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ABSTRACT 

Size-dependent elasticity and piezoelectricity variational principles are developed based 

on recent advances in couple-stress theory and the introduction of an engineering mean 

curvature vector as energy conjugate to the couple-stresses.  It is shown that size-

dependent piezoelectricity, sometimes referred to as flexoelectricity, is a straightforward 

extension of consistent couple-stress elasticity, with electric field and mechanical mean-

curvature being thermodynamically coupled.  These new variational formulations provide 

a base for developing couple-stress and size-dependent piezoelectric finite element 

approaches.  By considering the elastic portion of the total potential energy functional to 

be not only a function of displacement, but of an independent rotation as well, we avoid 

the necessity to maintain C
1
 continuity in the finite element methods (FEM) that we 

develop here.  The result is a mixed formulation, which uses Lagrange multipliers to 

constrain the rotation field to be compatible with the displacement field.  Interestingly, 

this formulation has the noteworthy advantage that the Lagrange multipliers can be 

shown to be equal to the skew-symmetric part of the force-stress, which otherwise would 

be cumbersome to calculate.  Creating new consistent couple-stress and size-dependent 

piezoelectric finite element formulations from these variational principles is then a matter 

of discretizing the variational statement and using appropriate mixed isoparametric 

elements to represent the domain of interest.  The new formulations are then applied to 

many illustrative examples to bring out important characteristics predicted by consistent 

couple-stress and size-dependent piezoelectric theories. 



1 
 

CHAPTER ONE 

 

1 INTRODUCTION 

It is well known that classical continuum mechanics cannot predict the behavior of 

materials for very small length scales.  While molecular mechanics theories have 

certainly enjoyed some success, these approaches are only computationally feasible for 

collections of particles of quite limited spatial and temporal extent.  This is the true 

motivation for developing a size-dependent continuum theory, such as the fully-

consistent linear elastic couple-stress theory that provides the foundation for the work 

here.  Recent advances in couple-stress theory have resolved many of the long-standing 

problems that previous size-dependent continuum theories have had.  In particular, some 

of the more important discoveries are that of the skew-symmetric nature of the couple-

stress tensor and identification of mean curvature tensor as the correct second measure of 

deformation, as opposed to strain-gradient or other kinematic quantities that have been 

advocated previously.  Furthermore, in this fully-consistent skew-symmetric couple-

stress theory, for the isotropic case, there is a single new material property,  , with the 

dimensions of length.  The inclusion of couple-stress effects then becomes important for 

problems having characteristic geometry or loading on the order of   or smaller. 

 

The idea of a higher order continuum theory that included couple-stress first came from 

Voigt (1887), but the actual formulation was developed later by the Cosserats (1909) in 
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the early 20
th

 century.  Their original theory considered displacement and rotation to be 

separate fundamental kinematic quantities.  This assumption is perfectly acceptable for 

approximate beam and plate theories, which represent one and two-dimensional structural 

elements embedded in a higher three-dimensional space.  However, such is not the case 

for a three-dimensional continuum and a full justification of this independence of 

displacement and rotation fields remains unresolved to this day. 

 

After receiving little attention for many years the Cosserat theory was revisited, but 

instead of considering rotation independent of displacement, it was instead constrained to 

be compatible with the displacement field.  These new constrained theories, which are 

more consistent with classical continuum approaches, became known as couple-stress 

theories.  The original couple-stress theories, which came from Toupin (1962), Mindlin 

and Tiersten (1962), and Koiter (1964), suffer from indeterminacy of the spherical part of 

the couple-stress tensor, as well as the inclusion of the body couple in the relation for the 

force-stress tensor.  Consequently, these theories have been in the past referred to as 

inconsistent or indeterminate couple-stress theories. 

 

Subsequent theories along these lines involving couple-stress are referred to as second 

gradient and strain-gradient theories, which mainly differ in the measures of deformation 

that are considered.  The measures of deformation consist of various combinations of 

strain, curvature and strain-gradient.  In these theories, the gradient of the rotation vector 

is typically considered to be the curvature tensor.  The true underlying issue with these 
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theories, however, is that the proposed measures of deformation are not the correct 

energy conjugate pair of the couple-stress tensor.   

 

Soon after the development of the original couple-stress theories people began to develop 

another branch of higher order theories that more closely resembled the Cosserat theory.  

The idea of microrotation, a field independent of displacement, was again considered to 

be a fundamental kinematic quantity in an attempt to remedy the aforementioned issues 

with inconsistent couple-stress theories.  Mindlin (1965, 1968), Eringen (1968) and 

Nowacki (1986) were the first to revive these Cosserat theories that now are more 

commonly referred to as micropolar theories.  Although these theories have been applied 

broadly, the inclusion of microrotation as a kinematic quantity is extraneous and does not 

represent a true continuum mechanics concept.  If the original couple stress theories 

(Toupin, 1962; Mindlin 1962; Koiter, 1964) had not encountered the obstacles mentioned 

above, then perhaps there would have been no need to revert to the Cosserat ideas, which 

stem from the consideration of lower-dimensional structural elements (e.g., beams, 

plates, shells) embedded in three-dimensional space.  In these cases, independent 

rotational degrees of freedom are perfectly justified.  The difficulty for micropolar 

theories comes in attempting to embed a full three-dimensional continuum with 

independent rotations into three-dimensional space. 

 

Recently a new couple-stress theory has been developed that resolves all issues that prior 

couple-stress theories have had.  This new fully-determinate, consistent couple-stress 
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theory (Hadjesfandiari and Dargush, 2011) uses virtual work and admissible boundary 

condition considerations to reveal the skew-symmetric nature of the couple-stress tensor 

and shows that mean curvature is in fact the correct energy conjugate measure of 

deformation.  The variational formulations presented in the current thesis will be based 

upon this new consistent theory.  Although this consistent couple stress theory uses some 

elements from Mindlin and Tiersten (1962) and Koiter (1964), it cannot be taken as a 

special case; in fact, for isotropic materials, the new consistent theory is explicitly 

excluded based upon their definitions of the permissible material parameter ranges.  

Rather, these indeterminate theories can be considered as an initial inconsistent version of 

this final couple stress theory.  Mindlin and Tiersten (1962) and Koiter (1964) used the 

gradient of the rotation as the curvature tensor.  Unfortunately, this is not the proper 

measure of deformation energetically conjugate to couple stresses, which then creates 

indeterminacy in the spherical part of the couple-stress tensor, as mentioned above.  For 

more explanation, see Hadjesfnadiari and Dargush (2013), especially Appendix A.  

Hadjesfandiari (2013) also derives the skew-symmetric character of the couple stresses 

purely from tensorial arguments. 

 

The number of analytical solutions available for couple-stress and micropolar theories 

within the context of elasticity is very limited and therefore numerical methods must be 

explored.  Within the field of solids and structures, the finite element method (FEM) is 

the most widely used numerical method and accordingly many couple-stress and 

micropolar FEM formulations have been developed, including those by Hermann (1983), 

Wood(1988), Providas and Kattis (2002), Padovan (1978), Shu et al. (1999) and 
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Amanatidou and Aravas (2001).  All of these are mixed formulations that include 

additional degrees of freedom for rotation to simplify the problem, such that only C
0
 

continuity is required.  The previous formulations mainly differ in which specific theory 

they are based upon, all of which have various flaws that were mentioned previously, as 

well as how the rotational degrees of freedom are constrained.  Chapter 2 provides all of 

the detail for consistent couple stress elasticity, along with the corresponding variational 

statements, weak forms, finite element methods and illustrative two-dimensional 

applications.   

Over the last half-century, piezoelectric phenomena have had a profound impact on the 

development of many technologies.  More recently, however, there is a push to develop 

technology on increasingly minute length scales, where it has been discovered that 

classical piezoelectric theory is not sufficient for describing all of the observed linear 

electromechanical coupling behavior.  For modeling of small-scale electromechanical 

phenomena, a size-dependent piezoelectric theory, in some forms known as 

flexoelectricity, is necessary.  These proposed theories are higher order continuum 

theories that include coupling between a higher order measure of deformation, such as 

strain-gradient or curvature, and the electric polarization field.  Interestingly, it is shown 

both experimentally and theoretically that these size-dependent piezoelectric effects can 

occur in classically non-piezoelectric materials and, in particular, centrosymmetric cubic 

and isotropic materials. 
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Classical piezoelectricity describes the linear electromechanical coupling between strain 

or stress and the polarization within an anisotropic dielectric body.  The groundbreaking 

experimental work of the Curie brothers established the foundation for piezoelectricity 

(Curie and Curie, 1880), which was subsequently placed on a firm theoretical base by 

Voigt (1910).  The well-known monograph by Cady (1964) provides a comprehensive 

review of developments through the middle of the twentieth century.  Since then 

countless technologies have taken advantage of piezoelectric phenomenon, from high-

tech instrumentation to everyday commercial products.  

 

The idea of size-dependent piezoelectric effects was first discussed in Kogan (1964), 

Meyer (1969) and Tagantsev (1986) and was eventually coined “flexoelectric” effects.  

More recently size-dependent piezoelectric effects and electromechanical coupling 

effects in centrosymmetric bodies have been studied by numerous researchers (e.g., 

Mishima et al., 1997; Shvartsman et al., 2002; Buhlmann et al., 2002; Cross, 2006; 

Maranganti et al., 2006; Harden et al., 2006; Zhu et al., 2006; Sharma et al., 2007; 

Majdoub et al., 2008; Maranganti and Sharma, 2009; Resta, 2010; Baskaran et al., 2011; 

Catalan et al., 2011).  With the increasing development of micro- and nano-scale 

technology, there is a need to model this size-dependent piezoelectric behavior, which 

can have useful effects for small characteristic geometries and cannot be captured using 

classical piezoelectric theory. This size-dependent behavior can be incorporated by 

considering that besides strain, the polarization in a dielectric body may be coupled to 

higher order measures of deformation as well.  It is logical when formulating a size-

dependent piezoelectric theory to consider a size-dependent elasticity theory and then 
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introduce electromechanical coupling via thermodynamic considerations.  Wang et al. 

(2004) consider the gradient of rotation as the higher order measure of deformation, 

which then is coupled to the polarization.  Others have considered strain gradients and 

various forms of curvature to be coupled to the electric polarization (Tagantsev, 1986; 

Sharma et al., 2007; Eliseev et al. (2009).  The previous theories suffer either from 

various incompatibility with the underlying Maxwell equations of electromagnetics 

(Hadjesfandiari, 2014) or with inherent indeterminacies due to the dependence on 

original couple-stress elasticity theories, as first developed by Toupin (1962), Mindlin 

and Tiersten (1962) and Koiter (1964). 

 

As noted above, the consistent couple-stress theory that has been developed recently 

remedies all of the issues that prior size-dependent elasticity theories had (Hadjesfandiari 

and Dargush, 2011, 2013).  In this new theory, the mean curvature tensor is shown to be 

the correct higher order measure of deformation, while the skew-symmetric nature of the 

couple-stress tensor is revealed, making the theory fully determinate.  More recently, in 

Hadjesfandiari (2013), a new consistent size-dependent piezoelectric theory is advanced 

by using the discoveries regarding size-dependent elasticity.  This new theory has 

coupling between the skew-symmetric mean curvature tensor and the polarization field, 

which allows for piezoelectric behavior even in centrosymmetric materials.  Couple-

stress effects are also inherently present in this theory (Hadjesfandiari, 2013). 
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In order for technology to take full advantage of piezoelectric phenomena, numerical 

methods for accurate modeling must be developed.  Similar to most continuum theories, 

the only available analytical solutions for piezoelectric problems are based on very 

simple geometry and boundary conditions.  To date, many finite element based 

formulations have been developed for modeling classical piezoelectricity.  Benjeddou 

(2000) gives an excellent review of the advances in finite element approaches to 

modeling piezoelectric structural elements.  Other notable works on finite element 

formulations for classical piezoelectricity include those of Allik and Hughes (1970) for 

applications to vibration, Hwang et al. (1993) for modeling of sensors and actuators, and 

Gaudenzi and Bathe (1995) for general continua analysis. 

 

Despite the many efforts to advance numerical methods used to model and simulate 

classical piezoelectricity, very little work has been done in developing numerical methods 

to model size-dependent piezoelectric effects.  Consequently, in this thesis, a mixed finite 

element (FE) formulation is developed that can be applied to solve planar size-dependent 

piezoelectric problems.  Because much work has already been done to develop finite 

element formulations for classical piezoelectric effects that can only exist in non-

centrosymmetric anisotropic materials, we instead restrict ourselves to centrosymmetric 

materials.  Most interestingly, higher order size-dependent piezoelectric effects can still 

be present for such materials, which in turn suggest many potential new applications at 

the micro- and nano-scale.   
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The formulation presented in this thesis is based on the consistent size-dependent 

piezoelectric theory of Hadjesfandiari (2013), while the corresponding finite element 

formulation can be considered an extension of the consistent couple-stress variational 

finite element approach developed in chapter 2 of the present work.  This new size-

dependent piezoelectric FE formulation is based on the variational problem that is 

derived from considering the stationarity of a total electromechanical enthalpy functional.  

The electric field is coupled to the mean curvature within the electromechanical enthalpy, 

which allows for size-dependent piezoelectric effects.   By considering the rotation to be 

an additional field variable and then enforcing rotation-displacement compatibility via 

Lagrange multipliers, the coupled size-dependent piezoelectricity problem is reduced to a 

   variational problem.  Again these Lagrange multipliers conveniently are equal to the 

skew-symmetric portion of the stress tensor.  Details of the governing equations, 

variational methods and finite element formulations are provided in chapter 3. 

 

Throughout this work, standard tensor index notation will be used where subscripts  ,  , 

 , and   will range from 1 to 3 representing Cartesian coordinates  ,  , and  .   Repeating 

of indices implies summing over all values for that index.  Additionally, εijk is the Levi-

Civita alternating symbol and δij is the Kronecker delta.  When formulating finite element 

methods, vector notation is used for convenience, where bold face characters will be used 

to represent vectors and matrices. 
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CHAPTER TWO 

 

2 COUPLE STRESS SIZE-DEPENDENT ELASTICITY 

2.1 Overview of Linear Couple Stress Theory 

In this section, a brief overview is provided of the important concepts and relations in the 

recent consistent couple-stress theory for solids.  The focus is primarily on the relations 

that are pertinent to the development of the couple-stress finite element formulation 

presented here.  For a more detailed discussion on the theory, the reader is referred to 

Hadjesfandiari and Dargush (2011). 

 

From couple-stress theory, a general three dimensional body under quasistatic conditions 

is governed throughout its volume   by the following equilibrium equations coming from 

linear and angular momentum balance, respectively, 

        ̅         (1) 

                     (2) 

where     and     are the force-stresses and couple-stresses, respectively, while  ̅  

represents applied body forces.  The consideration of body couples is shown to be 

redundant in Hadjesfandiari and Dargush (2011).  All body couple systems can be 

replaced by an equivalent system of body forces and surface tractions. 
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In addition, the body is subject to boundary conditions on the surface  .  Let us assume 

that the natural boundary conditions take the form 

     ̅   on          (3a) 

    ̅    on         (3b) 

while the essential boundary conditions can be written 

    ̅    on         (4a) 

    ̅    on         (4b) 

Here    and    represent the force-tractions and moment-tractions, respectively, while    

and    are the displacements and rotations, respectively, and the overbars denote the 

specified values.  For a well-defined boundary value problem, we should have   ⋃   

 ,   ⋂     and   ⋃    ,   ⋂    . 

 

From the theoretical development in Hadjesfandiari and Dargush (2011), the normal 

component of  ̅  is zero and the normal component of  ̅  cannot be specified.  In 

general, the moment traction    has only a bending effect on the boundary surface, 

whether or not this quantity is specified.  
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In general, the relations between force-stress and force-traction, and couple-stress and 

moment-traction can be written 

              (5a) 

              (5b) 

where    represents the outward unit normal vector to the surface  .   

 

Regarding the kinematics, we may take the gradient of the displacement field and split it 

into its symmetric and skew-symmetric parts, such that 

 (   )      
 

 
(         )     (6a) 

           
 

 
(         )     (6b) 

where the parenthesis around the indices represent the symmetric part of the tensor, while 

the square brackets indicate the skew-symmetric part of the tensor.  Here we recognize 

    as the linear strain tensor and     as the rotation tensor, under infinitesimal 

deformation theory.  Because     is a skew-symmetric tensor with three independent 

values, it can be represented by an axial or pseudo-vector.  According to the right hand 

convention, the rotation vector dual to     should be defined as follows: 

   
 

 
             (7a) 

Then, the relationship between displacement and rotation can be expressed as 
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                                                                       (7b) 

 

Taking the gradient of the rotation field and only considering the skew-symmetric 

contribution, we are left with the mean curvature tensor 

           
 

 
(          )     (8) 

 

Because this mean curvature tensor is skew-symmetric, it can be represented as a polar 

vector through the following duality relation 

   
 

 
             (9) 

 

From classical linear elasticity theories we know that the strain contributes to the overall 

elastic potential energy, however in Hadjesfandiari and Dargush (2011) it is shown that 

mean curvature is the second suitable measure of deformation, which also contributes to 

the elastic potential energy.  Indeed, it is shown that the mean curvature tensor is the 

energy conjugate quantity to the couple-stress tensor for a consistent couple-stress theory.  

Other past theories have concluded that the strain-gradient or other higher order 

kinematic quantities should be considered.  However, this has been shown in 

Hadjesfandiari and Dargush (2011) to be incorrect by considering admissible boundary 

conditions and virtual work applied to an arbitrary continuum material element.  The 
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important consequence of this discovery is the skew-symmetric nature of the couple-

stress tensor, which makes the theory fully determinate. 

 

Because the couple-stress tensor is skew-symmetric, it also has a corresponding dual 

polar vector   , where 

    
 

 
             (10) 

 

From (2), the skew-symmetric portion of the force-stress tensor is related to the couple-

stress by 

               
 

 
(         )    (11) 

Naturally, this skew-symmetric portion can be represented as a pseudo vector    as well, 

such that 

   
 

 
               (12a) 

and 

                  (12b) 

 

For force-stress, we have the obvious decomposition 

     (  )            (13a) 
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which, after substituting Eq. (12b), may be written 

     (  )             (13b) 

Furthermore, substituting (13b) into (1) and (12a) into (2) yields the following alternate 

relations for linear and angular momentum balance 

 (  )              ̅        (14a) 

                   (14b) 

 

Based upon the development in Hadjesfandiari and Dargush (2011) we may write the 

elastic energy density for a linear, isotropic couple stress material as 

 (   )  
 

 
            

 

 
                                                (15) 

in terms of the tensorial strain     and mean curvature    .  In (15),       is the standard 4
th

 

order constitutive tensor used for classical linear elasticity theories, which in the isotropic 

case depends on two elastic constants, for example, the Lamé constants   and  .  

Meanwhile,       is the 4
th

 order linear couple-stress constitutive tensor. 

 

In the present work, we will also deal with energy conjugate mean curvature and couple-

stress polar vectors.  Consequently, we define the engineering mean curvature   , such 

that 

                         (16) 
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With this definition, the components of the engineering mean curvature, 1k , 2k , and 3k , 

at any point P, are the mean curvature of planes parallel to the 2 3x x , 3 1x x
 
and 1 2x x -

planes, respectively, at that point. 

 

For the elastic energy density, we may write 

 (   )  
 

 
            

 

 
           (17) 

with constitutive tensor    . 

 

From the internal energy density equation (15), the constitutive relations for symmetric 

force-stress and couple-stress can be derived, respectively, as follows: 

 (  )  
  

    
                                                                 (18) 

    
  

    
                                                                 (19a) 

while the vector form of couple stress can be related to the internal energy from (17) by 

   
  

   
                                                                    (19b) 

and the two couple-stress constitutive tensors are related by 

                                                                            (20) 
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Equation (19b) tells us that the couple-stress vector    and engineering mean curvature 

vector    are indeed the correct energy conjugate vector quantities.  This form is more 

convenient than in Hadjesfandiari and Dargush (2011), where use of the dual curvature 

vector    requires introduction of a factor of minus two within the energy conjugacy 

relations.  This is the underlying reason for introducing    here, as the engineering mean 

curvature vector.  Furthermore, the components of    are consistent with the usual 

mathematical definition of mean curvatures of the three orthogonal planes oriented with 

the global axes at a point. 

 

From Hadjesfandiari and Dargush (2011), only one additional material property, η, is 

necessary to form the couple stress constitutive tensor for an isotropic material.  For the 

simple case of linear elasticity in an isotropic material, we have 

        (             )    (21) 

                  (22) 

 

Interestingly, we find that there is a characteristic length   associated with such materials, 

defined by the relationship 

 

 
                                                                   (23a) 

for isotropic materials, and 
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                                                          (23b) 

for cubic crystals with centrosymmetry.  It is expected that couple-stress effects, and in 

the following chapter, size-dependent piezoelectric effects, are only relevant for length 

scales comparable to  . 

 

2.2 Couple Stress Variational Formulation 

The goal here is to develop a variational formulation for a couple-stress solid that has 

linear and angular momentum balances, as well as the natural boundary conditions as its 

resulting Euler-Lagrange equations and only requires C
0
 continuity of the field variables.  

In order to relax continuity requirements, we consider rotation to be independent from 

displacement and then enforce rotation-displacement compatibility through the use of 

Lagrange multipliers.  It is shown that this formulation has the interesting advantage that 

these Lagrange multipliers are equal to the skew-symmetric stress, which otherwise 

would be difficult to calculate.  Because of these aforementioned advantages, this 

formulation is a very convenient starting point for developing numerical methods, 

specifically FEM formulations (Bathe, 2006; Zienkiewicz and Taylor, 2000), such as the 

one to be presented here. 

 

Consider the following total energy functional that includes the internal elastic energy 

and the potential energy from applied forces 
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∫              
 

 
 

 
∫              
 

     ∫    ̅      ∫     ̅    ∫    ̅ 
     

    

 

(24) 

    

                 

 

Recall that the overbars denote applied forces and moments, which consequently are not 

subject to variation. 

 

In the couple stress continuum problem, both strain and curvature are functions of the 

displacement field, such that 

   ( ( )  ( )   )     (25) 

We now can extremize this functional by taking the first variation and setting that equal 

to zero.  However, this would require C
1
 continuity of the displacement field. 

 

Alternatively, we may consider independent displacements and rotations and then enforce 

the rotation-displacement compatibility constraint (7b) by incorporating Lagrange 

multipliers into our original energy functional prior to taking the variation.  Thus, we may 

define a new functional 

 ̃   ̃( ( )  ( )      )     (26) 

where 
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 ̃    ∫   (            )   
 

                                               (27) 

and finally 

 ̃  
 

 
∫              
 

 
 

 
∫              
 

 ∫  (            )   
 

 ∫    ̅      ∫     ̅    ∫    ̅ 
     

    

 

(28) 

where the components of    are the Lagrange multipliers.  After some maneuvers, we will 

show that these Lagrange multipliers    are equal to the skew-symmetric stress vector   . 

 

We now consider the stationarity of this functional in order to find the static equilibrium 

solution by equating the first variation to zero.  With a bit of mathematical manipulation, 

we will show that the solutions emanating from this process are identical to the solutions 

that satisfy the governing partial differential equations for our system, as well as the 

natural boundary conditions.  In other words, the resulting Euler-Lagrange equations 

represent linear momentum balance, angular momentum balance, rotation-displacement 

compatibility, and both the force- and moment-traction boundary conditions. 

 

For the stationarity of  ̃, we enforce its first variation in (28) to be zero, that is 

  ̃    
  ̃

   
    

  ̃

   
     

  ̃

   
                                                (29)

 

This can be written as  



21 
 

  ̃  ∫(               )        
 

 ∫                
 

  ∫        
 

 ∫   (            )   
 

 ∫     ̅      ∫      ̅    ∫     ̅ 
     

      

 

(30) 

where the symmetric character of       and       has been used to simplify the first and 

second terms.  Considering the product rule we can rewrite the first two integrals in (30), 

such that 

  ̃  ∫[(               )   ]     
 

 ∫ [(               )
  

  ̅ ]       
 

 ∫(           )  
   

 

 ∫ [(        )  
    ]       

 

 

 ∫   (            )   
 

  ∫      ̅    ∫     ̅ 
    

     

 

(31) 

 

Now we apply the divergence theorem to the first and third volume integrals and obtain 

the relation 

  ̃  ∫ [(               )     ̅]      
  

 ∫ [(               )  
  ̅ ]       

 

 ∫ [            ̅ ]   
  

   ∫ [(        )  
    ]       

 

 ∫   (            )     
 

 

 

(32) 

where the conditions       on    and       on    
have been used.   
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Because the variations    ,    , and     are independent and arbitrary in the domain   

and the boundary surfaces    and   , each individual term in the integrals must vanish 

separately.  Therefore, we have 

(               )  
  ̅         in                                                 

  
(33) 

(        )  
             in                                                        

   
(34) 

   
 

 
              in                                                         (35) 

  ̅  (               )         on   
                                             

(36) 

 ̅                    on                                                           
 
(37) 

Equations (33) and (34) are the equilibrium equations (1) and (2), where 

 (  )          
                                                                             

(38) 

            
                                                                             

(39) 

                                                                                       
(40) 

                                                                           
(41) 

By comparing (41) and (12a), we obtain 

            in  
                                                              

(42) 
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This result is of importance theoretically and also because calculating the skew-

symmetric stress otherwise would be a non-trivial task, involving higher order 

derivatives. 

 

Meanwhile, equations (36) and (37) yield the natural boundary conditions (3a) and (3b), 

respectively. 

 

We have now shown that the variational principle associated with the stationarity of (28) 

is valid for couple stress isotropic elasticity.  The solutions obtained from (29) will satisfy 

both linear and angular equilibrium, as well as the natural boundary conditions.  

Furthermore, the Lagrange multiplier vector was shown to be equal to the skew-

symmetric stress vector.  Note that the formulation developed here is in terms of the 

vector forms of rotation and skew-symmetric stress.  This is for convenience and 

uniformity of variables; however, we could also consider the same type of formulation in 

terms of the respective tensor form of these variables. 

 

2.3 Couple Stress Finite Element Formulation 

In order to take full advantage of the recent advances in couple-stress theory reviewed 

here, numerical methods must be explored.  Here we develop a FEM formulation that 

will include couple-stress effects. 
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For the purpose of simplifying calculations and programming, Voigt notation is used.  

This means that the strain,  , can be represented by a vector rather than a second order 

tensor, and the constitutive tensor,  , can be represented by a two-dimensional matrix 

rather than a fourth order tensor.  For the two-dimensional, plane-strain, linear, isotropic 

problems that we will explore here we then have the following relations 

   [

   

   

   

]   

[
 
 
 
 

 

   

  
   

  

   

  
 

   

  

 

]
 
 
 
 

     (43) 

  
 (   ) 

(   )(    )

[
 
 
 
  

 

   
 

 

   
  

  
    

 (   )]
 
 
 
 

         (44) 

where    is the component of displacement in the  -direction and    is the component of 

the displacement in the  -direction.  Additionally,   is the Young’s modulus, and   is the 

Poisson’s ratio.  For plane-stress problems the only thing that will change is   (Bathe, 

2006; Zienkiewicz and Taylor, 2000). 

 

For planar problems, the engineering mean curvature in vector form can be written in 

terms of the one out of plane component of rotation explicitly as  

   [
  

  
]   [ 

 
  

  
 

  

  

 ]                                 (45) 
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where       and the couple-stress constitutive matrix for a linear isotropic material is 

    [
  
  

]              (46) 

We now reconsider the variational principle developed in the preceding section.  In 

vector notation we have 

  ̃    
  ̃

  
   

  ̃

  
    

  ̃

  
        (47) 

where 

 ̃  
 

 
∫        
 

 
 

 
∫         
 

∫ (         )       
 

    

 ∫    ̅     ∫    ̅    ∫    ̅
     

          (48) 

 

This mixed formulation has additional degrees of freedom when compared to a pure 

displacement based formulation, namely rotation and skew-symmetric stress, but only 

requires C
0
 continuity for displacement. 

 

Now consider discretizing our domain into a finite number of elements.  In particular 8-

node quadratic elements are used in this formulation.  The reason for not considering 

simpler four node elements is that the linear elements have increased difficulty in terms 

of maintaining rotation-displacement compatibility when compared to higher order 

elements. 
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Figure 1 shows a standard 8-node isoparametric quadrilateral master element.  This 

element has natural coordinates represented by   and  , with values for each element 

ranging from -1 to +1 in either direction.  In the global coordinate system, here 

represented in two dimensions by Cartesian coordinates   and  , our element can take on 

any arbitrary shape so long as the distortion of the geometry is not too extreme (Bathe, 

2006; Zienkiewicz and Taylor, 2000). 

 

 

Fig. 1.  General two-dimensional body and 8-node isoparametric master element 

 

Standard serendipity quadratic shape functions   (Bathe, 2006; Zienkiewicz and Taylor, 

2000) are used in this formulation, where for completeness of presentation, 
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  (49) 

 

These same shape functions   are used to interpolate both the geometric coordinates of 

the element as well as the displacement and rotation field variables within the element.  

This means that we represent the geometry of an arbitrary shaped element in terms of the 

natural coordinates   and   via the following relations: 

    ̂      (50a) 

    ̂      (50b) 

where  ̂ and  ̂ are the global coordinate values of nodes 1 through 8 for any particular 

element.  We can then use these same shape functions to approximate the unknown 

displacement and rotation fields as follows: 

     ̂       (51a) 

     ̂       (51b) 

    ̂      (51c) 
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with similar relations to represent the corresponding variations.  In general the hat 

notation is used to represent vectors containing quantities at nodes 1 through 8.  For 

example,  ̂ is a vector of length 8 containing the nodal values of planar rotation for a 

particular element. 

 

For the displacements and rotations on the boundaries    and   , we use surface 

interpolation functions, such that 

    
    ̂        (52a) 

    
    ̂       (52b) 

   
    ̂      (52c) 

For a 2-d body these surface shape functions are only one-dimensional in terms of the 

natural coordinates.  The surface shape functions we use here are 

  
  [

 

 
(   )  

 

 
(    )

 

 
(   )  

 

 
(    )

    

]          (53) 

 

Next we replace the strains and curvatures in (48) with approximate discrete 

representations in terms of displacements and rotations.  To do this we must introduce 

new matrices, the strain-displacement matrix,   , such that 

     ̂                          (54) 
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the curvature-rotation matrix,   , such that 

     ̂                (55) 

and finally the curl-displacement matrix, such that 

           ̂          (56) 

 

For the planar problems we consider in this thesis, we can write out these   matrices 

explicitly as follows: 

    

[
 
 
 
 
   

  
 

 
   

  

   

  

   

  

           

   

  
 

 
   

  

   

  

   

  ]
 
 
 
 

    (57a) 

    [
 

   

  

   

  

         
 

   

  

   

  

 ]           (57b) 

       [ 
   

  

   

  
  

   

  

   

  
 ]                                   (57c) 

Here    is a matrix of size [3x16],    is of size [2x8], while the matrix       is of size 

[1x16].  Note that    and       operate on an extended displacement vector that includes 

both   and   components.  When considering (57a) and (57c), we have 

 ̂    ̂   ̂      ̂   ̂    ̂   ̂                                              (58) 
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In all cases, the   matrices above are functions of the first derivatives of our shape 

functions with respect to global Cartesian coordinates   and  .  Of course, in order to 

obtain derivatives of the shape functions with respect to global coordinates, we first take 

derivatives with respect to natural coordinates,   and  , and then multiply by the inverse 

of the Jacobian,  , where 

   [ 

  

  

  

  
  

  

  

  

 ]      (59) 

 

Finally, we must also consider the discrete approximation of the skew-symmetric stress 

pseudo vector.  For 2-d problems this vector actually simplifies to one component in the 

out of plane direction.  Further simplifying matters, we need only C
-1 

continuity in this 

formulation and therefore consider   to be constant throughout each element. 

 

Now, upon substitution of the discrete representations of our variables into (48), and then 

taking the first variation with respect to the discrete variables, we are left with the 

following for each element 

  ̃  (  ̂)  [∫(    )  ̂     
 

 ∫     
      

 

   ∫   ̅     
 

 ∫   
   ̅       

  

]

  (  ̂) [∫(  
    )  ̂     

 

 ∫            
 

 ∫   
   ̅

  

       ]

 (  ) [∫  (      ̂      ̂)      
 

]    

 

 

(60) 
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where     and     represent the determinants of the Jacobian of the volume and the 

surface of an element, respectively.  For the integration over the 8-noded isoparametric 

couple-stress elements presented here, standard 3x3 point Gauss quadrature is used 

(Bathe, 2006; Zienkiewicz and Taylor, 2000). 

 

Due to the fact that the variational factors,   ̂,   ̂, and    have arbitrary value, the three 

terms in square brackets above all must be identically zero for this equation to be valid.  

This provides us with three coupled sets of linear algebraic equations for each element.  

These are our final individual finite element equations in matrix form.   

 

We have now a set of linear algebraic equations for each element.  Here we choose to 

organize these element equations into the standard form shown in Fig. 2. 
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Fig. 2.  Structure of resulting element equations before assembly 

 

The stiffness terms on the left hand side are calculated as follows: 

    ∫ (  
    )     

 
     (61a) 

    ∫ (  
    )     

 
     (61b) 

         ∫  (     )      
 

     (61c) 

      ∫  (    )      
 

     (61d) 

 

For the right hand side, we have 
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 ̂   ∫    ̅      
 

 ∫   
    ̅       

  
                  (62a) 

 ̂   ∫    ̅      
 

 ∫   
    ̅       

  
                   (62b) 

 ̂   ∫   
   ̅

  
            (62c) 

where the subscripts   and   above indicate the components of force and traction in that 

respective direction.  All terms that appear in the right hand side are of course known 

quantities. 

 

After evaluating the stiffness matrix and forcing vector on the element level, we then 

follow standard finite element procedures to assemble and solve the global set of linear 

algebraic equations 

           (63) 

where now   includes displacements, rotations and skew-symmetric stresses.   

 

Before examining several applications of the consistent couple stress FE formulation in 

the next section, a simple patch test is performed to show that indeed the elements used 

here are viable.  Consider the performance of the square mesh with distorted elements 

shown in Fig. 3 with material parameters      ,       and    .  First, the 

displacement boundary conditions corresponding to rigid body states are imposed on the 

edge nodes of the patch.  Thus, displacement boundary conditions are enforced at every 

boundary node corresponding to a unit rigid body translation in the  - and  - directions.  
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This of course should result in zero stress and strain within the body for both cases.  The 

error in the resulting stress and strain fields was less than      .  Next, displacement 

boundary conditions corresponding to a constant rotation state were enforced by 

specifying boundary conditions, such that   (         )    .  Again, the error in 

the resulting stress and strain fields was less than      .  Finally, a constant strain and 

stress state was enforced on all edges of the mesh in Fig. 3.  The specific conditions were 

defined for a stress state with       and           to exist everywhere within the 

body.  The resulting stress and strain fields from enforcing the boundary conditions 

compatible with this constant strain and stress state were accurate everywhere in the body 

to within machine precision.  More specifically the maximum values of error for all 

stresses and strains, when compared to the analytical solution, were less than      . 

 

 

Fig. 3.  Mesh used for patch test 
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2.4 Size-dependent Elasticity Problems 

2.4.1 Uniform Traction on Plate with Circular Hole 

The first example we consider is that of a circular hole in a plate using plane-strain 

assumptions.  Previously, Mindlin (1963) studied stress concentration factors for this 

problem within the inconsistent couple stress theory.   

Symmetry considerations allow us to simplify the problem geometry to a quarter plate, as 

shown in Fig. 4.  We consider dimensions       and uniform traction,       .  

The material properties are taken in non-dimensional form, as       and      , to 

provide a shear modulus of unity.  

Referring to Fig. 4 the boundary conditions for this problem are as follows. The top 

surface and the circular surface are both traction-free.  The left surface has zero 

horizontal displacement, zero vertical traction, and zero rotation.  The bottom surface has 

zero vertical displacement, zero horizontal traction, and zero rotation, whereas the right 

side is subject to uniform horizontal traction   .   

The results are tabulated for various values of the couple stress parameter,  , which in 

this case is equal to      , in Table 1 below.  Increasing values of       can be seen as 

decreasing the characteristic geometry of the problem.  Here UCL is the horizontal 

displacement at the centerline, or the bottom right corner in Fig. 4, UTC is the horizontal 

displacement at the top right corner, and SCF is the stress concentration factor for this 

structure at the top of the hole.  We see that these results are in excellent agreement with 

the boundary element results from Hadjesfandiari and Dargush (2011). 
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For this problem the smallest value of              essentially yields the same 

solution as the classical plane-strain solution.  We see that by increasing this parameter 

the effect of including couple-stress effects causes significant deviation from the classical 

solution.  Most interesting is the sharp decrease of the stress concentration factor with 

increasing value of the couple stress parameter. 

Figures 5a and 5b show contours of the axial stress and the deformed configuration for 

the case of classical elasticity and couple-stress elasticity with     ⁄   , respectively.  

It is clear that the effect of couple-stresses is to decrease the bending deformation and 

smooth out the axial stress field.  Interestingly, one could predict that with increasing 

dominance of couple-stress effects the solution actually becomes purely axial and the 

stress concentration factor goes to unity. 

 

 

Fig. 4.  Problem schematic of hole in finite plate 
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Table 1.  Results for hole in a finite plate 

 

 

  

  
 

BEM                

160 

elements 

FEM 12 

elements 

FEM 133 

elements 

FEM 

841 

elements 

UCL 

1.00E-08 1.4634 1.4436 1.4615 1.4634 

0.0625 0.9387 0.9527 0.9362 0.9388 

0.25 0.7051 0.7133 0.7030 0.7051 

1 0.6038 0.6091 0.6022 0.6039 

UTC 

1.00E-08 0.1464 0.1493 0.1465 0.1464 

0.0625 0.3557 0.3547 0.3559 0.3557 

0.25 0.4617 0.4646 0.4619 0.4617 

1 0.5102 0.5158 0.5102 0.5102 

SCF 

1.00E-08 3.1935 3.1073 3.2080 3.1948 

0.0625 2.0058 1.9438 2.0165 2.0056 

0.25 1.4998 1.4360 1.5072 1.5000 

1 1.2866 1.2265 1.2931 1.2869 
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Fig. 5.  Contours of     and deformed geometry (deformation scaled by factor of 0.25)  

(a) Case 1: Classical elasticity;    

(b) Case 2: Couple-stress elasticity,      . 
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2.4.2 Deformation of Plane Ring 

The second example considered is the deformation of a ring, as shown in Fig. 6, using 

plane strain assumptions.  The deformation is a unit displacement of the inner surface in 

the positive x- direction.  Again for material properties we use       and      .  

The inner surface has radius     and the outer surface has radius    .  Point A is 

located at     and      , while Point B is located at     and      . 

 

The boundary conditions are as follows: on the outer surface we have zero displacement, 

while on the inner surface a unit horizontal displacement (   ) is enforced as well as 

zero vertical displacement.  There are no applied tractions or body forces. 

 

There is an analytical solution available for this particular problem from Hadjesfandiari 

and Dargush (2011).  For the finite element analysis, an unstructured mesh consisting of 

2,900 elements was used with refinement about point A.  Figures 7 and 8 compare the 

present finite element solutions for    and  , respectively, with the corresponding 

analytical results, while the force tractions at A and B are provided in Table 2.  All of the 

finite element solutions are in excellent agreement with the analytical solutions. 
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Fig. 6.  Problem schematic of planar deformation of ring 

 

Fig. 7.  Plot of    for analytical and FEM solutions along center line       



41 
 

 

Fig. 8.  Plot of   for analytical and FEM solutions along center line       

 

Table 2.  Results for tractions at points A and B 

 

 
 

  ( ) 
  

  ( ) 
 

  

  
 Analytical FE error Analytical FE error 

     -2.2096 -2.2095 4.53E-05 0.27614 0.27612 7.24E-05 

     -2.2285 -2.2280 2.24E-04 0.2744 0.2744 1.82E-04 

     -2.3310 -2.3312 8.58E-05 0.2880 0.2881 1.74E-04 

    -2.8192 -2.8255 2.23E-03 0.6682 0.6677 7.48E-04 
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2.4.3 Transverse Plane-Strain Deformation of a Cantilever 

The final problem considered is the transverse deformation of a cantilever under plane 

strain conditions, including couple-stress effects.  This problem, which has no existing 

analytical solution, is illustrated in Fig. 9.  An enforced displacement in the vertical 

direction is applied to the right end of the cantilever.  For material properties, we use 

    and     to provide a unit shear modulus and to allow for comparison with 

elementary theory for limiting values of the couple stress parameter  .  The cantilever has 

height,  , which we consider to be the characteristic dimension for the problem.  

Meanwhile, for the length, we assume two different values;       and       to 

assure that under classical theory bending deformation will dominate for both aspect 

ratios. 

 

Two sets of boundary conditions also are considered.  For Case 1, the boundary 

conditions are as follows: on the left end zero displacement is enforced, while a unit 

vertical displacement is enforced on the right end.  For Case 2, the rotations at the left 

end also are restrained to zero.  In both cases, there are no applied force- and moment-

tractions, and no applied body forces. 

 

The mesh used here consists of rectangular elements arranged such that there are     

elements lengthwise and    elements transversely.  The finest mesh had     and 

therefore consisted of 2,560 elements.  Figure 10 shows excellent convergence of the 



43 
 

total stored energy with uniform mesh refinement for Case 1 with       and      .  

For the remainder of these numerical experiments, the characteristic geometric length 

scale,  , is altered, while the material parameters are held constant.  This is used to 

investigate the size-dependency inherent in the consistent couple-stress theory.  

Specifically, the stiffness of the beam,  , is of great interest, which is equal to the vertical 

right end displacement (at point  ) divided by the vertical reaction force at that end.  

Figures 11a and b show the behavior of non-dimensional stiffness for Cases 1 and 2 of 

this length-scaling experiment.  Meanwhile, Fig. 12 presents the deformed geometry of 

the cantilever with free rotations at the left end and       for three distinct values of 

   . 

 

From Figs. 11a and b, we can clearly see three well-defined domains associated with 

characteristic problem geometry.  For large scale problems, where the characteristic 

geometry,  , is much greater than  , we have the classical elasticity region with stiffness 

independent of length scale.  In this domain, couple-stress effects are negligible, mainly 

due to the small magnitude of curvature deformation at this scale.  Notice that the 

stiffness is equal to        in this region, as expected from classical beam theory.   

 

When the characteristic geometry for this problem is on the order of  , we enter the 

transitional couple-stress domain.  For this cantilever problem, it is clear from Figs. 11a 

and b that couple-stress effects become significant for characteristic geometry of 
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      .  In this couple-stress domain, there is an increase in flexural stiffness, which 

we see can have a significant effect on the overall effective stiffness of the body.   

 

Finally, for very small values of    , we have a domain that is couple-stress “saturated” 

in both Figs. 11a and b.  In other words, the flexural stiffness due to couple-stress effects 

has increased to the level where bending is suppressed, while shear deformation 

combined with rotation dominates.  The absence of bending is clearly visible in the plot 

of deformed shape for            in Fig. 12.  Furthermore, from Fig. 11a, we find that 

for this particular problem, for sufficiently small     ratio, an increase in total stiffness 

by factors of 30 and 60 can be the result of including couple-stress effects with       

and      , respectively.  In Case 2, where the rotational degree of freedom at the left 

hand end is set to zero in the couple stress formulation, an even more dramatic increase in 

stiffness is seen, corresponding very nearly to pure shear deformation of the beam.  As a 

result, for this couple stress “saturated” domain in Case 2, we find       .  

Meanwhile, for the corresponding domain in Case 1, the stiffness scales with     . 

 

For the length scales defined in Figs. 11a and b, the saturated couple-stress region 

corresponds to a maximum possible stiffness for a given problem geometry and loading.  

Whether this totally saturated couple-stress region can occur in physical systems is 

undetermined at this point.  Physical experimentation with the goal of testing for the 

couple-stress material property   or   is necessary to know exactly what portions of these 

couple-stress domains are physically realizable. 
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Fig. 9.  Problem schematic of couple stress cantilever 

 

 

 

Fig. 10.  Convergence of cantilever stored energy with mesh refinement 
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Fig. 11.  Non-dimensional size-dependency of cantilever stiffness 

(a) Case 1:     boundary condition at    ; 

(b) Case 2:     boundary condition at    . 
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Fig. 12.  Deformation of cantilever with        and      boundary condition at 

    for select values of     
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CHAPTER THREE 

 

3 SIZE-DEPENDENT PIEZOELECTRICITY 

3.1 Overview of Size-dependent Piezoelectric Theory 

In this section, a brief overview of the important concepts and relations of consistent size-

dependent piezoelectricity theory is provided, based on the work of Hadjesfandiari 

(2013).  Particular attention is given to relations pertinent to the development of the finite 

element formulation presented in the next section.  For a more detailed discussion on 

consistent size-dependent piezoelectricity, the reader is referred to Hadjesfandiari (2013). 

 

At its simplest, linear size-dependent piezoelectricity can be described as the linear 

thermodynamic coupling between size-dependent elasticity and the electric polarization 

of a material.  The theory presented here is based on the consistent skew-symmetric 

couple-stress theory (Hadjesfandiari and Dargush, 2011, 2013), which sets it apart from 

other size-dependent piezoelectricity and flexoelectricity theories.   Furthermore, unlike 

the commonly accepted flexoelectric theory, the present formulation is consistent with 

Maxwell’s equations of electromagnetism, which would seem to be a most important 

requirement.  Details on the comparison can be found in Hadjesfandiari (2014).  Because 

the present work is on size-dependent piezoelectricity as defined by Hadjesfandiari 

(2013), primary focus will be given to the extension of skew-symmetric couple-stress 

theory and not the fundamentals of the purely mechanical theory.  For a detailed 
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description of skew-symmetric couple-stress theory, the reader is referred to 

Hadjesfandiari and Dargush (2011, 2013). 

 

An overview of the underlying size-dependent elasticity formulation that the size-

dependent piezoelectricity formulation presented in this section is based on is provided in 

chapter 2.  From chapter 2, the elastic response of a two- or three-dimensional body 

under quasistatic loading is governed by equations (1) and (2), corresponding to linear 

and angular momentum balance, respectively.  The natural boundary and essential 

boundary conditions for the elastic portion of the response remain governed by equations 

(3a-b) and (4a-b) from chapter 2.  Finally, the relations between force-stress and force-

traction, and couple-stress and moment-traction remain governed by equations (5a-b). 

 

For a quasistatic electric field,   , we know that the curl vanishes.  Because of this, we 

can relate the electric field to the gradient of a scalar electric potential  , such that 

(Griffiths, 1989) 

                                                                        (64) 

 

In a piezoelectric material, an internal polarization field can be induced by deformation 

and the electric field.  It is often convenient, however, to consider the electric 

displacement field, which is related to the electric field and polarization by 

                                                                      (65) 
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where    is the electric displacement vector and    is the polarization.  For linear 

dielectric materials, the polarization can be related to the electric field in a linear fashion, 

and hence so can the electric displacement. 

 

The normal component of the electric displacement,  , on the surface is related to    by 

                                                                   (66) 

 

The governing differential equation for the electric displacement in a dielectric body is 

the Gauss law in differential form, given by 

      ̅                                                              (67) 

where  ̅  is an applied body charge density.  Note that this is a scalar quantity and the 

subscript is merely meant to distinguish the body charge density from the mass density. 

 

At the interface between two different materials, the normal electric displacement is 

related to the free surface charge,   , by 

   ⌊ ⌋                                                            (68) 

where ⌊ ⌋ denotes the jump across the interface.  It is common in other works to specify 

free surface charge for the natural boundary conditions related to the electric 

displacement.  However, this is only valid when the external electric displacement is 

negligible.  More generally, the natural boundary conditions can be specified in terms of 
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 , which is what will be used here.  Then, for natural and essential boundary conditions, 

respectively, we have the following: 

   ̅   on                          (69) 

and 

   ̅    on               (70) 

For a well-defined boundary value problem, we should have   ⋃    , and   ⋂   

 . 

 

From Hadjesfandiari (2013), the electromechanical enthalpy density,  , of a linear, 

centrosymmetric material can be expressed as 

  
 

 
            

 

 
        

 

 
                                           (71) 

where        is the standard 4
th

 order constitutive tensor used for classical linear elasticity 

theories.  In the isotropic case, the response depends on two elastic coefficients, for 

example, the Lamé constants   and  .  For cubic materials with centrosymmetry, there 

are three independent elastic coefficients      ,      , and       which in Voigt notation 

are written instead as    ,     and    , respectively.  More detail can be found in 

Hadjesfandiari (2014).  
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In addition,     is the 2
nd

 order linear couple-stress-curvature constitutive tensor,     is the 

total electric permittivity tensor and     is the coupling tensor for the electric field and 

curvature.  The presence of this coupling term in the electric enthalpy is what allows for 

piezoelectric effects within a centrosymmetric body.  For isotropic and centrosymmetric 

cubic materials, this piezoelectric-curvature coupling tensor can be written in terms of a 

single piezoelectric-curvature parameter,   ̆, as 

        ̆                                                           (72) 

The piezoelectric-curvature parameter used in this thesis is related to the parameter,  , 

defined in Hadjesfandiari (2013), such that 

  ̆                                                                (73) 

This sign change of   ̆ relative to   is a consequence of the choice of curvature vector 

that is used in the present thesis.  By using this definition of the piezoelectric-curvature 

parameter, we have that for materials with positive   ̆, an electric field directed in the 

positive direction will induce positive (“concave upwards”) curvature deformation and 

vice versa.  The electric enthalpy density of course remains unchanged by this choice of 

parameter.   

   

The total electric permittivity tensor is 

                                                                  (74) 
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where    is the electric permittivity in a vacuum and    is the relative electric 

permittivity.  The couple-stress constitutive tensor for centrosymmetric cubic and 

isotropic materials is written previously in (22).  

 

More generally,   could also include coupling between strain and curvature, and of 

course strain and electric field, such as for classical piezoelectricity, however these 

coupled effects do not exist in the centrosymmetric dielectric materials considered here.  

Also, it is equally valid to write   in terms of the mean curvature tensor; however from 

now on we will use the engineering mean curvature vector for simplicity. 

 

The electromechanical enthalpy density is related to the positive definite internal energy 

density,  , by 

                                                           (75) 

 

Hadjesfandiari (2013) derives the constitutive equations for the symmetric stress, electric 

displacement, and couple-stress from   as follows: 

 (  )  
  

    
                                                           (76a) 

   
  

   
                                                           (77a) 

    
  

   
                                                         (78a) 
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For an isotropic material, these reduce to (Hadjesfandiari, 2013) 

 (  )                                                               (76b) 

            ̆                                                      (77b) 

         ̆                                                           (78b) 

while for centrosymmetric cubic material, the corresponding relations are given in 

Hadjesfandiari (2014). 

 

 

3.2 Size-dependent Piezoelectric Variational Formulation 

The total electromechanical enthalpy of the system    is defined in Hadjesfandiari 

(2013) as 

   ∫  
 

                                                        (79) 

where   is the total potential from applied forces, moments, and normal electric 

displacement given by 

    ∫     ̅   
 

 ∫   ̅    
 

  ∫     ̅   
  

 ∫    ̅   
   ∫   ̅

  
             (80) 

 

Therefore, for the total electromechanical enthalpy   , we have 
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∫              
 

 
 

 
∫          
 

 
 

 
∫          
 

 ∫          
 

 ∫   ̅    
 

 ∫  ̅    
 

  ∫     ̅   
  

 ∫    ̅ 
  

   

 ∫   ̅
  

     

 

(81) 

By substituting the kinematic relations, this total electromechanical enthalpy can of 

course be written as a function of only displacement and electric potential  

     ( ( )  ( )    ( ) )                                            (82) 

Now this functional may be extremized by taking the first variation and setting it equal to 

zero.  This however leads to a formulation that requires    continuity of the displacement 

field.  

 

A better approach, as shown for the purely mechanical problem in section 2.2 of the 

present work, is to consider independent displacements and rotations and then enforce the 

rotation-displacement compatibility constraint of (7b) by including Lagrange multipliers 

into the enthalpy functional prior to extremizing.  Thus, we define a new functional 

  
    

 (  ( )  ( )      ( )  )    (83)                                                  

where 

  
     ∫   (            )   

 
              (84) 
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It is shown in section 2.2 that by extremizing the functional for the mechanical problem 

that these Lagrange multipliers turn out to be equal to the skew-symmetric stress vector, 

  .  This is an extremely convenient property of the variational formulation, because 

otherwise the skew-symmetric part of the stress tensor would be difficult to obtain.  The 

same feature carries over to the couple stress piezoelectric variational principle presented 

here. 

 

We then have the following    variational problem 

   
    

   
 

   
    

   
 

   
    

   
 

  
   

   
 

   
                                 (85) 

where 

  
    

 ( ( )  ( )      ( )  )     ∫   (            )   
 

               (86)              

 

In section 2.2 it is shown by deriving the corresponding Euler-Lagrange equations that 

the solutions to the variational problem of (85) satisfy linear and angular momentum 

balances, rotation-displacement compatibility, and force and moment traction boundary 

conditions.  Following the same derivations as in section 2.2, it is a simple task to show 

that evaluating the third term of (85) will also produce Euler-Lagrange equations 

corresponding to Gauss’ law in differential form, (67), and the natural boundary 

conditions corresponding to (69). 
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Before developing the corresponding finite element formulation in the next section, we 

should emphasize the differences first developed in Hadjesfandiari (2014) between the 

present size-dependent piezoelectric theory and the prevailing flexoelectric version.  In 

particular, the present theory is consistent with Maxwell’s equations of electromagnetism 

and the self-consistent theory of couple stresses, while the latter satisfies neither of these 

essential conditions.  Furthermore, the present theory predicts that only two additional 

parameters,   and  ̆, appear for isotropic or centrosymmetric cubic materials, rather than 

three as required for the predominant flexoelectric theory.  In this regard, we point to the 

difficulties expressed by Zubko et al. (2007) in estimating these three material parameters 

for cubic SrTiO3 single crystals.  Several statements in Zubko et al., (2007) suggest that 

perhaps the three flexoelectric material parameters are not independent.  Two recent 

reviews on flexoelectricity express further concerns relating to the prevailing theory 

(Zubko et al., 2013; Yudin and Tagantsev, 2013).  Thus, further physical and 

computational experiments are needed to clarify the underlying theory.  The finite 

element formulation to be developed in the following section can be quite useful for those 

investigations. 
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3.3 Size-dependent Piezoelectric Finite Element Formulation 

As with most continuum theories, the analytical solutions that are available are limited to 

very simple geometry and boundary conditions.  Clearly numerical formulations must be 

developed in order to analyze real world problems that arise in the design process of 

modern technologies looking to take advantage of size-dependent piezoelectric effects.   

In this section a finite element formulation is developed for linear, centrosymmetric cubic 

and isotropic, piezoelectric solids based on the size-dependent theory of Hadjesfandiari 

(2013, 2014). 

 

Voigt notation is used in this section for the purpose of simplifying calculations and 

programming. This means that the strain,  , is represented by a vector rather than a 

second order tensor, and the constitutive tensor,  , is expressed as a two-dimensional 

matrix rather than a fourth order tensor.  For the two-dimensional, plane-strain, linear 

problems that we will explore here, we then have the following representations: 

   [

   

   

   

]   

[
 
 
 
 

 

   

  
   

  

   

  
 

   

  

 

]
 
 
 
 

              (87) 

  [
       
       
     

]       (88a) 

 

which specializes as follows for the isotropic case 
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 (   ) 

(   )(    )

[
 
 
 
  

 

   
 

 

   
  

  
    

 (   )]
 
 
 
 

            (88b) 

Here    is the component of displacement in the  -direction and    is the component of 

the displacement in the  -direction.  Additionally,   is the Young’s modulus, and   is the 

Poisson’s ratio.  For plane-stress problems, only the matrix   will need to change (Bathe, 

1996). 

 

For planar problems, the engineering mean curvature vector can be written in terms of the 

one out of plane component of rotation,  , explicitly as  

   [
  

  
]   [ 

 
  

  
 

  

  

 ]                                 (89) 

 

The couple-stress constitutive matrix for linear centrosymmetric cubic and isotropic 

materials is represented by (46), while the corresponding piezoelectric-curvature coupling 

tensor,  , becomes 

     ̆  [
  
  

]                                                        (90) 

 

From (64), we can express the electric field in terms of the electric potential as 
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   [
  

  
]   [ 

 
  

  

 
  

  

 ]                                                     (91) 

 

We now consider the variational principle posed in the previous section.  In vector 

notation, we have 

   
      

   
 

  
   

   
 

  
   

   
 

  
   

   
 

  
                             (92) 

where 

  
  

 

 
∫       
 

 
 

 
∫        
 

∫(         )       
 

 
 

 
∫       
 

 ∫       
 

 ∫   ̅   
 

 ∫  ̅    
 

  ∫    ̅   
  

 ∫    ̅
  

    ∫   ̅
  

     

 

 

(93) 

Next, following section 2.3, the domain is divided into finite elements.  Figure 13 shows 

the 8-node isoparametric quadrilateral master element used in the present formulation.  

This element has natural coordinates represented by   and  , with values for each element 

ranging from -1 to +1 in either direction.  In the global coordinate system, here 

represented in two dimensions by normal Cartesian coordinates   and  , our element can 

take on any arbitrary shape, limited only by the need to maintain a well-defined Jacobian 

(Bathe, 1996; Zienkiewicz and Taylor, 2000). 
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Fig. 13. General planar body and 8-node master element 

The same quadratic shape functions  , that were used in section 2.3 (Zienkiewicz and 

Taylor, 2000; Bathe, 1996) are used in this formulation.  These shape function are given 

explicitly by (49). 

 

These shape functions,  , are used to interpolate both the geometric coordinates of the 

element as well as the displacement and rotation within an element as shown by (50) and 

(51).  Additionally, these shape function are now used to interpolate electric potential 

within an element, such that   

    ̂                                                                    (94) 

recalling that the hat represent a vector with nodal quantities ranging from 1 to 8. 
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Similarly, the displacements, rotations, and electric potential on the boundaries   ,   , 

and    are interpolated using the surface shape functions,   , given by (53).  Then for the 

interpolation of electric potential on an element surface we have 

   
    ̂                                                                (95) 

 

The interpolated approximations for strain and curvature are given previously by (54) and 

(55).  Now, the electric field in (48) can be replaced by the following discrete 

approximation  

     ̂                                                               (96) 

where    is the electric field-potential matrix and can be written explicitly as 

     [
  

   

  
 

   

  

 
   

  
 

   

  

         
  

   

  
 

   

  

 
   

  
 

   

  

 ]                                      (97) 

The other   matrices are shown explicitly in (57a-c).  For all cases, the   matrices are 

functions of the first derivatives of the shape functions with respect to global Cartesian 

coordinates,   and  .  

 

For 2-d problems the skew-symmetric stress pseudo vector simplifies to one component 

in the out-of-plane direction.  Further simplifying matters, we need only     
continuity in 

this formulation and therefore consider   to be constant throughout each element. 
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Now, upon substitution of the discrete representations of our variables into (93), 

and then taking the first variation with respect to the discrete variables, we are left 

with the following for each element 

   
    (  ̂)  [∫(    )  ̂     

 

 ∫     
      

 

   ∫   ̅     
 

 ∫   
  ̅       

  

]

  (  ̂) [∫(  
    )  ̂     

 

 ∫(  
    )  ̂     

 

 ∫            
 

 ∫   
   ̅

  

       ]   (  ) [∫ (      ̂      ̂)      
 

]

 (  ̂) [ ∫(  
    )  ̂     

 

 ∫(  
    )  ̂      

 

 ∫   ̅    
 

 ∫   
 

  

 ̅     ] 

 

 

 

 

(98) 

where     and     represent the determinants of the Jacobian of the volume and the 

surface of an element, respectively.  For the integration over the 8-noded isoparametric 

size-dependent piezoelectric elements presented here, standard     point Gauss 

quadrature is used (Bathe, 1996; Zienkiewicz and Taylor, 2000). 

 

Due to the fact that the variational factors,   ̂,   ̂,   ̂, and    have arbitrary value, the 

four terms in square brackets above all must be identically zero for this equation to be 

valid.  This provides us with four coupled sets of linear algebraic equations for each 

element.  These are our final finite element equations for a single element in matrix form.   
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We now have a set of linear algebraic equations for each element.  Here we choose to 

organize these element equations into the form shown in Fig. 14. 

 

Fig. 14. Structure of resulting element equations before assembly 

Corresponding to (98), the stiffness terms on the left hand side are calculated explicitly as 

follows: 

    ∫ (    )     
 

                                                        (99a) 

    ∫ (  
    )     

 
                                                       (99b) 

         ∫ (     )      
 

                                                    (99c) 

       ∫ (  )      
 

                                                      (99d) 

       ∫ (  
    )      

 
                                                   (99e) 

     ∫ (  
    )      

 
                                                    (99f) 
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Meanwhile, for the right hand side, we have 

 ̂   ∫    ̅      
 

 ∫   
    ̅       

  
                  (100a) 

 ̂   ∫    ̅      
 

 ∫   
    ̅       

  
                  (100b) 

 ̂   ∫   
   ̅

  
                   (100c) 

 ̂   ∫    ̅      
 

 ∫   
 

  
 ̅                                            (100d) 

where the subscripts   and   above indicate the components of force in that respective 

direction.  All terms that appear in the right hand side are of course known quantities, as 

indicated by the overbars in (100a-d). 

 

After evaluating the stiffness matrix and forcing vector on the element level, we then 

follow standard finite element procedures (Bathe, 1996; Zienkiewicz and Taylor, 2000) 

to assemble and solve the global set of linear algebraic equations 

          (101) 

where now   includes all nodal values for displacement, rotation, and electric potential, 

along with the element-based skew-symmetric stress.   

 

Before considering the solution to several boundary value problems, two additional 

points should be made.  The first relates to the introduction of the skew-symmetric stress 

Lagrange multipliers to enforce the displacement-rotation constraint.  Notice that the 
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corresponding diagonal block of the stiffness matrix displayed in Fig. 14 becomes zero 

and, as a consequence, the overall system matrix in (101) is indefinite.  Consequently, 

sophisticated direct solvers appropriate for sparse, symmetric, indefinite matrices are 

needed to maintain accuracy of the solution.  In the present work, the MATLAB (2014) 

implementation of the unsymmetric multifrontal sparse LU factorization package 

UMFPACK is used with a symmetric pivoting strategy (Davis and Duff, 1997; Davis, 

2004). 

 

The second point relates to Dirichlet boundary conditions that must be enforced on 

surfaces with fixed non-zero displacement, rotation, and/or electric potential.  There are 

many ways to do this.  One simple approach is to replace the corresponding right hand 

side component with the specified boundary value and then multiply both the 

corresponding diagonal and right hand side components by a sufficiently large penalty 

parameter.  However, due to the sensitive nature of the indefinite system equations 

associated with the present formulation, we prefer to avoid penalty parameters.  Instead, 

we modify the right hand side by subtracting the product of the columns corresponding to 

the specified nodal degrees of freedom and the enforced boundary value.  Then, the 

corresponding rows and columns can be zeroed, while the diagonal value is set to unity 

and the corresponding right hand side entry is equated to the desired value of 

displacement, rotation, or electric potential. 
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3.4 Size-dependent Piezoelectric Problems 

3.4.1 Isotropic cylinder with constant applied electric field on surface 

For this problem we consider a long, isotropic, circular cylinder with radius  .  The 

surface of the cylinder is exposed to an applied constant electric field of magnitude    

directed in the positive  -direction.  This serves as a direct Dirichlet boundary condition 

on the electric potential.  Clearly from (64) the boundary condition for electric potential 

will be  

                                                                (102) 

on surface    . 

 

The other boundary conditions for this problem are zero force- and moment-tractions on 

the surface, along with constrained displacement and rotation of the center point.  The 

problem geometry may also be simplified by enforcing certain symmetry boundary 

conditions along the horizontal and vertical axes.  Specifically, the boundary conditions 

for the vertical axis are zero electric potential, zero vertical displacement, zero horizontal 

force-traction, and zero moment-traction.  The boundary conditions for the horizontal 

axis are zero normal electric displacement, zero vertical displacement, zero horizontal 

force-traction, and zero moment-traction.  By enforcing these boundary conditions only 

the first quadrant of the cylinder geometry needs to be considered. 
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For material properties in dimensionless form we consider      ,      , and    .  

The magnitude of the applied electric field is considered unity for all simulations here.  

An unstructured mesh with 126 elements is used. 

 

The problem has an analytical solution derived in Hadjesfandiari (2013) that will be used 

to validate the numerical solutions here.  Displacement results are presented in Table 3, 

where    is the horizontal displacement at the point on the surface at    , and     is 

the horizontal displacement at the point on the surface at      . From Table 3, we see 

that the numerical solutions are in excellent agreement with the analytical solution. 

 

Fig. 15. Problem schematic of long cylinder with constrained potential on surface 

 

 

,, ,E f    

cosoE a     



69 
 

Table 3. Results for long cylinder with constant applied electric field on surface 

 ̆   

Analytical 

(Hadjesfandiari, 2013) 
FE (126 elements) 

Relative Error: 

             

         
 

                     

0 0.1 0 0 0 0 0 0 

0.01 0.1 0.0156683 0.0016525 0.0156677 0.0016488 -3.63E-05 -2.21E-03 

0.1 0.1 0.1566826 0.0165248 0.1566769 0.0164883 -3.63E-05 -2.21E-03 

1 0.1 1.5668259 0.1652484 1.5667691 0.1648831 -3.63E-05 -2.21E-03 

0.1 0.01 0.2647973 0.0099273 0.2642131 0.0096449 -2.21E-03 -2.84E-02 

0.1 1 0.0311736 0.0042998 0.0311788 0.0042982 1.68E-04 -3.74E-04 

 

 

3.4.2 Slender isotropic cantilever in constant transverse electric field   

(normalized paramters) 

Here we consider a long, isotropic cantilever with a constant electric potential applied to 

the top and bottom surfaces.  The upper surface can be considered grounded with     

and the bottom surface is held at a value of    .  Note that again we are considering all 

quantities to be dimensionless here.  These conditions on the potential will produce a unit 

uniform constant electric field in the positive  - direction, which in turn induces 

curvature in the beam.  This problem is useful for exploring both the direct connection 

between electric field and curvature present in consistent couple stress piezoelectricity, 

and the size-dependency of the electromechanical phenomena.  This problem also has 
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significance to the development of small scale sensors and actuators.  From the above 

problem definition, the vertical electric field can be calculated by 

   
            

 
 

  

 
                                                          (103) 

The material parameters in non-dimensional form for this beam are as follows:    , 

   ,   ̆   ,     and    .  Aside from the electric potential boundary condition 

specified on the top and bottom surface, the following boundary conditions are enforced; 

there is no applied force- or moment-tractions, the left and right hand sides are 

considered to be electrically insulated such that    , and finally the vertical 

displacements, horizontal displacements, and the rotations on the surface with     are 

constrained to be zero.   

 

The mesh used here consists of rectangular elements arranged such that there are     

elements lengthwise and    elements transversely.  The finest mesh had     and 

therefore consisted of 2,560 elements.  Figure 17 shows excellent convergence of the 

vertical end displacement,   , with uniform mesh refinement for the case with      .  

For the numerical experiments with results presented in Figs. 18 and 19, the characteristic 

geometry,  , was varied in order to show the size-dependency of the theory. 

 

For a long slender beam, such as the one examined here, we expect the assumptions of an 

Euler-Bernoulli beam model to hold true.  Recently, an Euler-Bernoulli beam model 

based on the consistent size-dependent piezoelectric theory presented in Hadjesfandiari 
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(2013) was derived in Li et al. (2014).   From this paper the vertical displacements of the 

beam should be: 

  ( )  
  ̆  

  
       

   
(104) 

where   is the beam depth,   is the area moment of inertia, and   is the cross sectional 

area.  This solution corresponds to constant curvature in the y-direction.  The induced 

curvature however is clearly size-dependent.  For small scales (  ⁄   ) we expect the 

term involving the couple-stress parameter to limit the induced curvature such that: 

   
  ̆  

     
 

 ̆  

    
 

(105) 

For larger scales (  ⁄   ), we expect the classical bending stiffness term to limit the 

induced curvature such that: 

   
  ̆  

    
 

   ̆  

   
 

(106) 

The results using the FE formulation developed here show that indeed the solution to this 

problem is a field with constant   , with the exception of minor edge effects at the right 

boundary.  The solutions are in excellent agreement with equations (104) through (106).  

From Fig. 18, we see that for very small characteristic geometry (     ) we have for 

the induced curvature,      ̆        .  For increasing characteristic geometry starting 

from       , we note that    decreases proportional to     , as expected from (106).  

This size-dependent behavior leads to some maximum end displacement that is possible 

for this size-dependent piezoelectric problem.  This is very interesting because it means 
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that even for very large geometries we will still have some displacement that is not 

dependent on the cantilever geometry.  In other words even for large scales the size-

dependent piezoelectric effect is non-zero.  However, as one can see from Fig. 19, the 

ratio of the vertical end displacement at point   to the cantilever geometry,     , is 

decreasing proportional to    .  Then, for larger length scales, we can conclude that the 

deformation due to the size-dependent piezoelectric effect, although equal to some 

nonzero value, will become negligible and perhaps even impossible to detect.  Also from 

Fig. 19, we see that the size-dependent piezoelectric effects relative to size of the 

cantilever are greatest for      .  We should note that generally results will deviate 

from (104) for real materials due to non-zero Poisson’s ratio.  The formulation developed 

here is capable of accurately modeling this effect too.   

 

 

Fig. 16. Problem schematic of size-dependent piezoelectric cantilever 
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Fig. 17. Convergence of end displacement with mesh refinement 

 

Fig. 18. Nondimensionalized curvature with scaling of cantilever geometry 
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Fig. 19. Ratio of end displacement to length with scaling of cantilever geometry 

Finally, we should note that Figs. 18 and 19 include results for      .  With limited 

experimental data available at this time to estimate the couple-stress parameter size-

dependent  , it is not certain that continuum mechanics theories are applicable for length 

scales in that range.  In any case, we believe that it is appropriate to explore the 

interesting phenomena that size-dependent piezoelectric theory predicts on these minute 

length scales. 
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3.4.3 Slender isotropic cantilever in constant transverse electric field   

(Barium Titanate ceramic) 

In this section, we analyze a cantilever with the same geometry and boundary conditions 

as described in the previous section.  However, now we consider the material to be 

Barium Titanate ceramic (BaTiO3) at room temperature, which in single crystal form has 

cubic centrosymmetric structure.  The same mesh from the previous section was used.  

The beam has characteristic dimension of       and correspondingly,        .  

The piezoelectric-curvature parameter was approximated based on experiments by Ma 

and Cross (2006).  The other material properties used here were tabulated in Jaffe et al. 

(1971) and originally measured by Bechmann (1956).  As noted above, in single crystal 

form, this material is centrosymmetric cubic.  Based on the measured elastic properties, 

however, it is clear that the material is not far from being isotropic.  As such, for BaTiO3 

ceramic, we approximate isotropic elastic coefficients by making the assumption that 

     ,         and then use Hooke’s law for isotropic materials to calculate an 

effective Young’s modulus.  All material properties used here are tabulated in Table 4. 

 

The cantilever was subject to a uniform vertical electric field of          . The 

vertical end displacement,   , was plotted against     in Figure 20.  Clearly for BaTiO3 

the size-dependent piezoelectric effect is not negligible, as an electric field of    

   causes a vertical end displacement of           (for       ). 
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Table 4: Approximate BaTiO3 material properties used in simulation 

Piezoelectric-curvature parameter,   ̆ (     )          

Young’s Modulus,    (     )            

Shear Modulus,    (     )           

Permittivity,    (        )            

 

 

Fig. 20: Vertical end displacement with varying values of   

 

 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

h/l

U
y (


m
)



77 
 

3.4.4 Slender isotropic cantilever with transverse end- traction 

This final problem analyzes the induced electric field in an isotropic cantilever subject to 

end loading under plane-strain conditions.  The loading considered here is a transverse 

shear traction loading with a parabolic distribution.  Figure 21 shows a schematic of the 

problem.  The plate has thickness   , where       here, and length     .  For all 

simulations, we consider the following dimensionless material properties; Young’s 

modulus,      , Poisson ratio,      , and electric permittivity,    . 

 

For boundary conditions we consider zero displacement on the left surface as well as zero 

electric potential at the origin.  All surfaces are considered to be electrically insulated, 

such that    , and also free of moment-tractions.  The top and bottom surfaces are 

tractionless.  Finally, the right surface of the plate has an applied shear traction with a 

parabolic profile, such that      (      ⁄ ). 

 

Figure 22 shows a fill plot of the induced scalar electric potential field.  The 

corresponding field is symmetric and has a maximum value on the bottom surface near 

the fixed surface at     and a minimum value on the top surface at that same end.  

Clearly a quantity of interest is the difference between the maximum and minimum value 

of electric potential.  Figure 23 shows a convergence study of the maximum electric 

potential difference.  A coarse mesh with ten rectangular elements was the original mesh.  

This coarse mesh was systematically refined by dividing each element into four equal 
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sized rectangular elements.  For the purpose of uniformity no localized mesh refinement 

was considered.  Table 5 provides values of the maximum electric potential difference 

and the maximum end vertical displacement,   , for various values of the couple-stress 

and curvature-piezoelectric parameters for this example of the direct size-dependent 

piezoelectric effect in an isotropic material 

 

Fig. 21. Problem schematic of long size-dependent piezoelectric cantilever plate 

 

 

Fig. 22. Plot of electric potential field resulting from transverse loading (     ̆   ) 
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Fig. 23. Convergence of (         ) with uniform mesh refinement (     ̆   ) 

 

Table 5. Results for long size-dependent piezoelectric cantilever plate with transverse 

end loading, 2560 elements 
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CHAPTER FOUR 

4.1 Conclusions 

Based on the new consistent couple-stress theory for solids (Hadjesfandiari and Dargush, 

2011), we have developed a corresponding mixed variational principle and finite element 

formulation.  The formulation presented here considers the rotation field to be separate 

from the displacement field in the underlying energy statement and then enforces 

rotation-displacement compatibility via Lagrange multipliers.  This is a particularly 

attractive formulation because the Lagrange multipliers are directly related to the skew-

symmetric portion of the stress tensor, which otherwise can be difficult to calculate 

accurately.  Also, the engineering mean curvature vector was defined here and is shown 

to be the correct energy conjugate deformation vector to the couple-stress vector. 

 

The finite element formulation was then employed to study several problems involving 

couple-stress phenomena with great accuracy in comparison with both analytical 

solutions and boundary element analysis.  The numerical simulations in section 2.4 

showed the size-dependency of couple-stress theory and highlighted three distinct length-

scale domains; namely, the classical elasticity domain, the transitional couple-stress 

domain, and the saturated couple-stress domain.  Inclusion of the couple-stress effect was 

shown to cause potentially large increases in stiffness.  Although here we only highlight 

this transition to shear dominated response for a simple cantilever, this phenomena surely 

is a more general consequence of the consistent couple stress size-dependent mechanics 

theory. 
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The size-dependent piezoelectricity developed in Hadjesfandiari (2013) provides a 

theory, which couples the electric field and mean curvatures in a manner that is consistent 

with Maxwell’s equations of electromagnetism and skew-symmetric couple stress size-

dependent mechanics.  Based on this piezoelectric theory, and the mixed variational 

principle for size-dependent elasticity developed in chapter 2 of the present work, we 

have developed a mixed finite element formulation for planar couple stress piezoelectric 

problems in centrosymmetric cubic and isotropic media.  This formulation uses Lagrange 

multipliers to explicitly enforce rotation-displacement compatibility, which reduces the 

variational problem from having a    to a    continuity requirement.  The Lagrange 

multipliers conveniently are equal to the skew-symmetric portion of the force-stress 

tensor.  However, the resulting system matrix becomes indefinite and care is needed to 

maintain accuracy in the solver. 

 

The results from the cylinder problem illustrate the convergence characteristics of this 

formulation compared with an analytical solution for the converse size-dependent 

piezoelectric effect.  Meanwhile, the problem of a cantilever in a uniform transverse 

electric field showed several interesting results of size-dependent piezoelectricity.  For 

example, it was shown that indeed size-dependent piezoelectric effects are most 

significant for characteristic geometry on the order of the couple-stress length parameter, 

 .  Also, it was found that at large scales, the size-dependent piezoelectric effects become 

negligible when compared to the characteristic geometric scale, but do not vanish 
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completely.  It was shown that the size-dependent piezoelectric effect is indeed 

significant for perovskite ceramics, such as Barium Titanate.  The final problem 

illustrates the direct effect, in which an applied load induces an electric field. 

 

With the exponentially increasing amount of technology that is being developed on the 

micro and nano-scales the need for tools to analyze size-dependent continuum mechanics 

problems is greater than ever.  Here we have presented simple, robust, and highly 

accurate finite element formulations based on the consistent couple-stress theory and 

size-dependent couple stress piezoelectricity.  Thus, the current size-dependent couple 

stress and piezoelectric finite element formulations and their extensions can be expected 

to provide an excellent tool for doing such analyses and potentially to influence future 

material, structure and device design over a broad range of applications. 

 

4.2 Future Research 

For couple stress elasticity, the extensions to axisymmetric and three dimensional 

problems are certainly of interest, as is the extension to inelastic response.  Perhaps more 

important though is the need to investigate the predicted effects of couple stress theory 

through a rigorous program of physical experiments. 

 

For size-dependent piezoelectricity, we have restricted ourselves to consider only 

centrosymmetric cubic and isotropic materials, where although classical piezoelectric 
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effects are not present, generally size-dependent piezoelectric effects can occur.  

Furthermore, while our present finite element formulation is for planar problems, the 

extensions to axisymmetric and general 3-d problems certainly are of interest.  This is 

especially true in the latter case to enable the comparison with careful physical 

experiments on cubic single crystals to examine the theory.   
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