋR sinψ + ẏR cosψ , ω = ψ̇ . (12)

From (11,12) the generalized velocities can be expressed as

ẋR = V
cosψ

cos γ
− σ sin(ψ + γ)

cos γ
− l ω cosψ tan γ ,

ẏR = V
sinψ

cos γ
+ σ

cos(ψ + γ)

cos γ
− l ω sinψ tan γ ,

ψ̇ = ω .

(13)

Without going into details, the Appell equations become[
m/cos2 γ m(b+ l tan2 γ)

m(b+ l tan2 γ) JG +m(b2 + l2 tan2 γ)

] [
σ̇
ω̇

]
=

[
f1
f2

]
,

(14)

Fig. 5. Single track vehicle model.

where the right hand side can be expressed as

f1 =
FF

cos γ
+ FR −

m

cos γ

(
V − (l − b)ω sin γ

)
ω

+m
tan γ

cos2 γ

(
V sin γ − σ − l ω

)
γ̇ ,

f2 =
FF l

cos γ
− m

cos γ

(
bV + (l − b)σ sin γ

)
ω

+ml
tan γ

cos2 γ

(
V sin γ − σ − l ω

)
γ̇ .

(15)

The lateral tire forces FF and FR are calculated via the
brush tire model (see Appendix) as function of the side slip
angles αF and αR of the front and rear tires, which can be
determined based on vehicle kinematics:

tanαF = −σ + l ω

V cos γ
+ tan γ ,

tanαR =
σ cos γ

−V + (σ + l ω) sin γ
.

(16)

From the side slip angle of the rear wheel, the heading angle
can be calculated as θ = ψ − αR; see Fig. 5.

The system (13,14) with expressions (15,16) results in
5 first order nonlinear differential equations for the state
variables (xR, yR, ψ, σ, ω), controlled by the input γ that
shall be assigned by the controller; see (10) or the traditional
nonlinear controller designed below.

B. Traditional nonlinear controller

Here we construct a simple nonlinear feedback controller
that only utilize the lateral positions and the heading angles:

u = ky(yR1 − yR) + kθ
(

sin θ1 − sin θ
)
, (17)

(cf. Fig. 1), and we assign the steering angle according to

γ(t) = arctanu(t− τ) . (18)

TABLE I
VEHICLE PARAMETERS

Parameter name Value Unit
l wheelbase 2.57 m
b center of gravity position 1.54 m
m vehicle mass 1770 kg
JG vehicle mass moment of inertia 1343 kgm2

V longitudinal velocity 15 m/s
a tire-ground contact half-length 0.1 m
k lateral tire stiffness 2×106 N/m

256

Fig. 6. Stability charts in the (kθ, ky) plane. The colored curves represent
the theoretical stability boundaries for different values of the time delay. The
red cross indicates the gain parameters used when testing the controller; see
gray mesh in Fig. 7(a) and thin dotted curves in Fig. 7(b,c).

Here τ stands for the time delay that arises from communi-
cation, computation, state estimation, and actuation.

We remark that we derived the neural network-based con-
troller from human-driving data without taking into account
the time delay (as the actual value of the delay is not known),
but when applying the controller to steer the CAV the delay
still appears in the control loop, i.e.,

γ(t) = γ̂(t− τ) , (19)

where γ̂ is given by (10).
We investigate the linear stability of the traditional con-

troller (17,18) in terms of the gain parameters ky and kθ.
For simplicity, we focus on the scenario where the leading
vehicle is driving along the x-axis, that is, we substitute
yR1 ≡ 0 and θ1 ≡ 0 into (17). The closed-loop dynamics of
the following vehicle are described by (13,14,17,18) that can
be written into the form of a delay differential equation of a
neutral type. After the linearization around the equilibrium
(xR = V t, yR ≡ 0, ψ ≡ 0, σ ≡ 0, ω ≡ 0), the characteristic
function D(λ) of the resulting linear delay differential
equation can be determined analytically. The characteristic
equation D(λ) = 0 has infinitely many solutions for the
characteristic roots λ ∈ C. D(0) = 0 provides the stabil-
ity boundary ky > 0 for non-oscillatory stability loss. The
boundary related to the oscillatory stability loss can be
calculated from D(iΩ) = 0 via the D–subdivision method;
see [14]. These boundaries encapsulate a domain in the
parameter space where all characteristic roots have negative
real parts. In Fig. 6 linear stability chart are constructed in
the plane of the control gains kθ and ky for different values
of the delay τ as indicated. Observe that the shaded linearly
stable region shrinks as the time delay is increased.

IV. TESTING AND COMPARISON

In order to evaluate the performance of neural network-
based controller, we compare it to the traditional nonlinear
controller. We compare the “geometry” of the control laws
as well as the simulation performance when applying the
controllers to the model developed in Sec. III-A.

Fig. 7(a) compares the control law of neural network
controller (10,19) (colored surface) to the traditional con-
troller (17,18) (gray mesh) by plotting the steering angle
as a function of the lateral distance ∆y = yR1 − yR and

Fig. 7. Comparison between the control laws of the neural network-based
controller (colored surface in panel (a) and thick solid curves in panels
(b,c)) and the traditional nonlinear controller (gray mesh in panel (a) and
thin dotted lines in panels (b,c)). The gains for the traditional controller are
indicated by the red cross in Fig. 6.

the heading angle difference ∆θ = θ1 − θ. We plot slices
at ∆y = 0 and at ∆θ = 0 in Fig. 7(b) and (c), respectively.
For the other two features of the neural network, we set
the longitudinal distance to ∆x = xR1 − xR = 28 m and
the speed difference to ∆v = v1 − v = 0 (cf. (1)) that are
close to the average values observed during data collection.
For the traditional controller we use the gain parameters
kθ = 0.25 and ky = 0.005 1/m that ensure linear stability
even for τ = 0.8 s; see red cross in Fig. 6. We remark we
have sin θ1 − sin θ ≈ θ1 − θ in (1).

Panel (a) shows that the overall trend of the two surfaces is
similar, indicating that the trained controller follows a similar
logic as the traditional controller. Larger differences can be
observed between the surfaces for larger values of ∆y and
∆θ. Moreover, the curves in panels (b) and (c) reveal that
the neural network-based controller is less sensitive when the
lateral distance and heading angle difference are small and
is more “aggressive” when errors are large. This indicates a
strengths of the neural network-based approach: it is able to
capture the naturalistic nonlinearities in human steering. In
the meantime, the linear stability is ensured for the neural
network-based controller since for small deviations it applies
similar gains as the linearly stable traditional controller.

In order to illustrate how the controllers perform lane
changes in dynamic situations we utilize the mechanical
model (13,14) in numerical simulations with parameters
given in Table I. We let the controllers to steer the model of
the following vehicle. For the leading car’s trajectory, we use
data from a separate experiment. When applying the neural-
network based controller (10,19), we consider the constant
speeds v ≈ V = v1 = 15 m/s yielding ∆v = v1 − v = 0 and
the constant longitudinal distance ∆x = xR1 − xR = 28 m.
For the traditional nonlinear controller (17,18) we use the
gains kθ = 0.25 and ky = 0.005 1/m; cf. red cross in Fig. 6.

257

Fig. 8. Simulation results for the neural network and traditional controller with different time delays.

Indeed, we also include the time delay τ in the simulations
for both controllers.

Figure 8 compares the simulation results. The trajectories
are plotted for different time delays as indicated. In case of
the neural network-based controller the vehicle follows the
leader’s trajectory with good accuracy while larger deviations
are observed when applying the traditional controller, espe-
cially for larger delay values. That is, the neural network-
based controller outperforms the traditional controller and
also shows better robustness against the time delays. For the
neural network-based controller one may observe that the
heading angle is not well aligned with the lane direction
at the end section (after the second lane change). This is
likely caused by the fact that at this section the leading
vehicle drops its speed (as it reaches the end of the track),
that is, the constant speed and constant longitudinal distance
assumptions used in the simulations do not hold any more.

V. CONCLUSION

In this paper we trained a neural network-based controller
to control the motion of a connected automated vehicle
based on V2X information received from nearby vehicles.
We demonstrated that the trained controller can capture the
naturalistic nonlinear behavior of human drivers and it out-
perform a traditional nonlinear controller in our simulations
in terms accuracy and robustness against time delays in
the control loop. Hence, controllers can be improved in the
design stage by utilizing the main characteristics of control
laws learned from human data.

APPENDIX
In case of the brush tire model [15], the lateral tire force

can be given as functions of the tire slip angle α:

F (α) =

{
φ1 tanα+ φ2 sgnα tan2 α+ φ3 tan3 α, 0 ≤| α |< αcrit,

µFzsgnα, αcrit <| α |,
(20)

where the critical side-slip angle is αcrit = 3µ0Fz

2a2k . Here a
is the half-length of the tire-ground contact patch, k is the
distributed lateral stiffness of the tire, Fz is the vertical load
on the axle, µ and µ0 are the coefficients of friction for
sliding and rolling, respectively, and we have the coefficients

φ1 = 2a2k, φ2 = −
4a4k2

3µ0Fz

(
2−

µ

µ0

)
, φ3 =

8a6k3

9µ20F
2
z

(
1−

2µ

3µ0

)
.

(21)

ACKNOWLEDGEMENT

This research was supported by the Mobility Transforma-
tion Center at the University of Michigan and by the National
Research, Development, and Innovation Office of Hungary
under grant no. NKFI-128422. Dénes Takács would like to
thank the Rosztoczy Foundation for their generous support.

REFERENCES

[1] G. Orosz, J. Ge, C. He, S. Avedisov, W. Qin, and L. Zhang, “Seeing
beyond the line of sight - controlling connected automated vehicles,”
Mechanical Engineering Magazine, Dynamic System & Control, vol. 5,
no. 4, pp. 8–12, December 2017.

[2] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. Jackel, and U. Muller, “Explaining how a deep neural net-
work trained with end-to-end learning steers a car,” arXiv preprint
arXiv:1704.07911, 2017.

[3] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in 33rd AAAI Conference on Artificial
Intelligence, vol. 54, 2019, pp. 3387–3395.

[4] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang, “Learning polyno-
mials with neural networks,” in International Conference on Machine
Learning, 2014, pp. 1908–1916.

[5] S. Bae, D. Saxena, A. Nakhaei, C. Choi, K. Fujimura, and S. Moura,
“Cooperation-aware lane change maneuver in dense traffic based on
model predictive control with recurrent neural network,” in 2020
American Control Conference (ACC), 2020, pp. 1209–1216.

[6] M. A. Ashraf, J. Takedaa, and R. Toorisu, “Neural network based
steering controller for vehicle navigation on sloping land,” Engineering
in Agriculture, Environment, and Food, vol. 3, no. 3, pp. 100–104,
2010.

[7] G. Han, W. Fu, W. Wang, and Z. Wu, “The lateral tracking control for
the intelligent vehicle based on adaptive PID neural network,” Sensors,
vol. 17, no. 6, p. 10.3390/s17061244, 2017.

[8] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematics of Control, Signals, and Systems, no. 2, pp. 303–
314, 1989.

[9] A. Rangathan, “The Levenberg-Marquardt algorithm,” http://users-
phys.au.dk/jensjh/numeric/project/10.1.1.135.865.pdf, Aarhus Univer-
sity, Tech. Rep., 2004.

[10] J. Moreé, “The Levenberg-Marquardt algorithm: implementation and
theory,” Numerical Analysis, pp. 105–116, 1978.

[11] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by chosing initial values of the adaptive weights,” in
International Joint Conference on Neural Networks, 1990, pp. 21–26.

[12] F. Gantmacher, Lectures in Analytical Mechanics. MIR Publishers,
1975.

[13] V. De Sapio, Advanced Analytical Dynamics: Theory and Applications.
Cambridge University Press, 2017.

[14] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic
Functions. Longman, 1989.

[15] H. Pacejka, Tire and Vehicle Dynamics. Elsevier, 2012.

258

