Acoustic Characterization of Dysarthria in Children with Cerebral Palsy: Exploring Age-Related Effects

Anja Kuschmann1 & Frits van Brenk2

1Department of Speech and Language Therapy, University of Strathclyde, Glasgow, UK
2Department of Communicative Disorders and Sciences, University at Buffalo, USA

Introduction

- **Dysarthria** most frequent communication impairment in children with CP [1]
 - Neurologic speech disorder that reflects abnormalities in:
 - Strength
 - Speed
 - Range
 - Accuracy of movement required for:
 - respiration
 - phonation
 - velopharyngeal function
 - articulation

- Generally assumed that at least one – but often all - speech subsystems are affected
- **Speech characteristics** include shallow, irregular breathing, harsh and/or breathy voice, hypernasality, and imprecise articulation [2]

BUT: subjective perceptual evaluations of speech characteristics dominate in children with dysarthria

- Acoustic analyses to quantify speech characteristics in CP less prevalent, but interesting for **automated classification**, more objective assessment, and monitoring of effectiveness speech therapy
- Search for acoustic markers in CP speech is ongoing and gaining interest [3]
- Unclear to what extent acoustic quantification is influenced by the developing speech motor system

PURPOSE OF THE STUDY: To evaluate age-related effects in acoustic markers of dysarthria in children with CP

Methods: Participants

- 8 CP, 8 TD | 4 girls, 12 boys | 7 to 18 years
- **CP type (dysarthria severity):**
 - 3 spastic (1 mild, 1 moderate, 1 severe)
 - 3 dyskinetic (2 mild, 1 moderate)
 - 2 ataxic (1 moderate, 1 severe)

Methods: Materials

- Acoustic analyses conducted on:
 - 50 single words (CSIM)
 - 20 short sentences (SENT)
 - Monologue task (MONO)
 - Story retelling task (RETEL)

Methods: Measures

- Across all four speech tasks, suitable voiced fragments for acoustic analyses were quasi-automatically identified, labelled, extracted, and concatenated using Praat
- Acoustic measures were quasi-automatically obtained
- *Measures reflect features of different speech subsystems:*
 - **Sound Pressure Level** (SPL: Mean, SD, 90th-10th percentile)
 - **Fundamental Frequency** (F0: Mean, SD, 90th-10th percentile)
 - **Second Formant Interquartile Range** (F2 IQR; 3rd quartile – 1st quartile)
 - **Cepstral Peak Prominence (CPP)** and Smoothed Cepstral Peak Prominence (CPPS)

Methods: Statistical Analyses

- Two-way ANOVAs performed to compare acoustic measures across
 - Groups (CP, TD)
 - Speech tasks (CSIM, SENT, RETELL, MONO)
- Subsequent subgroup analyses for **Age**
 - Younger: 7-8 years
 - Older: 13-18 years

Results: Group comparisons across Tasks

- Focus on 3 measures associated with different speech subsystems: SPL range, F0 SD, CPP

SPL range

- A number of acoustic measures differentiated between CP and TD groups, but only when pooled across tasks

Results: Subgroup analyses for Age

- Focus on 3 measures associated with different speech subsystems: SPL range, F0 SD, CPP

Methods: Participants

- Group comparisons of F0 SD with Age as factor, pooled over speech tasks

Notable results:

- F0 SD larger in CP vs TD
- F0 SD larger in Young vs Older

Methods: Materials

- Group comparisons of CPP with Age as factor, pooled over speech tasks

Notable results:

- CPP larger in CP vs TD
- CPP larger in Young vs Older

Methods: Measures

- Group comparisons of F0 SD with Age as factor, pooled over speech tasks

Summary & Conclusion

A range of acoustic measures are suited to capture differences in speech features in children with CP and their TD peers, across different speech subsystems:

- Higher values for F0 and SPL measures in the speech of children with CP reflects greater variation, most likely due to reduced respiratory and phonatory control
- CPP and CPPS also higher in this group, suggesting voice of the children with CP had a hoarse quality to it

Subgroup analyses:

- Age influences acoustic outcome measures, with younger children’s speech consistently yielding higher values
- Children’s speech changes as system matures and indicates that, even though CP is a permanent condition, it is not a static one and speech difficulties and its manifestations are likely to change over time
- However: some acoustic measures may be more suited than others to detect differences between groups in older children, i.e., more sensitive predictors of acoustic differences once speech system has matured

Age is a factor to be considered when selecting acoustic markers to assess speech performance in children with CP

References