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ABSTRACT 

One of the major, long-standing challenges in analytical mechanics involves the inability to 

address systems with dissipation in a rigorous manner.  In this paper, we overcome that difficulty 

by formulating a novel temperature-based stationary variational action principle for transient heat 

diffusion based upon a temporal convolution operator and fractional derivatives.  The associated 

Euler-Lagrange equations provide the governing heat equation, along with the initial conditions 

on temperature and specified heat flux boundary conditions.  A further integration-by-parts then 

leads to a formulation that is somewhat less symmetric but can be written without introducing 

fractional calculus.  Finally, the resulting principle is used to solve two basic one-dimensional 

problems, as an illustration of a Ritz-type approach. 

Keywords:  Heat diffusion; Variational methods; Hamilton’s principle; Euler-Lagrange 
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1.  Introduction 

Analytical mechanics, which began with the work of Lagrange [1] and Hamilton [2, 3], brought 

powerful new ideas to the study of dynamical problems.  However, these original forms were 

unable to address problems with dissipation.  Furthermore, Hamilton’s principle treats the initial 

value problem from a boundary value problem perspective by constraining the variations to be 

zero at both the beginning and end of the interval of time.  However, in a dynamical system, the 

response at the end of the time interval is not known and often is the most important objective of 

the entire analysis.  The first major attempt to address damped systems is attributed to Rayleigh 

[4] through his introduction of what is now called the Rayleigh dissipation function.  Fundamental 

work by Biot [5, 6] along these lines for heat diffusion is particularly noteworthy.  
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Modern work on the application of this idea led to the development of the mixed Lagrangian 

formalism (MLF) originally by Sivaselvan and Reinhorn [7] and Sivaselvan et al. [8].  Subsequent 

research extended MLF to fracture [9], contact [10] and thermomechanics [11-14].  Although this 

approach can provide useful solutions as noted above, the Rayleigh dissipation formulation does 

not adhere to rigorous operations of variational calculus for action principles, as the dissipation 

functional enters the first variation in an ad hoc manner.  Additionally, one can no longer construct 

an action in explicit form; only the first variation can be written.  Several less elegant solutions 

also were proposed to write Lagrangians for dissipative systems, including those approaches that 

involve additional variables and mirror systems [15, 16].  Other notable work to create functionals 

for dissipative systems includes that by Kaufman [17], Morrison [18], Grmela [19], Anthony [20], 

Cresson et al. [21], Kim et al. [22] and more recently by Guo and colleagues [23-25].  

Nevertheless, none of these proposed formulations truly break the fundamental result presented by 

Bauer in his 1931 paper, which states “The equations of motion of a dissipative linear dynamical 

system with constant coefficients are not given by a variational principle” [26]. 

A major step forward to counter that statement was proposed by Gurtin [27-29] and Tonti [30-32] 

with the introduction of the convolution operator to replace the usual inner product in the temporal 

integral of Hamilton’s principle.  However, the Gurtin formulation produces integral forms of the 

Euler-Lagrange equations with no restrictions on the variations, while the Tonti formalism 

misstates the initial conditions for dissipative systems.  Riewe [33, 34] proposed the use of 

fractional derivatives in an inner product action integral.  This was a particularly good idea and 

Podlubny [35] has provided some physical interpretations of fractional calculus.  However, an 

appearance of fractional derivatives in the functional by themselves is unable to recover the 

governing differential equations for a dissipative system.  To resolve the issues, Dargush and Kim 

[36] present a principle of mixed convolved action using fractional derivatives.  This formulation 

can address both conservative and dissipative contributions, recovers the governing differential 

equations as the associated Euler-Lagrange equations and restricts variations consistently with the 

specified initial conditions.  The principle was subsequently extended to fractional single degree 

of freedom dynamical systems [37], continuum elastodynamics [38], dynamic poro- and thermo-

elasticity [39, 40] and heat diffusion [41].  These are true variational methods that solve the two 

main long-standing issues by addressing dissipative dynamical systems with proper variations 

consistent with the specified initial conditions.  Note that all this more recent work uses mixed 
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impulsive variables.  As an alternative, Kalpakides and Charalambopoulos [42] built upon the 

ideas of convolution and fractional derivatives to present a displacement-based formulation for 

elastodynamics.  On the other hand, the primary objective of the present paper on heat diffusion is 

to write a novel temperature-based convolved action variational principle in three dimensions, 

which also may be reformulated to eliminate the need for fractional calculus, a previously 

unanticipated result.  To illustrate the new variational principle, several simple one-dimensional 

thermal problems are addressed. 

The remainder of the paper is organized as follows.  In Section 2, we provide a review of the 

necessary preliminary relations and previously derived results to develop novel variational 

principles for the continuum heat diffusion problem.  One of these principles, based upon 

convolved energy, is developed in Section 3.  Included is the convolved functional with semi-

derivatives, its first variation and the corresponding Euler-Lagrange equations.  Then, after 

invoking a fractional integration-by-parts identity, the functional is rewritten without the need for 

fractional calculus.  In Section 4, a new approach is presented to leverage this variational method 

towards solving heat diffusion problems.  The approach is inspired by Ritz methods, which 

typically are used to solve for exact or approximate solutions to boundary values problems.  Here 

a Ritz-type method is developed, which will be used to obtain solutions to the time-dependent one-

dimensional continuum heat diffusion problem.  Finally, in Section 5, some general conclusions 

are outlined. 

 

2.  Preliminary Relations 

This section is reserved for concisely presenting key equations that will be necessary for 

developing the stationary action principle for transient heat conduction in the following section.  

Full derivations are not included here, and instead readers are referred to [36, 37] for details.  

Throughout this work standard tensor notation is used, with indices ,i j and k  ranging from 1 to 3, 

or x  to z .  Any subscripts other than ,i j and k  are just for notational purposes and should not be 

treated as ranging indices.  The standard Einstein summation convention is also taken advantage 

of here.  The primary variable throughout is temperature 𝑇, which when not clear, is always 

assumed to be a function of three-dimensional space and time.  Also, dots will be used to represent 
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partial derivatives with respect to time, breve symbols to denote temporal semi-derivatives, and 

overbars to signify “known” or specified quantities. 

 

The governing equation for transient heat transfer via conduction, also known as the “Heat 

Equation” is given as  

( )i ij j oT Tc  =         in volume     (1) 

For a well posed initial boundary value problem we also have initial conditions 

0(0)T T=                        in volume                                  (2) 

as well as the standard boundary conditions on heat flux and temperature, respectively, 

 ij j iT n q − =                   on surface 
q                              (3a) 

T T=                          on surface T                              (3b) 

In the above, 0T  represents the specified initial temperature, T  is the given boundary temperature, 

and q  is the specified normal component of the heat vector, as shown in Fig. 1, with 0q =  as the 

default boundary condition at any point.  Furthermore, 
o  is density, 

ij  is the thermal 

conductivity tensor, c  is the heat capacity, 
in  is a unit outward normal vector to the surface, and 

i  is the gradient operator.  Additionally, for a well posed problem 
q T  =   and 

q T  = . 

 

 

Fig. 1.  Heat diffusion problem definition 
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The convolution of two functions, which is central to the energy principle defined in the following 

section, is given as 

( )*

0

( ) ( ) ( )

t

u v t u v t d  = −                                                   (4) 

In the above it is assumed that functions ( )u t  and ( )v t  are Lebesgue integrable.  One specific 

convolution that is important in this work is the left Riemann-Liouville fractional derivative of 

order  , defined as 

( )
( )

0
0

)
1

1 (
( ) for 0

(1 )

td u
d

dt
tu

t






 

 
+  + 

 −
 

−
D           (5) 

The semi-derivative, having 1
2 = , plays a central role in the development to follow.  This will 

be denoted by a breve symbol and is defined explicitly as 

( )
( )

2

1/2

1/

0
0

)
)

(1 2

1 (
( )

/
(

)

t

u
t

d u
t u t d

dt





+=

 −
 + D                                       (6) 

Crucial to the developments throughout this work are integration-by-parts operations, including 

integration-by-parts of terms containing fractional derivatives.  The usual temporal integration-by-

parts operation on the inner product of two functions is 

0 0

) )( ( ) ( ) ( ( ) ( ) (0) (0)

t t

d u d t v tv vv u uu      −= −+                                  (7) 

On the other hand, the temporal integration-by-parts operation of two convolved functions, which 

is even more useful here than the prior relation, is given by 

( ) ( )* *( ) ( ) ( ) (0) (0) ( )u v t u v t u t v u v t= + −                                       (8) 

Next, the fractional integration-by-parts relation for the convolution of fractional derivatives can 

be written  
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( ) ( )( ) ( )1

0 0
( ) ( (0)( ) )u v u v t u vt t 

+ +

− = + D D     (9) 

which reduces in the specific case of semi-derivatives with 1
2 =  to the following form: 

( ) ( )* *( ) ( ) ( ) (0)u v t u v t u t v= +                                                 (10) 

Detailed derivation of these fractional derivative relations can be found in References [36, 37]. 

 

Finally, we have the following for spatial integration-by-parts over the domain   having bounding 

surface    

( )   ( )   ii iu v d u v n d u v d
  

 = −                                     (11) 

where use is made of the classical divergence theorem of Gauss. 

 

3.  Convolved Energy Principle for the Transient Heat Problem 

In this section we present a new functional, 
HCI , that is posed purely in terms of temperature as 

the primary variable.  We will prove that this functional serves as a viable base for a novel 

variational principle for the transient heat problem.  In other words, the Euler-Lagrange equations 

derived by setting the variation of this functional to zero, and performing necessary integration-

by-parts operations, will correspond directly to the correct governing heat equation, boundary 

conditions, and initial conditions.  While it is tempting to refer to 
HCI as an action, because it results 

in a variational principle for a time-dependent problem, we should be careful, because it turns out 

that the dimensions are of energy, not action, thus we will refer to 
HCI  as a “convolved energy”.  

Several other closely related convolved action variational principles also can be developed.  As 

noted above, mixed versions have already appeared in References [40, 41].  In general, convolved 

action or energy principles can be developed using a semi-implicit construction methodology that 

resembles the process employed to build classical explicit solutions to boundary value problems.  

However, so as not to distract from the primary objective of this paper, the new, purely 
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temperature-based convolved energy variational principle for the heat problem will remain the 

focus of this section. 

 

With a semi-implicit approach for the transient heat problem with Fourier conduction, one begins 

by writing the required set of Euler-Lagrange equations governing the problem, defined above in 

(1)-(3).  Then, by developing an understanding of the anticipated outcomes of temporal and spatial 

integration-by-parts operations from (7)-(11), one can iteratively construct an appropriate 

functional form.  With that background in mind, let us now present the new convolved energy 

functional for the transient heat conduction problem: 

( ) ( )( ) ( )( )

( )( )

1 1 1
2 2

1 1
0

, ;  

( )   
q

H o

o o

o i ij j

o

C T

T T

I T T t T T t T T t d

T t T dc t

c

T q d

 


 



 =  +  
 

 − +  

 

    



 
                           (12) 

where 
oT  represents the absolute temperature at the free stress state, which should not be confused 

with the initial temperature distribution throughout the domain 0T .  Now, via taking variations of 

(12), and applying the appropriate temporal and spatial integration-by-parts relations, we will show 

that the stationarity of this energy functional will provide a solution to the transient heat problem 

as given by (1)-(3).  Let us start by taking the first variation and setting this equal to zero: 

 

1 1 1
2 2

1 1
0

 

( )   0

H o

o o
q

o i ij j i i

o

C T

T

j

T

jI T T T T T T dc

T t T dc d T q

      

  



 

 =  +  +  



  



 

− + =  



 
                       (13) 

(Notice that in (13), and in all equations to follow, the explicit reference to time t  in the 

convolutions is dropped.)  Next, we apply spatial and temporal integration-by-parts operations to 

the first three terms, with the goal of removing all derivatives from the variational quantities.  Here 

we are also accounting for the symmetry of ij , and considering separately the parts of the 

boundary q , where heat flux is specified and T , on which temperature is given.  Then, 

( )

( ) ( )

1

1 1
0

1

( ) (0)

0

q

H o

o o

o
T

o i i

T

j j

o

T

ij j i

ij

C

T

T j i

I T T T T d

T t T T d T T n q d

T T

c

n d

c

    

   

 









 =  −  
 

  + − +  + 



 

 + 



 

  =



 



               (14) 
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(The detailed mathematical steps required to arrive at (14), starting from (13) are provided in 

Appendix A.)  At this point it is imperative to point out that the variations are arbitrary, except that 

we must restrict these variations, such that along the boundary where temperature is specified, 

0T = .  Thus, the final integral in (14) vanishes.  Now, looking at the three remaining square 

bracketed terms, we are left with Euler-Lagrange equations corresponding to the heat equation (1), 

the initial conditions on temperature (2), and the heat flux boundary conditions (3a), respectively.  

Meanwhile, the fixed temperature boundary conditions (3b) are handled explicitly. 

 

Thus, we have successfully established a Principle of Stationary Convolved Energy for Transient 

Heat Diffusion, based upon the functional 
HCI , defined in (12).  Notice that the current approach 

resolves the difficulty with dissipative processes inherent in variational formulations based upon 

Hamilton’s principle, while also avoiding the disturbing end point constraint issue associated with 

those classical statements.  Consequently, this represents the first true variational principle for 

dissipative heat conduction, written exclusively in terms of temperature-based variables.  Here, we 

emphasize that previous contributions by Gurtin [27] on the related viscoelastic problem used 

extraneous convolutions that led to principles involving the time integration of action and the work 

by Tonti [30, 31] produced incorrect initial conditions.  On the other hand, the work by Darrall 

and Dargush [40] and Dargush et al. [41] are mixed formulations written in terms of impulse 

variables.  Thus, the work presented in this section is advantageous in several ways over all existing 

true variational approaches for the problem of heat conduction.  In particular, the convolved energy 

functional 
HCI is written in terms of temperature, rather than the less familiar concept of 

temperature impulse.  However, the functional in (12) still depends upon the semi-derivative of 

temperature T , as do the mixed convolved action functionals in References [40, 41].  Is this 

necessary?  Does breaking the limitations stated by Bauer [26] require the introduction of 

fractional derivatives? 

 

To address these questions, let us present an alternative, equivalent form of the convolved energy 

functional 
HCI  by applying the integration-by-parts relation (9) to the first integral in (12).  

Specifically, we write 

( ) (0)o o oc c T T t c TT T T  + =            (15) 
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Substituting (15) into (12) produces the following convolved energy functional: 

( )

   0

1 1 1
2 2

1 1 1 1
2

, ;  

( ) (0)  ( )   

H o

o o
q

o

o i ij j

o To

C T

T T

I Tc

c

T T t T T T d

T t T d T t T dc d T q

 

 
  


 =  +  



 





 + − +   



  
           (16) 

which involves only ordinary calculus.  Alternatively, if one satisfies the initial conditions exactly, 

such that 
0(0)T T=  throughout the domain   as an essential condition, then this can be rewritten 

in a simplified form as 

( )

   

1 1 1
2 2

1 1 1
2

, ;  

( ) (0)   

H o

q
o o

o i ij j

o

C T

T T

I T T t T T T T d

T t T d T

c

c q d

 


 






 =  + 

+

  

−  



 
   (17) 

The functional (16) is equivalent to that expressed in (12), but without fractional derivatives.  By 

enforcing the stationarity of (16), and then using appropriate temporal and spatial integration-by-

parts operations, the governing equations for dissipative heat diffusion in (1), (2) and (3a) are 

recovered as its Euler-Lagrange equations.  Relation (3b) is enforced as an essential condition.  For 

the functional defined by (17), both (3b) and (2) become essential conditions.   

 

Note that in all preceding relations there are no terms related to volumetric heating.  However, if 

one wishes to include body heating, then one can simply add a term 1  
oT

T d


    , where   

is the specified heat rate per volume, to any of the energy functionals. 

 

The convolved energy functional presented in (12) provides a most elegant symmetry for the 

transient heat problem.  An entire family of non-symmetric formulations can be derived by using 

the more general integration-by-parts relation (9) with 1
2  .  Clearly, however, with the 

alternative variational functionals (16) and (17), fractional calculus is not required to break the 

limitations presented by Bauer for dissipative variational statements [26].  Only convolution is 

necessary, along with suitable initial condition integrals. 

 

Before concluding this section, we should compare the present temperature-based convolved 

energy principle with the previous mixed convolved action functional 
FCI  appearing as equation 

(22) in [41] for classical Fourier heat diffusion.  First and foremost, the corresponding Euler-
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Lagrange equations are not identical.  In particular, the mixed convolved action enforces the 

Fourier law of heat conduction in a variational sense, whereas the present functional (12) assumes 

that law embedded within the heat equation.  This results in the appearance of different boundary 

integrals and prevents one from deriving (12) directly from the convolved action 
FCI  of [41].  

Furthermore, the convolved action 
FCI  is written in terms of temperature impulse ( )t , while the 

present formulation uses the more familiar temperature variable ( )T t , where 
0

( ) ( )
t

t T d  =  .  

One advantage of temperature impulse is that allows the formulation of ballistic heat transfer in 

addition to classical heat diffusion in a common framework.  Furthermore, it provides an elegant 

symmetry to the equations of dynamic thermoelasticity [40]. 

 

Finally, as the main results from this section, in (12) and (16), we have developed temperature-

based variational principles, which involve the convolution operator.  The first of these takes a 

beautifully symmetric form in terms of semi-derivatives.  Most importantly, in the second form, 

there is no need for fractional derivatives.  This latter form will prove to be useful immediately in 

the proceeding section, where taking semi-derivatives may prove to be tedious. 

 

4.  A Ritz-type Method for Solving the 1D Problem 

We now turn our attention to leveraging the new variational principle presented in the previous 

section to solve one dimensional transient heat conduction problems.  The key idea here is to select 

assumed solution forms that generally depend on both the spatial coordinate x , where 0 x L  , 

and time t .  While the spatial and temporal functional form will be assumed, unknown coefficients 

will be determined by enforcing the stationarity of the convolved energy, as written in the form of 

(16).  In general, we will label these unknown coefficients na  and nb , depending on how they 

appear in the assumed solution form, and then we can write any assumed solution as 

,( , , )a a n nt aT T x b= .  Note that generally the assumed solution forms can be infinite series, finite 

series, or not series at all.  
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Upon substitution of an assumed solution form 
aT  into (16), and further evaluation of all 

convolution integrals, standard time integrals, time derivatives, spatial derivatives, and spatial 

integration, all processes that can be easily coded with a symbolic type toolbox (i.e., Matlab 

symbolic toolbox [43] or Mathematica [44]), we will be left with a function that is solely dependent 

on the coefficients 
na  and 

nb .  Thus, the variation of the resulting energy will be fully governed 

by the variation of these coefficients, and stationarity boils down to the resulting simpler equations, 

involving only first partial derivatives: 

0, 0H HC C

n n

I I

a b


=

 
=


                                                        (18) 

If not already clear, this approach is extremely reminiscent of a Ritz method to solving boundary 

value problems approximately [45, 46].  The approach here however involves both space and time, 

and involves stationarity of a time-dependent energy functional, as opposed to minimization of a 

time-independent total potential energy functional.  Of course, the jump to a time-dependent 

version of this type of solution method is by no means trivial and presents certain obstacles.  

Namely, while it is simple to setup a Ritz method solution with quadratic potentials such that all 

the final resulting equations to be solved are linear with respect to the unknown coefficients, in 

general we will find that when using the Ritz-type approach presented here, the resulting equations 

to be solved can generally be sets of nonlinear equations.  Despite this added complexity, we will 

show in the proceeding subsections that this new type of time-dependent Ritz method can still be 

quite useful.  

 

Before moving on to problem solving, a few more notes should be made on the outlined approach.  

First, it is important to highlight a powerful feature of the proposed time-dependent variational 

approach.  In particular, one need not know the actual form of the solution a priori to get a 

reasonably accurate approximate solution.  Also, as most specific problems will not have a closed 

form analytical solution, the method here becomes all the more important, as we can in theory still 

arrive at useful approximate solutions.  On the other hand, just as with similar variational 

approaches to non-time dependent problems, quality intuition about what types of assumed 

solution forms will work well goes a long way.  In other words, the better the initial guess of an 

assumed solution form, the better one can expect the final approximate solution to be. 
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4.1  Assumed solution as Fourier series in space and exponential in time 

Let us proceed forward with the time-dependent variational approach outlined above.  For 

boundary conditions, we will assume the homogeneous case, such that (0, ) ( , ) 0T t T L t= = , and 

for initial conditions we will assume generally that for 0 x L  , 
0( ,0)T x T= , where 

0T  is some 

constant.  This problem of course has the well-known analytical solution [47]: 

( )( )
2 2

2

1

02
( , ) 1 1 sin o

n c

n
t

n

LT n
T x t x e

n L

 









−  
 

=

   
= − − −   

  
                                (19) 

 

Let us then assume a solution form that is a Fourier sine series in space, and exponential in time:  

1

( , , , ) sin n

n

b t

a n

n
T x a x

L
t e



=

 
=  

 
a b                                             (20) 

where a  and b  are the vectors of unknown coefficients.  Now our job is to substitute (20) into 

(16) and evaluate the resulting convolved energy associated with this solution form.  First the 

relevant temporal and spatial derivatives are evaluated as, respectively: 

1

( , ) sin nb t

n

n

n

n
T tx a x b e

L



=

 
=  

 
                                               (21) 

and for this spatially one-dimensional case 

1

1 cos nb t

n

n

nT n
T a

x
x e

L L

 

=


 =

 
=  

 
                                          (22) 

Meanwhile the relevant convolution for computing the energy here is 

n n nb t b t b t
e e t e =                                                              (23) 

 

Next, we proceed forward evaluating all the remaining temporal and spatial integrations as 

instructed by (16).  We handle each of the four terms separately here for clarity.  Note the 

importance of the orthogonality of the sine functions here, as this allows us to completely disregard 

any terms coming from the cross multiplication of summation terms, or in other words terms 

coming from multiplication of terms with summation subscripts m n .  Computing integrals for 

the first terms yield: 
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( )( )

2 2

2

1
2

10

1

1

2

 sin
2

1
2 sin 2

8

4

n

n

n

L

t

bo
o n n

bo
n n

bo
n

t

n
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while for the second term: 
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a
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
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 
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
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
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and for the combination of the third and fourth terms: 
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n

c

n
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n

c

c
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 




=

=









=

      − = −            

 
=





− − 
 


= + − − 



+



 





 

Finally, the fifth term is simply zero, because for this problem, there is no boundary with prescribed 

heat flux.  Then, collecting all terms, we have the following for convolved energy 

( ) ( )( )1 2 2 2 2 2 0

1

, ; 1 1
4 4 4oH

n tn bo o
n n n n nT

n

oC

L L T L
I t a b t a n t a

c
a e

n

c
c

L

 
 





=

 
= + + + − − 

 
a b    (24) 

 

Now, in accordance with (18), we set the first partial derivative of this expression with respect to 

the unknown coefficients to zero.  Let us begin by taking derivatives with respect to na .  Thus, 

 ( )( )2 01 20 1
2 22

1H n

o

nC b to o
n n n nT o

n

L L T L
a b t a n t a e

n

I c c
c

a L

 
 



  
= = + + + − − 

 
       (25) 

Dividing out the exponential term nb t
e , 1

oT
 and factoring out time: 
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( )( )2 2 0

2
1 1 0

2 2

no o
n n n n o

Lc

L

L T L
a b a n t a

n

c
c

 
 



  
− + + + − − =  
   

                (26) 

Now, clearly for the above expression to reduce to zero, we must have each of the bracketed terms 

vanish independently.  Interestingly, this provides us with 2n  linear equations to solve for all 2n  

unknown coefficients without ever actually taking derivatives with respect to 
nb .  From the 

equation coming from setting the second bracketed term to zero: 

( )( )02
1 1

n

n

T
a

n

 
= − − 

 
−                                                    (27a) 

and from setting the first bracketed term to zero: 

2 2

2n

o

n
b

c L

 



 
 


= −


                                                        (27b) 

Upon substitution of these newly solved for coefficients into the assumed solution form of (20) we 

find that we have recovered the exact analytical solution of (19).  While, this could be expected, 

simply by the developments in Section 3, it should not go unnoticed that we have recovered the 

exact solution to this initial-boundary value problem (I-BVP) in a very different manner than the 

typical separation of variables approach. 

 

Finally, we should check what will happen if we do indeed take partial derivatives of (24) with 

respect to the coefficients 
nb , and set this to zero.  Then, 

( )( )2 2 2 2 2 2 010 ( 1) 1 1
4 4 4

H n

o

nC b to o
n n n n

n

T n o

L L T L
a b t t a n t a t a t

I c c
c

b L
e

n

 
 



  
= = + + + + − − 

 
 

Factoring out time t  and dividing by the exponential term and 1

oT
 yields: 

( )( )2 2 2 2 2 2 0 1 1 0
4 4 2

no o
n n n n n o

L L
a

c c
c

T L
b a n t a a t

nL

 
 



  
+ + + − − =  

   
 

Now setting independently these bracketed terms to zero, we recover the same results for na  and 

nb  as before, and thus the analytical solution has again been realized. 
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4.2  Assumed solution as quadratic in space and exponential in time 

In the previous example, we were able to recover the exact solution to our transient heat problem 

via the new temperature based variational principle, and a wisely selected assumed series solution 

form.  But the variational method posed here is also capable of producing reasonably accurate 

approximate solutions.  The goal now is to show that this does occur.  Again, for boundary 

conditions, we will assume the homogeneous case, such that (0, ) ( , ) 0T t T L t= = .  But now, for 

initial conditions we have ( )0( ,0) sin
L

T xx T = .  This problem has analytical solution: 

2

2

0( , ) sin oc L
t

T x t T x e
L

 


 

−  
  

=  
 

                                                (28) 

Now, rather than selecting the spatial dependency of the assumed solution to be sinusoidal, which 

would result in recovering the exact analytical solution, we instead choose the spatial dependency 

to be quadratic, such that 

( ) 1

1 1 1( , , , )
b t

aT x a b xt a x L e= −                                                 (29) 

Substituting this into (16), and computing all necessary derivatives and integrals, as in the previous 

section, yields the following for 
HCI : 

( ) 1

3
2 2 0

1 1 1 1 1 1 1 3

240
, ; 10

60H

b to
C

o o

L c
b t a L aI a

T
b t a t L e

T c
a

 

 
+

 
=  

 
+ +                   (30) 

Now, applying (18) and solving for the unknown coefficients gives 

0
1 12 3 2

120 10
,

o

a b
L c

T

L



 
= − = −                                             (31a,b) 

The following plots, corresponding to Figs. 2 and 3, show comparisons of the approximate 

quadratic temperature solution aT  and the exact analytical solution exactT  given by (28), 

respectively.  For problem parameters we use unit non-dimensional numeric values for o , c , L  

and 
0T  with 0.1 = .  Then, in Fig. 4 the mean error ( )1

1
0

L

a eL xact dxe T T= −  is plotted versus time, 

while Fig. 5 provides the mean square error ( )
2

2
0

1
L

a exL act dxe T T= −  versus time.  From observing 

these plots, the approximate solution is quite accurate, both in space and time!  For this case, from 
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Fig. 5 we see that the square error is maximum at the initial time, but actually decreases 

exponentially to zero with time. 

 

Fig. 2.  Temperature profiles for approximate and exact 

solutions at times [0,0.2,0.4,0.6,0.8,1]t =  

 

 

Fig. 3.  Centerline temperature for approximate and exact solutions versus time 
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Fig. 4.  Mean error in temperature versus time 

 

 

Fig. 5.  Mean square error in temperature versus time 

 

At this point we will conclude our discussion of using the new temperature based variational 

principle developed in Section 3 to derive approximate solutions to transient heat problems.  We 

could continue, namely by solving problems with different boundary conditions, initial conditions, 

or assumed solution forms, but at some point, we would be detracting from the true highlight of 

this paper, which is the new variational principle itself.  Further, we are making no suggestion that 

the method of solving problems presented in this section is extraordinarily powerful, in fact if one 

assumes solution forms significantly more complex than the ones here, for example with many 
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more unknown coefficients, then the resulting, generally non-linear, equations to be solved may 

quickly become unsolvable in closed form.  Instead, we suspect that the true power of this new 

variational principle lies in the fact that it serves as an ideal base to develop new time-space 

numerical methods, using basis functions with compact support, such as has been done recently 

for the mixed convolved action papers [38-41]. 

 

5.  Conclusions 

In this paper, we have developed, for the first time, a true variational principle for the dissipative 

problem of heat diffusion in terms of the temperature field.  An initial beautifully symmetric 

formulation employs temporal convolutions and semi-derivatives, while a second reformulated 

convolved action is written without the need for fractional calculus.  Both stationary variational 

statements recover the governing heat equation, temperature initial conditions and specified heat 

flux boundary conditions, as the associated Euler-Lagrange equations.  A Ritz-type method is then 

introduced to provide solutions to two simple one-dimensional transient heat diffusion examples. 
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Appendix A: Detailed derivation of Euler-Lagrange equations 

In this appendix, we outline the mathematical steps necessary to arrive at (14) starting from (13).  

These steps were mentioned in Section 3, but not explicitly written out, as to not distract from the 

key results of that section, and the paper as whole.  Nonetheless, for the interested reader the steps 

are presented here.  We begin by rewriting (13): 

 

1 1 1
2 2

1 1
0

 

( )   0

H o

o o
q

o i ij j i i

o

C T

T

j

T

jI T T T T T T dc

T t T dc d T q

      

  



 

 =  +  +  



  



 

− + =  



 
                   (A.1) 

Let us now move ij in the 3rd term to the left side of the convolution and then, recognizing the 

commutativity of the convolution operator, symmetry of ij , and swapping i  and j  in the third 

term, we combine terms two and three to obtain: 
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                         (A.2) 

Now, with the goal of removing derivatives from the variations, we perform spatial integration-

by-parts via (11) on the second term: 
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                          (A.3) 

Next, let us proceed to temporal integration-by-parts operations, with the goal of removing time 

derivatives from the variations.  Using (10) on the 1st term, and combining the resulting additional 

term with the previous 3rd term yields 
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                        (A.4) 

Finally, dividing the boundary integral into two parts, one over the temperature specified 

boundary, and one over the flux specified boundary, and combining the flux boundary integral 

with the 4th term above, results in the previously presented (14), that is 
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          (A.5) 

As in Section 3, at this point we note that variations on temperature should be set to zero on T , 

and thus the 4th term vanishes.  Meanwhile, noting the arbitrary nature of the variations, the 

remaining three bracketed terms can easily be recognized as Euler-Lagrange equations 

corresponding to the heat equation (1), the initial conditions on temperature (2), and the heat flux 

boundary conditions (3a), respectively. 

 


