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ABSTRACT 

A true variational formulation is developed for dissipative processes based upon the concept of 

mixed convolved action.  Here the focus is on continuum problems associated with heat 

diffusion, as well as related second sound phenomena.  The convolved action can overcome the 

shortcomings of typical action principles, such as Hamilton’s principle, to address dissipative 

processes without the need for separate dissipation functionals and ad hoc variational operations.  

In addition, the mixed convolved action is compatible with the initial and boundary conditions of 

a well-posed heat problem.  In fact, the stationarity of the mixed convolved action is shown to 

provide the governing partial differential equations, the initial conditions and the boundary 

conditions as its Euler-Lagrange equations.  Thus, the mixed convolved action encapsulates the 

entire description of the initial/boundary value heat problem.  In addition to the theoretical 

significance, this new formulation can establish the basis for effective numerical methods, for 

example, involving finite element representations over both space and time.  One particular two-

dimensional formulation is developed here and then applied to two example problems to 

illustrate the viability of the proposed approach. 
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1.  Introduction 

A long-standing problem in theoretical mechanics has been to develop a variational 

principle for dissipative dynamical systems having the same degree of elegance as is present for 

conservative systems via Hamilton’s principle [1, 2].  There have been many different 

approaches advanced over the years.  For example, extensions have been proposed through the 

introduction of a Rayleigh dissipation function [3-6], which was developed extensively for heat 

transfer by Biot [7, 8], or through the use of mirrored systems [9, 10].  The former requires 

acceptance of mathematical anomalies in performing the variations, while the latter necessitates 

the creation of a fictitious counterpart to the real, physical system of interest.  No doubt these 

approaches can sometimes prove useful, although neither offers a truly satisfactory base for the 

study of dissipative systems.  Consequently, the study of such systems has been regarded as 

inaccessible by variational methods and other less physically based solution methods have been 

adopted.  The situation can be viewed alternatively as a severe limitation of the classical 

variational approaches to address many physical problems of interest.  Other attempts to include 

dissipation within a variational approach include generalized bracket formalisms [11-16], 

complex valued fields [17-19] and fractional derivatives [20-22].  Recent work on the GENERIC 

framework [23, 24] has focused on identifying an underlying geometric structure for multiscale 

dissipative processes that combines the elements of both dynamics and thermodynamics.  While 

this represents significant progress, none of the above formulations in [11-24] has the simplicity 

of the original approach of Hamilton for conservative systems in which a single functional 

contains all of the governing physics.  In addition, the fractional derivative work [20-22] cannot 

accommodate classically damped systems, calling into question the validity of those 

formulations.  Closer examination reveals further issues with Hamilton’s principle, even for the 

fully conservative case.   More specifically, the temporal end point conditions imposed on the 

variations are not consistent with the specified initial conditions of the dynamical problem [25-

29]. 

In recent work, all of these shortcomings have been resolved by introducing mathematically 

consistent variational principles based upon the notion of mixed convolved action [28, 30, 31].  

The first two papers deal with spatially discrete single degree-of-freedom dynamic systems [28, 

30], while the most recent work addresses elasto- and viscoelasto-dynamic response of solid 
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continua [31].  The mixed convolved action framework extends ideas of Gurtin [25, 32, 33], 

Tonti [26, 27, 34], and Oden and Reddy [35, 36] by using mixed impulsive variables, fractional 

derivatives and the convolution of convolutions.  Most importantly, this framework leads to 

stationary variational principles that recover all of the governing differential equations, boundary 

conditions and initial conditions, as the corresponding Euler-Lagrange equations. 

The remainder of the paper is organized as follows.  In Section 2, we provide a review of the 

principle of mixed convolved action for discrete dynamical systems.  This starts with the 

classical conservative spring-mass system, where the fundamental ideas can be easily 

demonstrated.  Then, a linear viscous damper is added in series with the spring as a prototype for 

development of dissipative variational formulations.   This leads by analogy to the formulation in 

Section 3 of a mixed convolved action for the continuum heat diffusion problem.  This is 

extended in Section 4 to thermal problems in which finite propagation speeds must be 

maintained.  Interestingly, within the mixed convolved action framework, such problems, which 

are finding increased importance in modern technology, can be readily addressed.   This new 

theoretical framework also provides an interesting base for computational methods.  In Section 5, 

the mixed convolved action is discretized in both space and time to provide a pure variational 

finite element method for heat diffusion.  Several computational examples are considered in 

Section 6 to validate these novel variational methods for non-conservative systems.  Finally, 

Section 7 presents some general conclusions. 

2.  Variational principles for discrete dynamical systems with dissipation 

Let us begin with perhaps the simplest conservative dynamical system involving the 

unidirectional motion of a mass m  connected to a support through a linear spring with constant 

stiffness k .  Hamilton’s principle for this system is based upon the definition of the following 

Lagrangian: 

   1 2 21
2 2

, ;L u ut u uu fm k                                                    (1) 

where ( )u t  is the displacement of the mass from its equilibrium position with the spring 

unstretched and ( )f t  is an applied force, both as functions of time t .  As usual, each superposed 

dot represents a time derivative.   
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The action functional HI  for Hamilton’s principle over the fixed time interval from 0  to t  

is written 

0

( , ( ,; ) ; )
t

HI u du t uL u                                                         (2) 

For stationary action, the first variation of Eq. (2) must be zero, which after applying integration 

by parts, becomes 

 
0

0

0
t

H

t

I u km d mu f u u u                                              (3) 

Note that in arriving at Eq. (3), the applied force f  is assumed known and, therefore, not subject 

to variation.   

Using the approach of Hamilton [1, 2] to recover the governing equation of motion, we also 

must invoke the condition of zero variation of displacement at the beginning (0)u  and end 

( )u t  of the time interval to nullify the last bracketed terms in Eq. (3).  With those additional 

constraints, Eq. (3) reduces to 

0

0
t

HI u ku f um d                                                     (4) 

and after permitting arbitrary variations u  between the endpoints, we have the equation of 

motion for forced vibration  

u ku fm                                                                    (5) 

at each instant of time   with 0 t  .   Thus, Eq. (5) is the Euler-Lagrange equation 

associated with the stationarity of the action HI .  This result also can be obtained by invoking 

the Lagrange formalism and simply writing 

0
L L

udt u

d  


 
                                                             (6) 

Either way, nothing can be said concerning the initial conditions, which must be enforced 

separately, outside of Hamilton’s principle.  More disturbing are the impositions on the 

variations of the displacement, which are inconsistent with the specified initial conditions.  How 

can one impose zero variation at the end of the time interval, when the displacement at that 

instant is precisely the unknown quantity of most interest? 
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Gurtin [25, 32, 33] and Tonti [26, 27, 34] were the first to recognize that the inner products 

appearing in Eq. (2) must be replaced by convolutions.  However, even this is not enough to 

provide a variational principle that recovers not only the governing differential equation of 

motion, but also the initial conditions, as its Euler-Lagrange equations.  Based upon the work in 

Reference [28], we write the mixed convolved action for the conservative spring-mass system in 

the following form: 

1 1
2 2

( , , , , , ; )CI u u mu J J J t u u J J u J u ja                                      (7) 

where again u  represents the displacement of the mass from the equilibrium position, while J  is 

the impulse of the elastic force F  in the linear spring, such that 

0

)( ) (
t

J t F d                                                                (8) 

Meanwhile, 1/a k  is the flexibility of the spring and the superposed breve denotes a left 

Riemann-Liouville semi-derivative.  Thus, for example, 

 
 

1

1

/2

/2

0
0

)
)

(1

(
(

/
)

2)

1
(

td u
t u t d

dt
u

t





 

 
 D                                       (9) 

Details on fractional calculus can be found, for example, in Oldham and Spanier [37], Ross [38] 

and Samko et al. [39].  Fractional integration by parts formulas, which are needed in the 

following development, were first formulated by Love and Young [40].  Close comparison of 

Eq. (62) of Reference [28] with Eq. (7) above reveals a slightly more graceful treatment of the 

applied force term in the present work, which removes the need for an explicit reference to an 

initial impulse. 

Taking variations of the mixed convolved action of Eq. (7) yields the following weak form: 

CI mu u J J J u u u ja J                                              (10) 

After applying classical integration-by-parts to the first and second terms and fractional 

integration-by-parts to the third, fourth and fifth terms on the right-hand side of Eq. (10), one 

may collect terms and write for stationary mixed convolved action: 

  

[ ] [ ]

( )[ (0) (0) (0)] (0)[ ( )]

( )[ (0) (0)] (0)[ ( )] 0

CI m a

m m

u u J f J J u

u t u J j u u t

J t a J u J a J t

  

 

 

      

   

   



 

                                 (11) 
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Several results on fractional integration by parts formulas used in this step can be found in 

References [28, 30].   

For arbitrary variations u  and J , with the initial constraints  

(0) 0u  ,         (0) 0J                                                 (12a,b) 

one may recover from Eq. (11), the governing differential equations  

  m u J f                                                                   (13a) 

  0Ja u                                                                     (13b) 

and the initial conditions 

  (0) (0) (0)Jm u j                                                          (14a) 

  (0) (0) 0a J u                                                              (14b) 

Thus, for the spring-mass system, both the governing differential equations and initial conditions 

in mixed form are obtained as the Euler-Lagrange equations associated with CI .  This is clearly 

an advantage over the corresponding formulation based upon Hamilton’s principle, which is 

inconsistent with the specified initial conditions.  We have worked here with the formulation in 

mixed variables.  However, by integrating Eq. (13b) over time from 0  to t , imposing initial 

condition Eq. (14b) and then substituting into Eq. (13a), the usual equation of motion in 

displacement form can be obtained.  

As a further advantage of the mixed convolved action formulation, Eq. (7) can be readily 

extended to incorporate linear dissipative elements.  For a linear dashpot in series with the 

spring, one may write for the resulting Maxwell model 

1 1 1
2 2 2

,( , , , ), ;
MC u J J J t u u J J uI u u J Jm d ja J u                            (15) 

with d  as a dashpot coefficient.  Following the same steps as for the conservative spring-mass 

system, stationary action becomes 

0
MC u u J J J u uI m a J d J u j                                      (16) 

After classical and fractional integration-by-parts, this can be rewritten by collecting terms 

according to the variations as 
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[ ] [ ]

( )[ (0) (0) (0)] (0)[ ( )]

( )[ (0) (0) (0)] (0)[ ( )] 0

MCI m a

m m

u u J f J J d J u

u t u J j u u t

J t a J d J u J a J t

  

 

 

       

   





     

                          (17) 

Constraining the variations to be consistent with the initial conditions once again requires Eq. 

(12a,b) to hold.  Finally, for otherwise arbitrary variations, Eq. (17) necessitates 

  m u J f                                                                   (18a) 

  0J d J ua                                                                 (18b) 

along with the initial conditions 

  (0) (0) (0)Jm u j                                                             (19a) 

  (0) (0) (0) 0a J d J u                                                           (19b) 

which are precisely the relations for this spring-dashpot-mass system.  For this case with the 

spring and dashpot in series, it is not possible to combine Eqs. (18a) and (18b) into a single 

governing differential equation of motion in terms of displacement.  On the hand, it is possible to 

write a single flexibility differential equation in terms of impulse J . 

As demonstrated in this section, conservative and non-conservative systems can be 

accommodated within the same variational framework of the mixed convolved action and, 

furthermore, both the governing differential equations and initial conditions are produced as the 

Euler-Lagrange equations of this action.  With the success of this approach, an obvious question 

is whether this framework can be extended to continua.  As a prototype, problems of heat 

diffusion are addressed in the following section. 

3.  Variational principles for continuum heat diffusion 

Based upon the success in developing stationary principles for discrete conservative and 

dissipative systems within a common framework, we next formulate for the first time analogous 

variational principles for heat diffusion in a continuum.  We should emphasize that these 

principles recover all of the governing partial differential equations, initial conditions and 

boundary conditions of the well-posed heat diffusion problem.  Two cases are considered.  First, 

classical heat conduction based upon Fourier’s law of heat conduction is addressed in this section 
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and then afterwards in Section 4 the formulation is extended to a generalized model that restricts 

the propagation of the thermal effects to finite speed. 

As in the discrete mixed convolved actions presented in Section 2 and recent mixed 

Lagrangian formulations [41-45], the thermal field will be described by impulsive variables.  

Thus, we choose for the primary variables  , which represents the impulse of temperature T , 

and the heat vector 
iH , which can be considered as the impulse of the heat flux 

iq .  In 

mathematical terms, we may write these variables as 

0
( ) ( )

t

t T t dt                                                             (20c) 

0
( ) ( )i

t

iH t q t dt                                                          (20d) 

over the time interval from 0  to t  or in the following rate form 

T                                                                    (21c) 

i iH q                                                                  (21d) 

Fig. 1 provides a typical problem definition for heat diffusion in two dimensions.  In analogy 

with the discrete action from Section 2 and the inner product thermoelastic formulations from 

References [43-45], we may write the following mixed convolved action for unsteady Fourier 

heat conduction: 

1 1
2 2

1
2

1 1
2 2

1
 

1 1 1
  

1 1
  

T

F

q

o
i ij j

o o

i i i i

o o o

o o

C

c
HI d

T

B B

d H
T

H H d d
T T

Q Q

T

d d
T T


 

  

 
 



 

 
     

 

    
          

    

 



 
     


  

  



 

 

                   (22)

            

where oT  represents the initial absolute temperature at the free stress state, while T  then 

becomes the temperature change from that state.  Additionally, o  is the mass density, c  is the 

specific heat coefficient at constant strain and   is a specified body heat source rate per unit 

volume, with   as the impulse of that source.  The symbol iB  in Eq. (22) represents the 

gradient operator.  Furthermore, with reference to Fig. 1,   represents the impulse of the 
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enforced boundary temperature T  on the surface T , while  Q  denotes the impulse of q , which 

defines the specified normal heat fluxes on the surface 
q .  On the remaining portions of the 

surface, the default boundary condition is 0q   representing the insulated condition.  Therefore, 

this also is part of 
q .  Meanwhile, on T , 

0
( ) )) ( (i i

t

i iQ t H t n q t n dt   with in  as the outer unit 

normal to the surface.  Lastly, the constitutive tensor 
ijd  appearing in Eq. (22) represents the 

inverse of the conductivity 
ijk .   

 

Fig. 1. Heat diffusion problem definition. 

 

Notice that each term in Eq. (22) contains the factor 1

oT  .  This is included so that 
FCI  is a 

true action (i.e., energy integrated over time).  While this is not critical for the pure thermal 

diffusion problem, the formulation proposed in Eq. (22) extends more naturally to a range of 

multiphysics problems, such as thermoelasticity. 

With all of that in mind, the first variation of the mixed convolved action becomes 

1
2

1 1
2 2

1
 

1 1 1 1
 

1
   

q T

F

o o

o
i ij

o o

i i i i i i i

C j

i

o o o o

o

T T

I d
T

B B B B

c
H d

d

H
T

H H H H
T T T T

d dQ
T

Q d


   

     

   










 
     

 

  
          

  

               








  

        (23) 
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After performing the required temporal classical and fractional integration-by-parts operations, 

as in Section 2, along with spatial integration-by-parts to remove all derivatives from the 

variations, the stationarity of the mixed convolved action may be written 

1
2

( ) (0) (0)

(

1 1
 

1 1
 

1 1
(0)  

 

1 1
( ) (0) (

0 )

0)  

) (

o

FC i

o o o

i ij j

o o

i

o o o

o

i ij j

o

o
i

i

o
i

o

o

T

i

c
I B H d

T T T

d H B d
T T

c
B

H

t

t

H

q

H d
T T T

c
d

T

t d H B d
T T










  




 


 



















 
     

 

 
    
 

 
    

 

 
  

 

 
   





 


 











 

   

   

1
2

1 1
2 2

1 1
2 2

1 1
2 2

 ( ) (0) ( ) (0)  

 ( ) (0

( ) (0) ( ) (0)

( ) (0)

)  

  

  0

T

o
q q

o o

o o

o o

T

T T

q q

T

T T

T T

T T

d t t d

d t d

Q

q Q Q

q Q

T T t t

T

Q d Q Q d

Q d Q t d

  

 

     

  

 

 

 

 

    

  

       

 

  

 

    

   

 

 

 

 

       (24)

 

From Eq. (24) for arbitrary variations, we have as the Euler-Lagrange equations: 

1 1
i

o
i

o o o

c
B H

T T T


                             x , (0, )t              (25a) 

1 1
0iij j

o o

d H B
T T

                              x , (0, )t              (25b) 

(0) (0)
1 1

(0)i

o o o

o
i

c
B H

T T T


                      x                              (26a) 

1 1
(0) (0) 0ij j

o o

id H B
T T

                       x                              (26b) 

(0) (0)Q Q                              qx                              (27a) 

(0) (0)                               Tx                              (27b) 

q q                                    qx , (0, )t              (28a) 
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T T                                   Tx , (0, )t              (28b) 

with the variations defined, such that 

0Q                                    qx , (0, )t              (29a) 

0                                    Tx , (0, )t              (29b) 

(0) 0                                  x                                (30) 

0( )Q t                                    qx                             (31a) 

) 0(t                                   Tx                             (31b) 

 

Consequently, we have established a Principle of Stationary Mixed Convolved Action for a 

Linear Thermal Continuum undergoing classical heat diffusion.  This may be stated as follows:  

Of all the possible trajectories { ( ), ( )}iH    of the system during the time interval (0, )t , the one 

that renders the action 
FCI  in Eq. (22) stationary, corresponds to the solution of the 

initial/boundary value problem of heat diffusion.  Thus, the stationary trajectory satisfies the 

energy balance law Eq. (25a), along with the Fourier law of heat conduction Eq. (25b) in the 

domain   over the entire time interval.  In addition, the initial conditions defined by Eqs. 

(26a,b) in   and Eqs. (27a,b) on the appropriate portions of the bounding surface are satisfied, 

while the heat flux Eq. (28a) and temperature Eq. (28b) boundary conditions are satisfied 

throughout the time interval.  Furthermore, the possible trajectories under consideration during 

the variational process are constrained precisely by their need to satisfy the specified initial and 

boundary conditions of the problem in the form of Eqs. (29a,b), Eq. (30) and Eqs. (31a,b). 

The usual temperature-based partial differential heat equation can be recovered via the 

following steps.  First, premultiply Eq. (25b) by the symmetric conductivity tensor ikk , which 

produces 

1 1
0ik ij ii

o o

kjd Hk k B
T T

                                             (32) 

or after cancelling terms 

ikk iH k B                                                            (33) 
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Then, by substituting Eq. (33) into Eq. (25a), one obtains 

1 1
j

o o o

o
i ij

c
B B

T T T
k 


                                            (34) 

which after multiplying through by oT  provides the familiar form of the heat equation for 

anisotropic media. 

To summarize, we are now able to define a single real scalar functional, within the mixed 

convolved action framework based upon convolution and fractional derivatives, which 

encapsulates the governing differential equations for classical heat diffusion, along with the 

initial and boundary conditions.  This represents the first true variational formulation for a 

dissipative continuum defined by classical constitutive relations. 

 

4. Variational principles for continuum heat diffusion with second sound 

With modern technology, there sometimes comes the need to address the actual finite speed 

of propagation of thermal disturbances and the wave nature of the response.  Here we consider 

one such formulation that involves second sound.  Within the mixed convolved action 

framework, one only needs to modify slightly the specification of Eq. (22) by adding a 

conservative element, which is associated with a generalized Fourier law of heat conduction.  In 

particular, let 

1 1 1
2 2 2

second sound

1
2

1 1
2 2

1
 

1 1 1
  

  
T

G

o o
q

o o
i ij j i ij j

o o o

i i i i

o

T

o

C

T

o

I d d
T T

B

c
H d H H H

T

H H

Q

B d d
T T

d Q

T

d

 
 

  

 



 

 

 
       

 
 

    
          

    

     
 



 
 





 

 

                  (35)

            

where everything is defined as in Section 3, except for the term labelled as second sound that 

involves o , which represents a relaxation time in the generalized Fourier’s law of heat 

conduction.  Taking variations and revisiting all of the steps from Section 3, ultimately provides 

the following for stationary mixed convolved action: 
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second sound

1 1
 

1 1 1
 

1 1
( ) (0) (0)(0)  

 

1

(0) ( )

( )

GC i

o o o

i ij o j ij j

o o o

i

o o o

o

i ij o

o
i

i

o
i

o

o

c
I B H d

T T T

d H dH H B d
T T T

c
B H d

T T T

c
d

T

t

t

H Ht d
T








  




 



 




 











 
     

 

 
     
 
 

 
    

 

 






















 

   

second sound

second sound

1 1
2 2

1 1
2 2

1 1
(0) (0) (0)  

1
(0) ( )  

 ( ) (0) ( ) (0)  

 ( ) (0)  
T T

o o
q q

o o

j ij j

o o

i ij

i

o j

o

T T

T T

d H B d
T T

d t dH H

q q Q Q

q

T

d t t

d dQ

d

t



   









 

 





 
   

 
 

 
  




  




 

      

   







 

 

   

1 1
2 2

1 1
2 2

( ) (0) (  

 

) (0

(  

)

( ) 0) 0

o

o o

T

q q

o
T

T T

T T

T T t tQ Q d Q

t

Q

d QT

d

Q d

     

  

 

 

    

 

     

  

 

 

             (36) 

The only differences from Eq. (24) are identified as second sound terms.  After assuming 

arbitrary variations, this leads to the following governing partial differential equations: 

1 1
i

o
i

o o o

c
B H

T T T


                             x , (0, )t              (37a) 

1 1 1
0ij o j ij

o o o

ijd H d H B
T T T

                             x , (0, )t              (37b) 

and initial conditions 

(0) (0)
1 1

(0)i

o o o

o
i

c
B H

T T T


                      x                              (38a) 

1 1 1
(0) (0) (0) 0iij o j ij j

o o o

d d H B
T T

H
T

                       x                              (38b) 
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over the domain.  The previous relations expressed in Eqs. (27)-(31) also apply without change 

for this heat diffusion problem with second sound, with the additional condition that (0) 0iH   

for x .  Thus, we have a new Principle of Stationary Mixed Convolved Action for a Linear 

Thermal Continuum undergoing non-classical heat diffusion involving the generalized Fourier 

law defined by Eq. (37b).  This may be stated as follows:  Of all the possible trajectories 

{ ( ), ( )}iH    of the system during the time interval (0, )t , the one that renders the action 
GCI  in 

Eq. (35) stationary, corresponds to the solution of the initial/boundary value problem of 

generalized heat diffusion with second sound. 

 

5.  Time-space finite element methods for generalized heat diffusion 

In this section, we develop a true variational finite element approach for heat diffusion with 

second sound, based upon the principle of mixed convolved action.  Unlike all previous work on 

dissipative continuum media, we use a finite element variational framework over both space and 

time. 

Let us begin with the mixed convolved action 
GCI  defined in Eq. (35).  After taking the 

variations, but before any integration by parts operations, we have 

1
2

1 1
2 2

0

1
 

1 1 1 1
 

1
   

G

o o
q T

C j j
o o

i ij i ij

o o o

i i i i i i i

T

i

o o

T

o o

o

c
H d H H dI d

T T

B B B B d
T T

H

T T

d d

T

H H H H

Q Q d
T

 
    

     

   





  

 
       

 

  
          

  

              
   








  

        (39) 

If Eq. (39) were used directly as the basis for the finite element representation, then 0C  

continuity would be required for the fundamental impulsive variables   and iH  over both space 

and time.  This is due to the appearance of first order spatial and temporal derivatives of each of 

these variables in Eq. (39). 

Here, we choose to retain all of the temporal derivatives in Eq. (39) and employ linear shape 

functions for   and iH  in time to maintain the proper 0C level of continuity.  On the other hand, 

we use standard spatial integration by parts to eliminate all spatial derivatives of the heat vector 
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iH  and its variations in the weak form.  As a result, the heat vector may be represented with 

piecewise constant values, which within the context of a finite element method translates to an 

element by element definition of the heat vector at each instant of time.  In order to arrive at that 

formulation, we must perform spatial integration by parts on the second and fourth terms on the 

second line of Eq. (39).  Of course, these operations also release boundary terms that must be 

considered within the finite element formulation.  Our final weak form can be written as follows:  

   1 1
2 2

1
 

1 1 1
  

0  
T

G

o o
q

o o
C ji ij i ij

o o o

i i

o

T T

i

o

j

i

o

I d
T T

B B d d
T T

c
H d H H d H

T

H H

Q

T

d dQ Q

 
    

   

   






 

 
       

 

   
         

   

 



        
      



 

 

                  (40) 

Notice that this involves both classical first derivatives and fractional semi-derivatives in time, 

whereas the only spatial derivative operators included in Eq. (40) involve the gradients ( iB ) of 

the real temperature impulse semi-derivative ( ) and its variation ( ). 

Next, as an initial formulation, we restrict consideration to two-dimensional problems and 

introduce a simple finite element discretization over that space using standard three-node 

triangular elements.  We start by performing integration over the domain e  of an arbitrary 

three-node triangular element in the 1x - 2x  (or x - y ) plane for each of the volumetric terms in 

Eq. (40).  In performing this integration, we use a consistent representation of each term, 

meaning that we consider only the term with constant variation [46].  After the spatial 

discretization and integration, we may write 

1
 

e

To

o o

d
T T

c
  


    θ M θ                                          (41a) 

1
 

e

To
i ij j

o o

d
T

H d H
T


 


    H A H                                      (41b) 

1 1
 

e
j

T

i ij

o o

d
T T

H d H 


    H D H                                       (41c) 
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1 1
 

e

T

i i

o o

B
T T

H d  


    H B θ                                          (41d) 

1 1
 

e

T T

i i

o o

B d
T

H
T

 


    θ B H                                         (41e) 

For an isotropic solid, the matrices in Eqs. (41a-e) become 

3 / 3o A bcM I                                                         (42a) 

2
o A b

k


A I                                                             (42b) 

2

1
A b

k
D I                                                             (42c) 

2 3 3 1 1 2

3 2 1 3 2 12

y y y

x x x

y y yb

x x x

   
  

   
B                                            (42d) 

where 
qx  and 

qy  represent the coordinates of node q  of the triangular element, A  represents the 

area of the triangle, b  is the thickness, k  is the (isotropic) thermal conductivity and 
pI  is the 

p p  identity matrix. 

After spatial discretization, the body source contributions over an element can be written: 

1 1
 

e

T

o o

d
T T

 


    θ Ψ                                                  (43) 

while the terms from the boundary conditions can be evaluated through integration over an 

element edge, thus yielding 

   1 1
2 2

 
o o

q
T

T

T
Q Q d 



   
 




 θ Q Q                                   (44a) 

   1 1
2 2

 
o o

T

T

T T
Q d   



    
  

 Q θ θ                                   (44b) 
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With higher order spatial elements, there are some interesting ways to accommodate the 

influences defined in Equations (44a,b).  In the present work with low order triangles, we simply 

equate the unknown variables to the known values (i.e., Q Q  and θ θ ) on edges associated 

with 
q  and T , such that the enforced heat fluxes have a contribution defined by 

 1 1
2

 
o o

q
T T

TQ dQ 


   
 

 
  θ Q                                         (45a) 

while the enforced temperature impulse integral has no explicit additional effect, because  

 1
2

 0
T

oT
Q d  



   



                                               (45b) 

After substituting Eqs. (41)-(43) and (45) into Eq. (40) and then factoring out the reference 

absolute temperature oT  that appears in each term, the spatially discretized mixed weak form for 

an element can be written: 

0

T T T

T T T T T

  

   

  

  

 

    

θ M θ H A H H DH

H B θ θ B H θ Ψ θ Q
                          (46) 

The last term in Eq. (46) is understood to represent contributions from the known applied 

boundary heat fluxes, and is present only if such terms act on the edges of the element. 

The weak form expressed either in spatially continuous or discrete form as Eq. (40) or Eq. 

(46), respectively, involves first derivatives of the temperature impulse (  or θ ) and heat vector 

( iH  or H ).   Consequently, these variables must be represented by 0C  continuous functions in 

time.  In order to satisfy this minimum continuity requirement, for the temporal representation of 

the temperature impulse and heat vector field variables, we choose standard linear shape 

functions.  Thus, over a time interval from 0 tt   , we write: 

0 0 1 1( ) ( ) ( )t N t N t θ θ θ                                                    (47a) 

0 0 1 1( ) ( ) ( )t N t N t H H H                                                  (47b) 

in terms of the shape functions 
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 0( ) 1 t
t

N t


  ;  1( ) t
t

N t


                                                (48a,b) 

with similar variations for ( )tθ  and ( )tH .  Furthermore, we also assume 

0 0 1 1( ) ( ) ( )t N t N t Ψ Ψ Ψ                                                  (49a) 

0 0 1 1( ) ( ) ( )t N t N t Q Q Q                                                   (49b) 

although one may instead work with the given functions ( )tΨ  and ( )tQ  directly. 

After substituting Eqs. (47)-(49) into Eq. (46), performing the necessary convolution 

integrals in closed form, and collecting terms, we may write the following weak form: 

 

 

 

0 1 0 1

1
0 1 02

1
1 1 02

0

1

2 2

2 2

2 2

2 2

1
0

2

T T T T

T T

T T

t t

t t

t t t t t

t t t t

   

     
     

        



                 

 

  

       

      

θ θ H H

θ Ψ ΨM M B B

θ Ψ ΨM M B B

H 0B B A D A D

H 0B B A D A D

       (50) 

where now 0Ψ  and 1Ψ  are heat source impulses that collect all of the applied body source and 

surface heat flux contributions at times 0t   and t t  , respectively.  Details for all of these 

temporal integrals, including those involving semi-derivatives, are provided in Reference [30]. 

For the first time step from 0t   to t t  , we assume that the field variables 0θ  and 0H  

are known and we seek to determine 1θ  and 1H .  For consistency, we must set the variations 

0 θ 0  and 0 H 0 , while allowing 1θ  and 1H  to remain arbitrary.  As a result, after 

multiplying through by 4 t , Eq. (50) can be reduced to the following set of linear algebraic 

equations for each element:    

   
1 12 2

2 2

12

00

01 02

4 2 4
T Tt t

t ttt t

 

 

        
         

         





θθ Ψ ΨM B M B

HH 0B A B A
                 (51) 

where 

0 2
t A A D ;  

1 2
t A A D                                              (52a,b) 
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Notice that the system matrix on the left-hand side of Eq. (51) is symmetric due to the symmetry 

of the M  and 
1A  submatrices.  However, rather than solving Eq. (51) in the present form, there 

is an opportunity to modify the solution sequence.  In particular, because the heat vector is 

interpolated element-by-element as a 1C   function, the 1H  variables may be condensed out of 

the system at the element level.  Solving the second set in Eq. (51) for 1H  produces the 

following: 

  1

1 1 1 02 0 02
t t     H A Bθ B θ A H                                              (53) 

After substituting Eq. (53) into the first set of Eq. (51), we may write the condensed relations for 

an element in the convenient form: 

1 1 1

e eK θ ψ                                                               (54) 

where 

 
2

1 4
1 1

e T

t




 K B A B M                                                  (55a) 

 
2

1 4
0 1

e T

t




 K B A B M                                                  (55b) 

 2

1

0 1
1
2 0

T T   B B I A A                                                  (55c) 

 0
2 4

1 1 0 0 0 0

e e T

t t 
  ψ Ψ Ψ K θ B H                                       (55d) 

with the superscript e  as a reminder that all of these relations are written at the individual 

element level.   

This can now be generalized for any step n  in which we move from a known solution at 

time 1nt   to a solution at time nt  with 1n nt t t    .  The resulting set of finite element equations, 

based on the principle of mixed convolved action for heat diffusion with second sound, can be 

written in the following form for each element: 

1 n

e e

nK θ ψ                                                              (56) 

where 
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 2 4
01 01 1

e e T

n t n n tn n 
  ψ Ψ Ψ K θ B H                                     (57) 

Now let us consider the special case of classical heat diffusion in an isotropic solid, based 

upon the Fourier law of heat conduction.  For this case, the relaxation time o  is effectively zero 

and A  reduces to a null matrix.  Consequently, 

1 02
t  A D A                                                           (58) 

and then 

1 n

e e

nK θ ψ                                                              (59) 

with 

 
2

12 4
1

e T

t t



 
 K B D B M                                                 (60a) 

 
2

12 4
0

e T

t t



 
 K B D B M                                                 (60b) 

 1

0
1

22

T T   B B I D D 0                                                 (60c) 

 2
101n n n

e e

n t  
 ψ Ψ Ψ K θ                                             (60d) 

Interestingly, because 0B  reduces to a null matrix for classical heat diffusion, the right hand side 

of the discretized set of equations for this mixed convolved action formulation no longer depends 

explicitly on the previous values of the heat vector 1nH . 

All of this has been developed at the element level.  However, with the element by element 

elimination of the heat vector, the formulation looks quite similar to a standard temperature-

based finite element method.  Consequently, global system assembly follows the usual procedure 

and the final set of equations to be solved at each time step is as follows: 

1 n nK Θ ψ                                                              (61) 

where nΘ  collects all of the nodal temperature impulses at time step n .  

Let us consider this a little further by multiplying Eq. (61) through by 4t  and recognizing 

that 1T 
B D B  represents the usual finite element conductivity matrix, which we will write as C .  

The result is then 
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1 1 1

2 2

n n n n n n

t

       
   

 

 
      

θ θ θ θ Ψ Ψ
M C                                (62) 

This is reminiscent of the familiar weighted residual approach for the heat equation, which 

can be written as 

     1

1 11 1
n n

n n n n
t

   


 
 

     
 

T T
M C T T ψ ψ                    (63) 

where 
nT  and 

nψ  are the nodal temperatures and applied heat sources, respectively, at time step 

m .  For the Crank-Nicolson method [47], 1/ 2   and Eq. (63) simplifies to the following: 

1 1 1

2 2

n n n n n n

t

       
   

   

 
  

  

T T T T ψ ψ
M C                                  (64) 

which is identical to the variational mixed convolved action formulation, except that Eq. (62) is 

written in terms of impulsive quantities Θ  and Ψ , rather than T  and ψ .   

Thus, the simplest possible mixed convolved action time-space finite element method 

developed here has much in common with the well-known Crank-Nicolson method.  Of course, 

the new mixed convolved action approach can be easily extended in many ways to formulate 

higher order methods, all founded on a rigorous variational framework. 

 

6.  Computational Examples 

In this section, we consider two example problems to validate the mixed convolved action 

finite element formulation and to explore the response of solid media at small spatial and 

temporal scales, where the effect of finite thermal propagation speeds may become important. 

6.1  Unidirectional heat diffusion due to suddenly applied boundary heat flux 

First, we examine the problem of classical uniaxial heat diffusion in a uniform isotropic 

rectangular domain, as shown in Fig. 2.  Notice that a heat flux is applied suddenly with unit 

magnitude all along the upper surface, such that ( )q H t , with ( )H t  representing the Heaviside 

step function.  Meanwhile, the bottom surface is maintained at zero temperature, such that 0T   
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on that edge.  Non-dimensional geometric parameters and material properties are selected for the 

analysis, where 4L  , 1b  , 1o  , 1c   and 1k  , along with 0o   for this classical case. 

 

 

Fig. 2. Uniaxial heat diffusion in a rectangular domain. 

 

Using separation of variables, the analytical solution can be found easily to have the 

following form: 

      2

2
1

2
( , ) 1 sin exp n

n

n

n

n

y
T y t c y c

k k
t

Lc






                                      (65) 

where 
 2 1

2n

n
c

L


  and 
oc

k


  is the thermal diffusivity.   

 

Fig. 3 provides the comparison of the temperatures at mid-height  / 2y L  and the top 

surface  y L  obtained from MCA and this analytical solution.  The MCA results are 

displayed for three different levels of mesh refinement and time step duration t .  There is some 

noticeable deviation of the MCA temperatures for the coarsest mesh and the longest time step, 

but this error diminishes significantly with increasing refinement of both the element sizes and 

time stepping.  Clearly, the MCA approach converges to the analytical solution.  Interestingly, 
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this occurs at longer times, even for the coarsest mesh and time step for which the initial results 

deviate from the exact solutions near the beginning of the time interval. 

 

 

 Fig. 3. Comparison of analytical and MCA temperatures for uniaxial heat diffusion. 

 

6.2  Pulse heating of square domain with thin insulating layer including second sound effects 

For the second problem, we examine the transient thermal response of a square domain with 

a localized pulse heat source applied to the top surface.  Again, we use non-dimensional 

quantities and material parameters.  As displayed in Fig. 4, the domain is L  by L , with 2L  .  

The geometry is discretized into two sets of 800  uniform triangular elements to assure no biases 

are introduced.  The heat source is spatially triangular, as shown in the problem schematic, and is 

a square pulse in time.  The pulse has time duration 0.1dt  , for which the heat source is “on”.  

This pulse is applied at the beginning of each period, where the time period is set to 1.0pt  , and 

then turned “off” for the remainder 0.9dpt t   of each period.  For all cases, we consider the 

amplitude of the pulse to be 1oq  .  The pulse is applied centrally to the top surface and has 

width 0.2b  .  All other surfaces are considered to be insulated, as indicated in Fig. 4. 
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Fig. 4. Problem schematic for pulse heating of square domain. 

For material properties, three different cases are analyzed.  In all of the cases, we consider 

the following dimensionless properties: 1o  , 1ec   and for second sound relaxation time 

0.1o  .  For the first case, we consider the upper layer having thickness 0.1h   to be the same 

material as the rest of the body, such that we have isotropic thermal conductivity 1 2 1k k  .  For 

the second case, we have layer thermal conductivity 2 0.1k  , and for the third case 2 0.01k  . 

Figs. 5-7 show the temporal evolution of temperature at four different points of interest (i.e., 

points A , B , C  and D  with the coordinates defined in Fig. 4).  Fig. 5 corresponds to the first 

case with no insulating layer.  The final data set on all plots corresponds to the temporal 

evolution of temperature at point D with no second sound effects (i.e., pure diffusion) for 

comparison.  The significance of second sound effects is clear in this plot.  Fig. 6 corresponds to 

the second case where we have an insulating layer with conductivity 2 0.1k  .  We notice that 

the effect is to shield the material in the sense that the temperature peaks decrease by nearly a 

factor of 2 compared to the uniform material case.  More interestingly, we see that the temporal 

oscillations of temperature coming from second sound effects are noticeably smoothed.  Fig. 7 

then corresponds to the third case with a further reduced insulating layer conductivity 2 0.01k  .  

Again this drastically shields the internal bulk material.  Magnificently, however, we see that the 

temporal temperature profile begins to closely coincide with the pure diffusion case, such that 
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the second sound effects are becoming increasingly negligible.  This is the result of a filtering 

that occurs within the reduced thermal conductivity upper layer. 

 

Fig. 5.  Temperature versus time for points A-D; no layer. 

 

Fig. 6. Temperature versus time for points A-D; insulating layer with 0.1k  . 
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Fig. 7. Temperature versus time for points A-D; insulating layer with 0.01k  . 

 

7.  Conclusions 

Most modern-day computational approaches used to solve time-dependent problems of heat 

diffusion rely on a finite element representation over the spatial domain, along with a weighted 

residual or finite difference discretization to capture the temporal response.  This space-time 

disparity can be attributed largely to the absence of a true variational framework for 

initial/boundary value problems, especially those involving dissipative processes.  Historically, 

the main deficiency in variational methods, such as Hamilton’s principle, for these problems has 

been the inability to capture the path-dependent nature of energy dissipation.  The second main 

difficult has to do with improper handling of initial conditions, as opposed to boundary 

conditions.  Both of these issues are associated with the inner product temporal representation in 

Hamilton’s principle.  This was identified long ago, especially by Gurtin and Tonti, who 

advocated for convolution-based operators instead. 

To address this problem, a mixed convolved action has been developed here for purely 

dissipative heat diffusion, and then extended to include the possibility of second sound effects, 
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all within the context of linear response.  By introducing impulsive primary mixed variables and 

fractional derivatives, the present scalar action functional goes beyond previous formulations to 

encapsulate the complete initial/boundary value problem of heat diffusion.  Remarkably, by 

enforcing stationarity of the mixed convolved action functional, the partial differential equations, 

initial conditions and boundary conditions are all recovered as the corresponding Euler-Lagrange 

equations.  This variational framework is expressed as a new Principle of Stationary Mixed 

Convolved Action for Linear Thermal Continua. 

In addition to the theoretical implications of this work, the mixed convolved action also may 

serve as a basis for novel computational methods.  Here, we develop perhaps the simplest of 

those methods in the form of a space-time finite element for planar heat diffusion problems.  

This method employs three-node triangular elements, along with linear temporal shape functions.  

Interestingly, this formulation is shown to be closely aligned with the well-known Crank-

Nicolson method for diffusion problems.  The formulas are identical, but the present mixed 

convolved action uses impulse of temperature, rather than temperature, as the primary variables.  

Several examples are included to validate the mixed convolved action formulation and space-

time finite element implementation. 

With the thermal diffusion formulation written here in terms of impulse of temperature, we 

find one further conceptual advantage that should be mentioned.  In this approach, the heat 

capacity contribution is associated with a thermal mass matrix, while the conductivity appears in 

the thermal damping matrix.  Thus, in viewing a thermal problem in analogy with a structural or 

solid mechanics problem, we should think in terms of mass and damping matrices, rather than 

damping and stiffness matrices as is the usual current practice.  The extensions to enforce finite 

speed of propagation of thermal disturbances also becomes much more direct with this approach, 

as was evident in the present work. 

Finally, we should emphasize the major practical limitation of the present mixed convolved 

action formulation, which applies to linear problems only.  The domain may involve 

heterogeneous, generally anisotropic media, but the classical convolution operator restricts 

consideration to linear systems.  Thus, extensions are needed for more general nonlinear 

problems, for example, when thermal conductivity depends upon temperature.  Several related 

variational approaches for such problems are currently under development.  Furthermore, there is 
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a need to focus on foundational aspects of the mixed convolved action formalism, especially to 

understand better the physical basis for this action and to explore its underlying geometric 

structure. 
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