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Abstract 

A new variational formulation is proposed for time-domain analysis of initial/boundary value problems of 

dynamic thermoelasticity.  By using the concept of mixed convolved action, the difficulties with dissipative 

phenomena and proper representations of the temporal end point conditions can be overcome to create a 

true stationary variational principle.  After an elementary illustrative development for a lumped parameter 

thermoelastic model, the convolved action functional for a linear thermoelastic continua is written directly 

in terms of mixed variables, which include displacements and the impulses of stress, temperature and heat 

flux.  Unlike previous variational approaches, based for example upon a generalization of Hamilton’s 

principle, the present mixed convolved action formulation allows direct application of finite element 

methodology in both space and time.  Here, simple linear shape functions are employed for the temporal 

representations.  Meanwhile, standard three-noded triangular elements are used in the present two-

dimensional numerical implementation.  Several computational examples are considered to test this original 

approach and to investigate interesting aspects of coupled dynamic thermoelastic response. 

 

1.  Introduction 

The attractiveness of the analytical dynamics branch of mechanics is undeniable.  The idea of capturing the 

essence of a conservative dynamical system in a single scalar functional is compelling.  However, the 

incorporation of dissipative phenomena into this framework has been a significant challenge, ever since the 
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formulation of Hamilton’s principle nearly two centuries ago (Hamilton, 1834, 1835; Lanczos, 1949; 

Goldstein, 1950).  Mirror systems (Morse and Feshbach, 1953), additional dissipation functions (Rayleigh, 

1877; Biot, 1955; Marsden and Ratiu, 1994) and fractional derivatives (Riewe, 1996, 1997) have all been 

proposed as solutions, but these come with shortcomings involving non-physical governing equations, ad 

hoc variational operations and unproven functionals, respectively.  In addition, careful consideration of the 

underlying assumptions leads to concern, even for conservative systems, because of the treatment of the 

end point requirements.  In particular, one must assume that the variations vanish at both end points of the 

time interval.  Beginning from some known conditions with zero variation at the initial instant is logical, 

but how can one not vary the end state, when this is most often the object of the dynamic analysis?   

 

In order to overcome both limitations of Hamilton’s principle, convolution-based temporal operators are 

needed.  Gurtin (1963, 1964a,b) was the first to advance this concept by introducing functionals containing 

temporal convolutions to address continuum problems of viscoelasticity and elastodynamics.  The 

subsequent work by Tonti (1973, 1985) in advocating the use of the convolutional bilinear form to replace 

the usual inner product form of Hamilton’s principle was particularly insightful.  Afterwards, Oden and 

Reddy (1983) extended the formulations of both Gurtin and Tonti to a large class of boundary and initial 

value problems in mechanics, especially for Hellinger-Reissner type mixed principles to provide the 

governing partial differential equations, boundary conditions and initial conditions as the Euler-Lagrange 

equations emanating from stationarity of the functional.  Their highly original convolution-based 

formulations cover linear problems of elastodynamics, viscoelasticity, thermoelasticity and piezoelectricity.  

However, we should mention that for dynamic thermoelasticity, the Oden and Reddy (1983) formulation is 

limited to a Gurtin-based approach, which produces integro-differential Euler-Lagrange equations, rather 

than the partial differential equations associated with the standard definition of the problem. 

 

A remaining question is whether one can formulate a single real scalar functional for dissipative systems 

that captures all of the governing partial differential equations, boundary conditions and initial conditions 



3 
 

of the problem, along with any restrictions on the variations, as its Euler-Lagrange equations?  This has 

been accomplished by introducing the mixed convolved action for single-degree-of-freedom dynamical 

systems (Dargush and Kim, 2012), elastodynamic continuum systems (Dargush et al., 2015) and for 

dissipative systems associated with heat diffusion (Dargush et al., 2016).  This mixed convolved action 

framework appears to be quite general with the possibility to extend to a broad range of linear time-invariant 

systems.  Here we address the extension of the mixed convolved action to dynamic thermoelasticity. 

 

Before continuing with this mixed convolved action development, we should mention other important 

related work for dissipative processes in general and then also outline key theoretical and computational 

contributions in the field of thermoelasticity.  In the former domain, Sivaselvan and Reinhorn (2006) 

developed the mixed Lagrangian formalism (MLF) for both linear and non-linear structural and continuum 

mechanics analyses, based upon impulsive variables that bring a useful symmetry to the form of the 

governing equations.  Other work on MLF includes that by Sivaselvan et al. (2009) for plasticity, Lavan et 

al. (2009, 2010) for contact and fracture, and Apostolakis and Dargush (2012, 2013) for thermoelasticity.  

Along similar lines, many formulations for dissipative systems have been advanced using extensions of the 

variational approaches by Halphen and Nguyen Quoc (1975), Brezis and Ekeland (1976) and Nayroles 

(1976), involving convex, perhaps non-differentiable, stored energy and dissipation functionals.  Specific 

examples in this category include the development by deSaxce and Feng (1998) on friction, and the more 

recent work on elastoplasticity by Houlsby and Puzrin (2006), Lotfian and Sivaselvan (2014) and Buliga 

and deSaxce (2017). 

 

An interesting alternative approach uses generalized bracket formalisms to address a broad range of 

dissipative processes (Kaufman, 1984; Morrison, 1984; Grmela, 1984; Beris and Edwards, 1994; Grmela 

and Ottinger, 1997; Ottinger and Grmela, 1997).  The recent extensions that are provided in Grmela (2014, 

2015), and the references cited therein, focus on developing an underlying geometric structure for multi-

scale dissipative processes by combining the elements of dynamics and thermodynamics. 
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Moving next to consider the classical thermoelastic problem, we should perhaps begin with the 

comprehensive monographs by Boley and Weiner (1960) and Nowacki (1986), which present governing 

equations, fundamental solutions, integral equations and analytical solutions to a range of boundary/initial 

value problems.  Other notable work includes the foundational development by Biot (1956, 1959) and the 

dynamic reciprocal theorem of Ionescu-Casimer (1964).  Finite element methods were first developed long 

ago by Gallagher et al. (1962) for stress analysis of heated bodies, Wilson and Nickell (1966) for transient 

heat conduction and then Nickell and Sackman (1968) for dynamic coupled thermoelasticity. 

 

All of this early work is squarely within the realm of classical thermoelasticity.  Consequently, these 

developments are based upon the Fourier law of heat conduction, which leads to diffusion processes that 

suffer from a non-physical infinite speed of propagation of thermal impulses.  To correct this deficiency, 

several different generalized thermoelastic theories have been proposed, including those by Lord and 

Shulman (1967) and Green and Lindsay (1972) involving one and two relaxation times, respectively.  The 

former generalized theory is based upon a modified Fourier law that Chester (1963) associated with second 

sound phenomena.  On the other hand, the latter theory retains the classical Fourier law, modifying instead 

the Duhamel-Neumann and entropy density constitutive relations.  Prevost and Tao (1983) developed a 

finite element method for the Green and Lindsay (1972) formulation, while in recent work Apostolakis and 

Dargush (2012, 2013) presented an MLF for thermoelasticity based upon the Chester (1963) heat 

conduction model.  A boundary element method by Chen and Dargush (1995) addressed dynamic problems 

for both generalized dynamic thermoelastic models in two- and three-dimensions using a boundary-only 

Laplace transform domain approach.  The interesting special case of dissipationless thermoelasticity was 

considered by Green and Naghdi (1992, 1993).  It remains to be seen whether this limit can be approached, 

while retaining a continuum representation.  A comprehensive review of early theoretical, computational 

and experimental efforts on heat waves is provided by Joseph and Perziosi (1989). 
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Other more recent work to generalize classical thermoelasticity, includes Ezzat and El-Karamany (2012) 

on generalized thermoviscoelasticity with two relaxation times, Sherief et al. (2010) on fractional order 

thermoelasticity, and then a Gurtin-style convolutional variational approach by El-Karamany and Ezzat 

(2011) for linear fractional thermoelasticity, which extends the two-temperature model advanced by Chen 

and Gurtin (1968). 

 

Here, in the present paper, we explore the extension of the mixed convolved action to a multi-physics 

problem involving the coupling between mechanical and thermal fields, which includes both conservative 

and dissipative elements.  Specifically, we address dynamic coupled thermoelastic problems that may also 

include second sound effects.  In the process, we propose a new stationary action principle, based upon 

impulsive mixed variables, fractional derivatives and convolutions to produce an elegant theoretical 

structure for linear initial/boundary value problems of generalized thermoelasticity.  A novel space-time 

finite element formulation also is developed to solve these dynamical problems directly in the time domain. 

 

The remainder of the paper is organized as follows.  In Section 2 a mixed convolved action principle is 

formulated for a simplified lumped dynamic thermoelastic system.  In Section 3 we provide an overview 

of the governing equations for a coupled dynamic thermoelastic continuum.  Then, in Section 4, we present 

the stationary mixed convolved action principle for the continuum problem.  Based on this principle, we 

proceed to develop a corresponding finite element formulation over space and time in Section 5.  Next, in 

Section 6, this finite element formulation is applied to solve two illustrative problems of coupled dynamic 

thermoelasticity.  Finally, in Section 7, we present conclusions. 

 

2.  Mixed convolved action for lumped thermoelasticity 

Before developing relations for the case of thermoelastodynamic continua in the subsequent sections, we 

first consider here a simplified lumped parameter dynamic thermoelastic system.  This lumped system is 
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depicted in Fig. 1 as a lumped mass m with constant heat capacity c  submerged in a bath of constant 

temperature T  with a single displacement degree of freedom u .  Connecting the mass to the presumed 

rigid wall is a typical linear elastic spring element, and a less commonly used linear thermoelastic element.  

Here the thermoelastic element is considered highly conductive and insulated from the bath, such that at 

any time it has the same temperature T  as the mass.  Let us consider here that T  represents the temperature 

change from a temperature oT   which corresponds to an undeformed state of the thermoelastic element.  

The system can also generally be exposed to some applied force f  and body heating  , where the overbar 

defines a known or specified quantity, not to be subject to any variation. 

 

 

Fig. 1.  Lumped parameter thermoelasticity problem 

 

As is done in Apostolakis and Dargush (2012), we define impulsive variables as 

0
( ) ( )

t

u t v t dt                                                               (1a) 

0 0
( ) ( ) ( )

t

S

t

k uJ t f t dt t dt                                                (1b) 

0
( ) ( )

t

t T t dt                                                              (1c) 

0
( ) ( )

t

H t q t dt                                                            (1d) 
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such that the displacement u  is identified as the impulse of the velocity v , J  is the impulse of the stored 

spring force Sf ku ,   is the impulse of the temperature T , and H  is the impulse of the heat flux q .  

Alternatively, using a dot to represent a single time derivative, we can define these quantities in rate form: 

vu                                                                      (2a) 

SJ f ku                                                               (2b) 

T                                                                     (2c) 

H q                                                                    (2d) 

The thermoelastic element under a constrained displacement condition will store an internal force 

proportional to the coupling coefficient  , such that 

                   T Tf                                                                 (3) 

The following four equations, written in terms of impulsive variables, and corresponding to Newton’s 

second law, the compatibility in rate form for a linear spring, energy-entropy balance, and Newton’s law of 

cooling, constitute all of the governing equations for this lumped dynamic thermoelastic problem:              

 J jmu                                                             (4a) 

1
0J u

k
                                                                  (4b) 

1 1

o o o

mc
H u

T T T

                                                           (4c) 

  
1 1

0
o o

H
hAT T

                                                             (4d) 

where j  is the impulse of the applied force,  is the impulse of the body heat source, h  is the convection 

coefficient, and A  is the surface area of the mass.  Note that for the sake of keeping the governing equations 

as similar as possible to the continuum case, (4d) is written assuming that the bath temperature is equal to 
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oT , however for any other case (4d) would simply need to be amended by adding to the right hand side the 

constant term  
1

o

o

T T
T

  . 

At this point in previous papers for lumped parameter systems (Dargush and Kim, 2012; Dargush, 2012), 

a mixed convolved action has been presented, and then the proof that variation of this quantity did indeed 

result in a true variational principle followed.  Here we elect to go about things in a different manner, 

wherein instead we form a virtual action quantity A  by convolving the governing equations with 

corresponding energy conjugate variational quantities and summing.  This results in the following: 

 
1

* *

1 1 1 1
* *i k

o o o o o

A u m J
k

mc
H u H

T T T hAT

u J j J u

H
T



  

 



  

          

   
        

   





                          (5) 

where the   indicates a temporal convolution.  At this point we perform temporal integration-by-parts 

operations on all terms with the goal of having symmetry of the time derivatives on the virtual and real 

quantities.  For some quantities this requires fractional integration-by-parts.  The breve then represents a 

left half order temporal derivative.  As a result, (5) can be rewritten as: 

1

(0

1

1 1

1

1
( ) (0) (0) ( ) (0) (0)) (0)

o o

o o

o

A u mu J J
k hAT

u J J u u u
T T

T

u t mu J t

mc
H H

T

H H

u j

J J u
k

j

     

        

 

  

  
           

 
            



 
   

 

 
      

 


        






1 1 1 1
( ) (0) (0)

1
(

(0) (0) ( ) (0) (0

0) ( ) (0) ( ) (0) (

)

)

o o o o o

o

mc
H H t H

T

mc

t u
T T hAT T

u mu t t tJ J
Tk

    

   


 

   
          

   

  

    (6)                   
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Interestingly, we recognize that the bracketed quantities in the fourth and fifth lines of the above equations 

represent precisely the necessary initial conditions for this problem, despite making no mention of these to 

this point.  Additionally, the final line represents the zero variation constraints on the initial values of u , 

J , and  , which should be expected.  At this point we take out the final three lines of (6) and consider 

what is left to be the variation of a mixed convolved action 
TLCI  corresponding to the lumped dynamic 

thermoelastic problem at hand.  After taking the variational operator outside of all of the brackets we have 

1 1
2 2

1 1 1
2 2 2

1 1

1 1

1

TL

o o

C

o o

o

u mu J J
k hAT

I u J J u u u
T

mc
H H

T

T

H H

u j
T

 

      





 


   
            

   
                

  
  

         




                  (7) 

Then for our final mixed convolved action corresponding to this problem we are left with 

1 1
2 2

1 1 1
2 2 2

1 1

1 1

1

TLC

o o

o o

o

mc
H H

T

H H

I u mu J J
k hA

u j

T

u J J u u u
T T

T

 

    



  
           

 
              

 





 



     







                  (8) 

If one was to now reverse the order of this process by beginning with the mixed convolved action 
TLCI , 

then extremize by setting the first variation to zero, and perform temporal integration-by-parts operations 

on all terms, they would be left with Euler-Lagrange equations corresponding to the four governing 

equations (4a-d), the following correct initial conditions for the problem at hand: 

(0) (0) (0) (0)mu jJ                                                             (9a) 
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1
(0) (0) 0J u

k
                                                                     (9b) 

1 1
(0) ( (0) (0)0)

o o o

mc
H

T
u

T T
                                                   (9c) 

(0)
1 1

(0) 0
o ohAT T

H                                                              (9d) 

and variation constraints at time equals zero: 

(0) (0) (0) 0u J                                                              (10) 

 

Thus, a Principle of Stationary Mixed Convolved Action for Lumped Linear Thermoelasticity has been 

developed.  This may be stated as follows:  Of all the possible trajectories { ( ), ( ), ( ), ( )}u J H      of the 

system during the time interval (0, )t , the one that renders the action 
TLCI  in (8) stationary, corresponds to 

the solution of the initial value problem.  This stationary trajectory satisfies the balance laws of linear 

momentum (4a) and energy (4c), along with the linear elastic compatibility equation (4b) and Newton’s 

law of cooling (4d) over the entire time interval.  Additionally, the solution complies with all appropriate 

initial conditions and constraints on variations defined by (9)-(10).  

 

Notably, the approach taken here presents a straight forward way to derive mixed convolved actions for a 

great variety of initial value problems, perhaps most importantly problems involving dissipation, for which 

previously true variational principles have been non-existent.  Also interestingly, following the procedures 

here, where one begins with the governing differential equations, written in terms of mixed impulsive 

variables, convolves with proper virtual quantities, and then performs integration-by-parts operations, 

actually produces all appropriate initial conditions without any necessary prior knowledge of these 

conditions. 
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3.  Fundamental continuum relations 

In this section, we provide the foundation for the development of a pure variational statement for the 

continuum problem of dynamic coupled thermoelasticity, which represents the first formulation of this kind 

for multi-physical phenomena.  Here, heat conduction is a dissipative process, coupled to the otherwise 

conservative elastic stress field.  We also include second sound effects throughout the entirety of this work.  

In a way, this formalism can be regarded as the evolution of previous work on the thermoelastic problem 

by Apostolakis and Dargush (2012, 2013), which used instead an inner product action variation based upon 

Lagrangian energy and Rayleigh dissipation functionals, and the separate mixed convolved action 

variational statements for elastodynamics and heat conduction (Dargush et al., 2015, 2016). 

 

For our mixed formulation of this problem, let the elastic response be represented by the displacement 
iu  

and the impulse of the elastic stresses 
ijJ  (Sivaselvan and Reinhorn, 2006).  For consistency, one can view 

displacement 
iu  as the impulse of the velocity 

iv .  Meanwhile, as in Apostolakis and Dargush (2012, 2013), 

the thermal field will be described by  , which represents the impulse of the temperature T  and the heat 

vector 
iH .  For consistency, the heat vector 

iH  can be considered as the impulse of the heat flux 
iq .  Thus, 

for continuum thermoelasticity, we may write these variables in integral form as 

0
( ) ( )i

t

iu t v t dt                                                             (11a) 

 
0 0 0

( ) ( ) ( ) ( ) ( )e

i

t t t

ij ij ij ijkl kljJ t t T t dt t dt C t dt                             (11b) 

0
( ) ( )

t

t T t dt                                                             (11c) 

0
( ) ( )i

t

iH t q t dt                                                          (11d) 

with the corresponding rate form: 

i iu v                                                                    (12a) 
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 ij ij ij ijj kli kl

eJ T C                                                     (12b) 

T                                                                     (12c) 

i iH q                                                                   (12d) 

where 
ij  and 

ij  represent the total stress and strain tensors, while 
ijklC  and 

ij  are the usual constitutive 

tensors for anisotropic thermoelastic media.  Additionally, in (11b) and (12b), 
e

ij  are the purely elastic 

stresses associated with the total strains.  By selecting the primary variables in this manner, we shall find 

that a more complete symmetry is obtained in the governing equations of thermoelasticity.   

 

In terms of these mixed variables, the governing differential equations for coupled dynamic thermoelastic 

response, including second sound effects based upon the Lord and Shulman (1967) formulation, take the 

following form over the domain  : 

 k ijk ij io kju J fB                                                        (13a) 

0ijkl kl ijk kuBJA                                                          (13b) 

1 1
i ij ijk k

o o o

o
i

c
B H B u

T T T

 


                                            (13c) 

1 1 1
0ij o j ij

o o o

ijd H d H B
T T T

                                            (13d) 

In the above governing equations, 
o  is the mass density, 

ijklA  is the elastic constitutive tensor inverse to 

ijklC  and 
kf  is the specified body force density.  For the thermal aspects of this problem, 

oT  represents the 

initial temperature at the free stress state, while T  then becomes the temperature change from that state.  

Additionally, c  is the specific heat at constant strain, 
o  is a relaxation time for the extended Fourier’s 

heat conduction law and   is a specified heat source density. The constitutive tensor 
ijd  represents the 

inverse of the thermal conductivity 
ijk  and the thermoelastic coupling tensor becomes 3ij ij    for 
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the isotropic materials considered later, where   is the thermal expansion coefficient and   is the bulk 

modulus.  The symbol 
iB  in (13c,d) represents the gradient operator, while 

ijkB  is a third order tensor 

operator that extracts strain rates from the velocity field.  Thus, we have 

ij ijk kB u                                                                  (14) 

where more specifically 

 
1

2
ijk ik jq iq jk

q

B
x

   


 


                                               (15) 

with 
qx  representing spatial coordinates.  The relation (14) may also be written in the more familiar manner 

as 

 1
, ,2ij i j j iu u                                                          (16) 

with the comma now symbolizing differentiation with respect to the spatial coordinates.  

 

In addition to the governing differential equations, boundary conditions must be specified.  For the simplest 

form, these can be written: 

kku u   on  
v                    (17a) 

jk j jk j jk j ktJ n n n      on  
t                      (17b) 

    on  
T                                              (17c) 

i iH n q   on  
q                                                       (17d) 

where 
ku  and   represent essential boundary conditions of displacement and temperature impulse applied 

on the surfaces 
v  and 

T , respectively.  Meanwhile, for the natural boundary conditions, 
kt  are the 

tractions specified on the portion of the surface 
t , while q  represents the specified normal heat flux on 

q . 
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Then, to complete the definition of the coupled dynamic thermoelasticity problem, initial conditions are 

required.  In mixed variables, these take the following form at time zero: 

 (0) (0) (0) (0)k ijk ij io kju J jB                                               (18a) 

(0) (0) 0ijkl kl ijk kA BJ u                                                          (18b) 

1 1
(0)(0) 0)( (0)i ij ijk k

o o

i

o

oc B H B u
T T T

 


                                      (18c) 

1 1 1
(0) (0) (0) 0iij o j ij j

o o o

d d H B
T T

H
T

                                         (18d) 

                                                                                 for x                                                                                                       

where 
kj  and   are the impulses of 

kf  and  , respectively. 

  

 

Fig. 2.  Continuum thermoelasticity problem definition 
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4.  Mixed convolved action for thermoelastic continua 

In analogy with the elastodynamic and heat diffusion mixed convolved actions (Dargush et al., 2015, 2016), 

the inner product thermoelastic continuum formulation from Apostolakis and Dargush (2012, 2013), and 

the lumped thermoelastic system of Section 2, we may write the following scalar thermoelastic mixed 

convolved action functional: 
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 
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                      (19) 

In (19) we again use a superposed dot and breve to represent integer and left half-order temporal derivatives, 

respectively, along with the   symbol to indicate a temporal convolution.  Additionally, we use an overbar 

to denote quantities not subject to variation.  In particular, in (19), 
kj  represents the impulse of the applied 

body force density 
kf , while 

k  is the impulse 
kt , the applied surface tractions on a portion of the surface 

designated as 
t .  In a similar way, 

ku  represents the enforced surface displacements on 
v , with 

k  as 

the impulse of the resulting reactive tractions 
kt  on that surface.  Here, we assume that the boundary 

conditions are defined, such that 
v t     and 

v t   .  Furthermore, Q  denotes the impulse 
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of q , which represents the specified normal heat fluxes on the surface 
q .  On 

T , 

0
( ) )) ( (i i

t

i iQ t H t n q t n dt   with 
in  as the outer unit normal to the surface.   

 

Then, the first variation of the mixed convolved action becomes 
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After performing all of the temporal classical and fractional integration-by-parts operations (Dargush and 

Kim, 2012) to shift derivatives from the variations to the field variables, the stationarity of the mixed 

convolved action may be written in the following complicated, but systematic form: 
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From (21) for arbitrary variations, we have as the Euler-Lagrange equations: 

Governing partial differential equations 

 k ijk ij io kju J fB                                                         (22a) 

0ijkl kl ijk kuBJA                                                                (22b) 



18 
 

1 1
ij ijk k
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B H B u
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  


                                               (22c) 

1 1 1
0ij o j ij

o o o

ijd H d H B
T T T

                                              (22d) 

                                                                   for x , (0, )t                 

Boundary conditions over the entire time span 

k kt t                              
tx                           (23a) 

k kv v                            
vx                           (23b) 

q q                             
qx                            (23c) 

T T                            
Tx                           (23d) 

                                                                                     for (0, )t   

Initial conditions over the spatial domain 

                        (0) (0) (0) (0)k ijk ij io kju J jB                                             (24a) 

(0) (0) 0ijkl kl ijk kA BJ u                                                       (24b) 

1 1
(0)(0) 0)( (0)i ij ijk k
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oc B H B u
T T T
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1 1 1
(0) (0) (0) 0iij o j ij j

o o o

d d H B
T T

H
T

                                        (24d) 

                                                                                  for x  

Boundary conditions at time zero 

(0(0) )k k                               
tx                              (25a) 

(0(0) )k ku u                             
vx                              (25b) 

(0) (0)Q Q                              
qx                              (25c) 
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(0) (0)                               
Tx                              (25d) 

Furthermore, the variations are defined with the following constraints: 

Zero variations for specified boundary conditions 

0k                                     
tx , (0, )t              (26a) 

0ku                                    
vx , (0, )t              (26b) 

0Q                                    
qx , (0, )t              (26c) 

0                                    
Tx , (0, )t              (26d) 

Zero variations at initial time 

(0) 0ku                                  x                              (27a) 

(0) 0ijJ                                  x                              (27b) 

(0) 0                                  x                              (27c) 

(0) 0iH                                  x                              (27d) 

Zero end time variations for specified boundary conditions 

) 0(k t                                  
tx                            (28a) 

0( )ku t                                   
vx                           (28b) 

0( )Q t                                   
qx                           (28c) 

) 0(t                                   
Tx                           (28d) 

 

Consequently, we have now established a Principle of Stationary Mixed Convolved Action for a Linear 

Thermoelastic Continuum undergoing infinitesimal deformation.  This may be stated as follows:  Of all the 

possible trajectories { ( ), ( ), ( ), ( )}k ij iu J H      of the system during the time interval (0, )t , the one that 

renders the action 
TCI  in (19) stationary, corresponds to the solution of the initial/boundary value problem.  

Thus, the stationary trajectory satisfies the balance laws of linear momentum (22a) and energy (22c), along 
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with the linear thermoelastic constitutive relationship (22b) and the extended Fourier law of heat conduction 

(22d) in the domain   over the entire time interval.  In addition, the traction (23a), velocity (23b), heat 

flux (23c) and temperature (23d) boundary conditions are satisfied throughout the time interval, while also 

complying with the initial conditions defined by (24a-d) in   and (25a-d) on the appropriate portions of 

the bounding surface.  Furthermore, the possible trajectories under consideration during the variational 

process are constrained precisely by their need to satisfy the specified initial and boundary conditions of 

the problem in the form of (26a-d), (27a-d) and (28a-d). 

 

Remarkably, we are able to define a single real scalar functional 
TCI , based upon convolution and fractional 

derivatives, which encapsulates all of the governing differential equations, along with the boundary and 

initial conditions, for dynamic thermoelasticity.  This represents the first true mixed variational formulation 

for a dissipative thermomechanical continuum and demonstrates the ability of the mixed convolved action 

approach to address multi-physics phenomena. 

 

5.  Finite element formulations in space and time 

In this section we will develop a computational framework using finite elements for both space and time, 

but first we need to define a suitable weak form.  While the first variation of the MCA represented by 

equation (20) could be used as the weak form, it is not unique, as any number of integration by parts 

operations can be applied to it, resulting in a new weak form.  Here we choose to modify the continuity 

requirements associated with equation (20) by moving all spatial derivatives onto the displacements 
iu  and 

the temperature impulses  .  Then, starting with equation (20) and performing spatial integration by parts 

on the terms involving first order spatial derivatives of stress impulse 
ijJ  and the heat vector 

iH  yields 

the following expression: 
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                     (29) 

 

Equation (29) is now the weak form on which we will base our numerical methodology.   

 

We proceed with the development of a finite element formulation based on (29).  In the present work, we 

will only deal with two-dimensional problems, however most of the equations either generally apply to 

three-dimensional problems also, or can be simply extended for full three-dimensional analysis.  The weak 

form selected above was of course not arbitrary but chosen because of the location of the spatial derivative 

B  operators.  In (29), we have only first order spatial derivatives of displacements, temperature impulses, 

and the variations of these field variables.  Then for a convergent formulation we must enforce at least 
0C  

continuity in space for these quantities, while for impulse of stress and heat flux fields only 
1C 

 continuity 

need be enforced.  This means that for the simplest case we can use linear spatial interpolation for 

displacements and temperature impulses, while we can consider the other quantities to be constant 

throughout the element and generally discontinuous across element boundaries.   Temporally, first order 

derivatives appear for each field variable, so we must maintain 
0C  continuity in time, which for the simplest 
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finite element scheme refers to using linear shape functions in time.  We should emphasize that while the 

impulses of stress and heat flux must be continuous in time due to the appearance of first order derivatives 

in (29), generally, the stresses and heat fluxes need not be.   

 

It is important to again note the absence of the end time constraints that appear in any application of 

Hamilton’s principle.  This allows for very natural use of temporal finite elements for the discretized version 

of (29) without needing to resort to some of the ad-hoc methods of dealing with this constraint that other 

variational approaches have required (Kane et al., 1999, 2000; Marsden and West, 2001; Sivaselvan and 

Reinhorn, 2006; Sivaselvan et. al., 2009; Apostolakis and Dargush, 2012, 2013). 

 

Upon spatial discretization of our domain and spatial integration we can then write the terms appearing in 

the weak form of (29) as  

 
e

k k

T

o uuu u d 


    u M u                                               (30a) 

 
e

ij ijkl kl

T

JJJ A J d 


    J A J                                             (30b) 

 
e

ij ijk k

T

JuJ B u d 


    J B u                                              (30c) 

  
e

ijk k ij

T T

JuB u J d 


    u B J                                           (30d) 

 
e

To

o

d
c

T



  


    θ M θ                                              (31a) 

 
e

To
i ij HH

o

j dd H
T

H


 


    H A H                                        (31b) 

1
 

e

T

i i jj HH

o

d
T

H d H 


    H D H                                       (31c) 

1
 

e

T

i i H

o

B d
T

H   


    H B θ                                           (31d) 
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1
 

e

T T

i i H

o

B d
T

H  


    θ B H                                           (31e) 

 
e

T

ij ijk ukB u d      θ B u                                            (32a) 

e k

T T

ij ijk uB u d        u B θ                                           (32b) 

where the bold face characters represent the discrete counterpart of a quantity.  Here we wish to consider 

the simplest two-dimensional case, where we will use linear triangle elements for spatial interpolation of 

displacements and impulses of temperature.  We then consider impulses of stress and heat flux to be 

constant throughout the element.  The area shape functions can be written explicitly as 

1 2

1

2

1
T

 





  
 


 
 
 

N                                                             (33) 

where 
i  represent the local or natural element coordinates, which for the linear triangular elements are 

area coordinates.  The shape functions, along with the Jacobian, are used to map our physical elements to 

the master isoparametric triangle element shown in Fig. 3, with coordinates 
1  and 

2  ranging from 0 to 

1.  Then we can represent the geometry of an element in terms of these local coordinates by interpolating 

the coordinates at nodes 1-3, such that 

x  N x                                                                   (34a) 

y  N y                                                                   (34b) 

 

where now we use 
1x x  and 

2y x .  The components of the Jacobian matrix for an element are then 

defined as 

i
ij

j

x







J                                                                  (35) 

such that  
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1 2

1 2

x x

y y

 

 

 
 

 

 

 
  
 
 

J                                                             (36)  

Then the area of an element, A , can be related to the determinant of the Jacobian by 

/ 2A  J                                                                  (37) 

 

 

Fig. 3.  Isoparametric master triangle element  

 

Next we will define sub-matrices 
ib  as 

 

0

0

i

i

i

i i

Ju

dN

dx

dN

dy

dN dN

dy dx

 
 
 
 

  
 
 
 
 

b                                                             (38a) 

( )

i

H i

i

dN

dx

dN

dy



 
 
 
 
 
 

b                                                            (38b) 

0

( )

0

i

u i

i

dN

dx

dN

dy



 
 
 
 
 
 

b                                                             (38c) 
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Then the full b  matrices can be written by concatenating the sub-matrices such that 

 1 2 3Ju Ju Ju Jub b b b                                                       (39a) 

 1 2 3H H H H   b b b b                                                     (39b) 

 1 2 3u u u u   b b b b                                                      (39c) 

and finally we can relate these b  matrices to the B  matrices appearing in our finite element formulation 

by 

eJu Ju d  B b                                                             (40a) 

1
eH H

o

d
T

   B b                                                          (40b) 

3 T

u e u d   N b                                                     (40c) 

where all integration is carried out numerically via Gauss quadrature.  For more information on shape 

functions, mapped elements, and numerical integration the reader is referred to Bathe (1996) and 

Zienkiewicz and Taylor (2000).   

 

The M  matrices are calculated as lumped mass matrices, such that we have 

6 / 3uu o A hM I                                                         (41a) 

3 / 3o

o

A h
T

c



M I                                                      (41b) 

 

while the other matrices are calculated as 

1 0

1 0

0 0

1

2

JJ A h
E

 


 

  
  
 
  


A             for plane strain        (42a) 
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 

1 0

1 0

0 0 2 1

1
JJ A h

E







 
 

 
  

A            for plane stress       (42b) 

3

o

o
HH A h

T k


A I                                                             (42c) 

3

1

o

HH A h
T k

D I                                                             (42d) 

where 
nI  is a [ ]n n  identity matrix,   is the coefficient of thermal expansion, k  is the thermal 

conductivity,   is Poisson’s ratio, and E  is Young’s modulus. 

 

In a similar manner to the other terms appearing in the weak form (29), after spatial discretization, the body 

force contributions over an element become: 

 
e

T

kku j d 


    u j                                                       (43) 

while the terms from the boundary conditions can be obtained by integration over an element edge, 

producing 

   1 1
2 2

 
t

k

T

k k du   


       u τ τ                                   (44a) 

   1 1
2 2

 
v

k

T

k kuu d 


       τ u u                                   (44b) 

where j , τ , τ  and  τ  now include the contributions from the spatial integrations.  Consistent with the 

appearance of overbars, the symbols u  and τ  indicate known quantities that can be evaluated from the 

specified boundary conditions.  Likewise, j  is associated with known body force contributions.  The 

corresponding terms in (44a,b) and (43) can then be included on the right hand side of the discrete form of 

the governing equations.  On the other hand, the u  and τ  appearing in (44a,b) are unknown surface 

variables, which can be related to nodal displacements and element stress impulses, respectively, and 
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therefore can contribute to the left hand side of the discretized representation.  Because identical relations 

can be established for the variations u  and  τ , the ultimate contribution of these terms to the left hand 

side system matrix will be symmetric.   However, an extrapolation of the element-based stress impulse 

variables J  may be required to form τ , unless these stress impulse variables include locations exactly on 

the element edges.  In the present implementation, such is not the case.  The J  variables are assumed 

constant within each element.  This would provide only a very crude approximation of the unknown 

boundary traction impulses τ  and the resulting left half-order temporal derivatives τ .  Consequently, here 

we simply equate the unknown variables to known values (i.e., τ τ , u u ) on edges associated with 

t  and 
v , such that the enforced tractions have a contribution defined by 

 1
2

 
t

k

T

k ku d   


      u τ                                        (45a) 

while the enforced displacement integral has no explicit additional effect, because  

 1
2

 0
v

k kk uu d


                                                  (45b) 

Similarly, for the heat terms, after spatial discretization, the body source contributions over an element can 

be written: 

1
 

e

T

o

d
T

 


    θ Ψ                                                  (46) 

while the terms from the boundary conditions can be evaluated through integration over an element edge, 

thus yielding 

   1 1
2 2

 
o

q

T

T
Q Q d 



   
 

   θ Q Q                                   (47a) 

   1 1
2 2

 
T

oT

TQ d   


    
  

  Q θ θ                                   (47b) 
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In a manner similar to our handling of the mechanical boundary condition terms, we simply equate the 

unknown variables to the known values (i.e., Q Q , θ θ ) on edges associated with 
q  and 

T , such 

that the enforced heat fluxes have a contribution defined by 

 1
2

 
o

q

T

T
Q dQ 



   
 

  θ Q                                         (48a) 

On the other hand, the enforced temperature impulse integral has no explicit additional effect, because  

 1
2

 0
T

oT
Q d  



   



                                               (48b) 

 

Note that for (46), (47) and (48) the factor of 1 / oT  has been included, along with the effects of the volume 

and surface integrations, in the discretized terms on the right hand side to assure that all terms represent 

actions.  Substituting the preceding discretized representations into equation (29) provides the spatially 

discretized mixed weak form for an element, which can be written: 

0

T T T T T

uu JJ Ju Ju

T T T

HH HH

T T T

H H

T T T

u u

T T T T



 

 

   

  

 

 

   

   

  

  

 

 

  

  



 

     

u M u J A J J B u u B J

θ M θ H A H H D H

H B θ θ B H

θ B u u B θ

u j u τ θ Ψ θ Q

                               (49) 

 

Next we must consider temporal discretization of the weak form.  As previously mentioned, due to the 

presence of first derivatives, we must maintain at least 
0C  continuity of our field variables versus time, 

thus linear shape functions are used for temporal interpolation.  Then, over a time interval 0 tt   , we 

have: 

0 0 1 1( ) ( ) ( )t N t N t u u u                                                    (50a) 

0 0 1 1( ) ( ) ( )t N t N t J J J                                                    (50b) 
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0 0 1 1( ) ( ) ( )t N t N t θ θ θ                                                     (50c) 

0 0 1 1( ) ( ) ( )t N t N t H H H                                                  (50d) 

in terms of the temporal shape functions 

0( ) 1 t
t

N t


  ;  
1( ) t

t
N t


                                                (51a,b) 

with similar temporal interpolation for the variations of our field variables, as well as applied force, traction, 

heat source, and flux terms. 

 

Next, we substitute the temporally discretized variables (50a-d) into equation (49), perform all necessary 

convolution integrals in closed form, set all variations at 0t   to zero while allowing the variations at 

t t   to remain arbitrary, multiply through by 4 / t , and collect like terms to arrive at the following 

symmetric set of equations: 
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   

12 2

12

2

12 2

12

1 2 2

2

2

1 0

1

2

0

2

2

0

0

0 04

0

0 0

0 02 4

0

0 0

0

0

0

T Tt t
uu Ju u

t
Ju JJ

Tt t
u H

t
H
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u

J


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        (52) 

where 

21HH HH
t

HH
 A A D  ;  

20HH HH
t

HH
 A A D                                    (53) 

While we could now use (52) as our final set of equations to solve, there is one more simplification that can 

be made.  Because we chose to interpolate the impulses of stress and heat vectors as element-by-element 

1C 
 functions, we have the freedom to condense these variables out at the element level prior to assembling 
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the global set of equations relating to (52), which can save considerable computation time.  Then solving 

for 
1J  and 

1H  gives us 

 1

1 0012
t

JJ J JJu

     J A B u u A J                                              (54a) 

 1

1 0 0 021 1HH HH
t

H

    A B A HH                                        (54b) 

and after substituting these relations into (52) and rearranging, we can write the condensed set of equations 

as 

111 1

111 1

ee e

uu u

ee e

u

u



 

      
  
 

 
  

fuK K

fK K 
                                               (55) 

where 

   
 

2

1 4
1

e T

uu Ju JJ u t uuJ




K B A B M ;  

 
2

1 4
0

e T

uu Ju JJ u t uuJ




 K B A B M                   (56a) 

 
2

1 4
1 1

e T

H HH H t   




 K B A B M ;  

 
2

1 4
0 1

e T

H HH H t   




  K B A B M               (56b) 

1 0 1 0

2e e e T e T T

u u u u u
t

      


K K K K B                                      (56c) 

 2 4
1 1 0 0 00 0 0

e e e T

uu u Jut tu  
   f j j K u K B J                                 (56d) 

  0
2 4

1 1 0 0 0 0 00

e e e T

u Ht t    
   f K K u B                                (56e) 

and 

 11
0 2 1 0 0

T T T

H H H HH HH  

 B B B A A                                        (56f) 

 

While all of this has been formulated on the element level, in practice we actually wish to solve the 

following global set of equations that can be arrived at via standard assembly procedures (Bathe, 1996; 

Zienkiewicz and Taylor, 2000): 

1 1

1 1

u nuu u n

nu n



 
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 


 

fK K u

fK K 
                                               (57) 
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where 
nu  and 

n  consist of all nodal displacements and temperature impulses, respectively, at each time 

step n .  Then one simply needs to first compute the global stiffness K  matrices, specify allowable initial 

conditions, and then march the solution in time by computing the right hand side at each time step and 

solving (57). 

 

The formulation defined above is a true space-time finite element method for generalized dynamic 

thermoelasticity.  The temporal discretization is based upon a consistent variational approach for the fully 

coupled problem.  However, it is interesting to examine special cases of this formulation for the classical 

problems of elastodynamics and heat conduction.  For pure elastodynamics, the formulation defined above 

reduces precisely to the Newmark constant average acceleration method (Dargush et al., 2015).  On the 

other hand, for the problem of heat conduction based upon the classical Fourier law, the mixed convolved 

action formulation defined above reduces to the Crank and Nicolson (1947) method, except that the primary 

variable here is the impulse of temperature, rather than the temperature itself (Dargush et al., 2016).  For 

the more general case of dynamic thermoelasticity, the mixed convolved action temporal discretization 

adjusts between these two extremes depending upon the material parameters governing the conservative 

and dissipative processes. 

 

6.  Computational example problems 

We now turn to consider two computational examples to validate the mixed convolved action finite element 

formulation for dynamic thermoelasticity and to investigate the transient response with and without second 

sound effects.    

                                

6.1  Half-space subject to heat pulses 

For this first example we analyze the problem of a spatially uniform heat pulse acting on the free surface 

of an isotropic half-space.  Figure 4 shows a depiction of the half-space problem and Fig. 5 provides a 
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schematic of the actual domain used for analysis.  This finite domain is divided into 1260 triangular 

elements with biased refinement towards the free surface.  Elements have approximate edge 

nondimensional lengths of 0.02 close to the free surface and 0.2 close to the fixed right side boundary.  All 

material properties are considered to be dimensionless, as well, having values of 1o  , 1ec  , 1k  , 

0.743E  , 0.3  , and 0.541  .  Various values of second sound relaxation time 
o  and initial 

temperature 
oT  are considered.  Dimensionless time steps of duration 0.01t   are used for all analyses.  

For mechanical boundary conditions, we consider a free (tractionless) surface at 0x    and all other 

surfaces to be on smooth rollers.  For the thermal boundary conditions, a single surface heat pulse is applied 

to the free surface at 0t  , while the other surfaces are considered to be insulated. 

 

In the first case we consider the applied heat pulse to be a half sine-pulse in time, such that ( ) sin( )q t t  

for 0 1t  .  Figures 6a and 6b show the resulting temperature change T  and horizontal displacement 

xu versus time at 1x  , respectively, for the uncoupled case with no second sound effects, and then the 

coupled case with second sound effects.  Note that the strength of the coupling here can be controlled by 

adjusting 
oT .  When 1oT  , the strain rate dependent coupling term in our formulation becomes 

negligible, which is referred to somewhat ambiguously as “uncoupled”.  For the uncoupled cases in the 

plots we use 61 10oT   .  Included in Figs. 6a and 6b are solutions from a well-established boundary 

element method (Chen and Dargush, 1995) and there is clearly good agreement in the solutions from these 

two distinct formulations.   

 

For the second case we consider the applied heat pulse to be a sine-squared pulse, such that 2(sin )q t  

for 0 1t  .  Plotted in Figs. 7a and 7b are the resulting temperature change T  and horizontal 

displacement 
xu , respectively, versus time at 1x   for various values of initial temperature 

oT  and second 
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sound relaxation time 
o .  Interestingly, from both plots the highest peak corresponds to the lower value 

of 
oT  and highest value of second sound relaxation time 

o . 

 

 

Fig. 4.  Thermoelasticity half-space problem definition 

 

 

 

 

Fig. 5.  Thermoelasticity half-space solution domain and boundary conditions 
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Fig. 6a.  Temperature at 1x   versus time for half-sine pulse, MCA and BEM 

 

 

Fig. 6b.  Horizontal displacement at 1x   versus time for half-sine pulse, MCA and BEM 
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Fig. 7a.  Temperature at 1x   versus time for sine-squared pulse  

 

Fig. 7b.  Displacement at 1x   versus time for sine-squared pulse  
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6.2   Square domain with thin surface layer subject to repeated pulse heating   

For this example, we consider localized heat flux applied to the center of the top surface of a square domain 

with a thin top layer, as a simplified model problem for pulsed laser heating.  This problem is very similar 

to the pulse heating problem of Dargush et al. (2016), but here we consider the case with thermoelastic 

coupling.  The square domain is discretized into two sets of 800  uniform triangular elements to assure no 

biases are introduced.  The heat source is spatially triangular, as shown in the problem schematic, and is a 

square pulse in time.  The pulse has time duration 0.1dt  , for which the heat source is “on”.  This pulse 

is applied at the beginning of each period, where the time period is set to 1.0pt  , and then turned “off” 

for the remainder 0.9dpt t   of each period.  The time step for the mixed convolved action numerical 

analysis is set at 0.01t   in order to capture the variations in time.  The amplitude of the pulse is 1oq   

for all cases.  The pulse is applied centrally to the top surface and has width 0.2b  .  All other surfaces 

are considered to be insulated, as indicated in Fig. 8.  For mechanical boundary conditions we have rollers 

on all surfaces except for the top, which is traction free. 

 

Dimensionless parameters are considered, with 2E  , 0  , and unit values for 
o , 

ec ,   and 
oT  for 

all cases.  We also include second sound effects with relaxation time 0.1o  .  The square domain has 

edge length 2L   and the layer has thickness 0.1h  .  For the first case we consider the material to have 

the same isotropic conductivity as the body such that 
1 2 1k k  , then for case 2 we consider an insulating 

layer with 
2 0.01k   and for case 3 we consider a conductive layer with 

2 100k  .  
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Fig. 8.  Thermoelasticity square space problem definition 

 

 

Figures 9, 10 and 11 show the temperature and vertical displacements plotted against time at points A, B, 

and C defined in Fig. 8 for layers with the three different levels of thermal conductivity.  When compared 

to the strictly thermal cases analyzed in Dargush et al. (2016), we instantly recognize a significant change 

in the temperature solution due to coupling.  Here the value 1   is used intentionally to highlight the 

thermomechanical effects.  The consequence of the insulating layer is again to smooth out the second sound 

effects, however significant oscillations in the thermal field still remain due to the coupling with the elastic 

stress field.  From Figs. 10a and 10b we see that there is indeed a thermal shielding behavior associated 

with the insulating layer, which is due to the smoothing of the oscillations caused by second sound effects.  

Comparing Figs. 9, 10 and 11, we see that the conductivity of the layer has little influence on the magnitudes 

of the vertical displacements, however for the conducting layer we notice less temporal oscillations, which 
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is likely due to the waves becoming increasingly one-dimensional for layers with increasing thermal 

conductivity, resulting in less interference.   

 

This transition from 2-d to 1-d response with increasing conductivity of the layer is actually quite interesting 

and the point of Fig. 12 is to show this transition quantitatively.  In Fig. 12 we plot the maximum absolute 

value of the horizontal displacement xu  at point D, as defined in Fig. 8, resulting from a single heat pulse 

versus layer thermal conductivity 
2k .  From this plot we see that for 

2 110k k  we have linearly decreasing 

horizontal displacement.  For 
2 1k k  we have that the vertical and horizontal displacements are of similar 

magnitude, while for 
2 1k k  the horizontal elastic quantities become negligible and the problem can be 

considered essentially one-dimensional with evenly distributed heating on the interface.  Then although the 

layer is subject to a highly localized heat source, the rest of the body behaves as though it is subject to a 

spatially uniform distributed heat source. 

 

Of course it is visually more interesting here to view the dynamic response of the field through a contour 

plot, rather than by observing the behavior at a single point.  In order to capture the full dynamic response, 

videos of temperature and vertical displacement response, corresponding to all cases examined in this 

section, are included as supplemental files to this paper.  The file names indicate either temperature (temp) 

or displacement (uy) content, along with the value of 2k .  In addition, Figure 13 provides four sample 

contour plots that represent a snap shot of these videos at 4.1t  , or just after the final applied heat pulse, 

for the case of no layer ( 2 1 1k k  ) and a highly conductive layer ( 2 10,000k  ).  One should be careful 

to note that when viewing these contours and videos, the limits of the color scales have been adjusted for 

each plot to correlate approximately to the minimum and maximum values attained during the 5 second 

simulation interval for each case. 
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Fig. 9a.  Temperature versus time for 
1 2 1k k   

 

Fig. 9b.  Vertical displacement versus time for 
1 2 1k k   
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Fig. 10a.  Temperature versus time for 
1 21, 0.01k k   

 

 

Fig. 10b.  Vertical displacement versus time for 
1 21, 0.01k k   

0 1 2 3 4 5
-0.01

-0.005

0

0.005

0.01

0.015

t

T
e
m

p
e

ra
tu

re

 

 

A

B

C

0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

6

7

8
x 10

-3

t

u
y

 

 

A

B

C



41 
 

 

Fig. 11a.  Temperature versus time for 
1 21, 100k k   

 

Fig. 11b.  Vertical displacement versus time for 
1 21, 100k k   
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Fig. 12.  Maximum horizontal displacement at point D versus layer conductivity 
2k   
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Fig. 13.  Sample contour plots of temperature field and vertical displacement at 4.1t  : Upper plots for 

uniform domain with 2 1k  ; Lower plots for highly conductive layer with 2 10000k    

 

7.  Conclusions 

In the present work, we applied the idea of mixed convolved action for the first time to a multi-physics 

problem, here associated with coupled dynamic thermoelastic continua.  To motivate the development of 

that action for the continuum case, we first considered a lumped parameter thermoelastic model, for which 

a systematic derivation was presented.  Then, with that process firmly established, the corresponding 
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continuum problem was addressed by proposing a pure variational time-domain formulation of a new 

Principle of Stationary Mixed Convolved Action.  Remarkably, this variational statement produces all of 

the governing partial differential equations, boundary conditions and initial conditions as its Euler-Lagrange 

equations.  In addition, the variations are taken in a manner that is completely consistent with the specified 

boundary and initial conditions. 

 

Furthermore, the weak form proposed in (29) has an elegant structure, featuring a balanced appearance of 

the primary variables and variations, as well as the temporal and spatial derivatives.  Here we considered 

the simplest finite element representation in both time and space, by implementing linear finite elements 

for temporal discretization, and linear triangular elements for spatial discretization.  Of course with the 

variational framework that the mixed convolved action provides it is simple to create more sophisticated 

numerical methods with higher order convergence characteristics, even if just by implementing higher order 

elements. 

 

Several computational examples also were considered to validate the methodology and numerical 

implementation and to explore aspects of dynamic thermoelasticity with and without second sound effects.  

In the first example, which reduces to one-dimensional behavior, the mixed convolved action finite element 

results were compared with an existing boundary element formulation and found to be in excellent 

agreement.  The second example involves the pulsed localized heating of a thin layer positioned over a 

square domain.  Depending upon the relative conductivity of the layer, the temperature and displacement 

subsurface responses can be quite different.  Interestingly, for the case of a highly conducting layer, the 

solutions reduce to nearly one-dimensional response, despite the spatially localized nature of the applied 

surface heat source.  While this is an idealized example, some insight into related problems of laser-pulsed 

heating may be possible.   
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