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Mixed convolved action principles in linear continuum 
dynamics  

 
Gary F. Dargush  Bradley T. Darrall  Jinkyu Kim  Georgios Apostolakis 

Abstract The paper begins with an overview of several of the classical integral formulations of 
elastodynamics, which highlights the natural appearance of temporal convolutions in the reciprocal 
theorem for such problems.  This leads first to the formulation of a principle of virtual convolved 
action, as an extension of the principle of virtual work to dynamical problems.  Then, to overcome 
the key shortcomings of Hamilton’s principle, the concept of mixed convolved action is developed 
for linear dynamical problems within the context of continuum solid mechanics.  This new 
approach is broadly applicable to both reversible and irreversible phenomena without the need for 
special treatments, such as the artificial definition of Rayleigh dissipation functionals.  The focus 
here is on linear elastic and viscoelastic media, which in the latter case is represented by classical 
Kelvin-Voigt and Maxwell models.  Remarkably, for each problem type, the stationarity of the 
mixed convolved action provides not only the governing partial differential equations, but also the 
specified boundary and initial conditions, as its Euler-Lagrange equations.  Thus, the entire 
initial/boundary value problem definition is encapsulated in a scalar mixed convolved action 
functional written in terms of displacements and stress impulses.  The resulting formulations 
possess an elegant structure that provides a versatile framework for development of novel 
computational methods, involving finite element representations in both space and time.  We 
present perhaps the simplest approach by employing linear three-node triangular elements for two-
dimensional analysis, along with linear shape functions over the temporal domain.  Numerical 
examples are included to verify the formulation and to explore concepts of stress wave attenuation. 
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1 Introduction 

Hamilton’s principle has long provided a fundamental basis for theoretical dynamics [1-4].  

However, we know that there are two major shortcomings; first, irreversible processes cannot be 

accommodated in a purely variational manner and, second, variations are not consistent with the 

specified initial conditions. 

Irreversible phenomena can be brought into the framework of Hamilton’s principle, following an 

approach originally proposed by Rayleigh for mechanical damping of a viscous nature, by 

introducing a quadratic dissipation function [5-7].  While this is not a true variational method in a 

strict mathematical sense, it can provide an attractive foundation for computations.  For example, 

using this approach, Mixed Lagrangian Formulations have been developed recently for dissipative 

systems for plasticity [8, 9], for contact and fracture [10, 11], and for thermoelasticity [12-14].  

Alternatively, generalized bracket formalisms have been established to address a broad range of 

dissipative processes [15-20]. 

However, in order to overcome both limitations of Hamilton’s principle, convolution-based 

temporal operators are needed.  Gurtin [21-23] was the first to introduce such formulations for 

continuum problems of viscoelasticity and elastodynamics, while Tonti [24, 25] provides an 

insightful assessment of variational methods for dynamical problems in general and advocates for 

the use of the convolutional bilinear form.  Oden and Reddy [26] extend the formulations of both 

Gurtin and Tonti to a large class of boundary and initial value problems in mechanics, especially 

for Hellinger-Reissner type mixed principles.  The present work builds on all of these previous 

efforts employing temporal convolutions and on the recent work for single-degree-of-freedom 

dynamical systems [27, 28].  Here we propose a new set of action principles, based upon impulsive 

mixed variables, fractional derivatives and the convolution of convolutions to produce an elegant 

theoretical structure for linear initial/boundary value problems within the mechanics of solid 

continua.  We consider both reversible (elastic) and irreversible (viscoelastic) phenomena within 

a common framework. 

The remainder of the paper is organized as follows.  Sect. 2 provides an overview of the governing 

equations and several integral theorems for elastodynamics to serve as background and motivation 

for the present work.  A new principle of virtual convolved action is also introduced.  In Sects. 3 
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and 4, we focus on two specific dynamical problems of interest involving infinitesimal 

deformations in reversible and irreversible mechanics, respectively.  Sect. 3 addresses conservative 

problems of elastodynamics, while the irreversible phenomena dealt with in Sect. 4 include 

classical Kelvin-Voigt and Maxwell viscoelastic models.  New mixed convolved action principles 

are developed for each of these problems from a time domain perspective.  Then, in Sect. 5, we 

formulate finite element methods for all of these problems in two-dimensions under conditions of 

plane stress and plane strain.  The finite element discretization takes place over space and time 

using linear three-node triangular elements and linear temporal shape functions, respectively.  A 

number of examples are considered in Sect. 6.  The first two are aimed toward verification of the 

mixed convolved action formulation and numerical implementation through comparison with 

analytical solutions and results from well-established time-integration algorithms.  The latter two 

illustrate ideas for stress wave attenuation via impedance tailoring in simple impulse-loaded 

protective system geometries.  Afterward, we finish by providing some conclusions in Sect. 7.   

Appendix A includes relevant background on fractional calculus, especially related to convolution 

and integration-by-parts operations that are essential for the present development. 

 

2 Overview of elastodynamic theory 

Let us begin with an overview of the governing equations and integral theorems for the dynamic 

response of a linear elastic continuum undergoing infinitesimal deformation within the domain   

with bounding surface   [29-32].  First, by considering the balance of linear momentum, we may 

write 

, 0o i ji j iu f                                                            (1) 

where iu  represents the displacement field, ij  is the stress tensor, if  is the applied body force 

per unit volume and o  is the mass density.  Standard indicial notation will be used throughout.  

Thus, summation is implied over repeated indices, spatial derivatives are denoted by indices after 

the comma and superposed dots represent partial derivatives with respect to time. 
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In classical elasticity, by ignoring couple-stresses, the balance of angular momentum leads to 

symmetry of the stress tensor ij , which is then related to the symmetric strain tensor ij  through 

the constitutive relations 

0ij ijkl klA                                                               (2) 

where 

 ,
1
2 ,ij i j j iu u                                                             (3) 

Equations (1)-(3) above, along with initial conditions over   and boundary conditions on  , 

define the elastodynamic initial/boundary value problem in differential form. 

A number of integral forms have been developed over the years for this elastodynamic problem, 

including the principle of virtual work, Hamilton’s principle and several varieties of the reciprocal 

theorem. 

To derive the principle of virtual work, one may begin by multiplying Eq. (1) by a virtual 

displacement field iu  and then integrating over the domain.  Thus, 

  , 0o i ji j i iu f u d  


                                                      (4) 

After invoking the divergence theorem and assuming a kinematically compatible virtual field, Eq. 

(4) can be expressed as the balance of internal and external virtual work, as 

 internal externalW W                                                            (5) 

  
t

o i i ji ij i i i iu u d u d f ut d     
  

                                       (6) 

where t  represents the portion of the boundary on which tractions it  are specified, while 0iu   

on the remainder of the boundary v  having displacements prescribed.  The overbars denote 

specified values, while tractions, in general, are defined at any location on the boundary, as 

 i ji jt n                                                                   (7) 

with in  representing the unit outward normal vector. 
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Several points should be emphasized concerning this statement of virtual work for the dynamical 

problem.  First of all, Eq. (6) has been developed without consideration of constitutive relations 

and therefore is not restricted to elastic media.  Secondly, integration is performed only over the 

spatial domain.  Equation (6) is valid at any instant of time, but there is no comparable temporal 

integration.  Also, through the use of integration-by-parts, Eq. (6) can be viewed as a weak form 

in space, while retaining a strong form in time with the appearance of the acceleration iu .  

Consequently, computational methods based on this principle of virtual work for dynamics often 

use finite element representations in space, but are limited to non-variational finite difference or 

Newmark type approaches in time.  

On the other hand, Hamilton’s principle for elastodynamics integrates a Lagrangian density 

function L  over both space and time, where L T V   with T  and V  representing the kinetic and 

potential energy densities, respectively.  More specifically, for elastodynamics, the resulting 

functional can be written 

 
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where ijklC  is the elastic constitutive tensor inverse to ijklA  and the last two integrals represent the 

contributions from the applied surface tractions and body forces, respectively.  Notice that in Eq. 

(8), the dependence of the field variables on time is made explicit, while the spatial dependence is 

assumed, as in Eq. (4) and (6).  This allows one to focus on the temporal aspects, which in this 

case involve inner products of field variables, either with each other or with applied loadings, over 

time. 

Hamilton’s principle states that of all the possible permissible solutions, the one that makes 
LHI  

in Eq. (8) stationary corresponds to the solution to the governing equations of elastodynamics.  Let 

us work through this derivation to emphasize the associated requirements.  Taking the first 

variation of Eq. (8) provides the following relation for stationarity: 
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where, of course, there is no variation of the specified traction boundary values and body forces.  

Next, integration-by-parts and the divergence theorem are used to shift derivatives from the 

variations to the real fields for the first two terms.  Thus, 
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After substituting Eqs. (10.1) and (10.2) into (9) and collecting terms, we find: 
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For arbitrary variations iu  over the domain  , the first integral in Eq. (11) imposes the governing 

differential equations of linear momentum balance Eq. (1), specialized for an elastic body, at each 

point in   and each instant of time.  The second integral enforces the traction boundary conditions, 

respectively, at each instant of time for any point on the surface t .  Thus, these are Euler-Lagrange 

equations associated with the functional 
LHI .  However, it is the remaining spatial integral in Eq. 

(11) that is problematic, because this requires, in general, that the variations of displacement must 

vanish throughout   at the beginning and end of the time interval.  How can one assume zero 

variations at the end time t , when the corresponding displacement field is typically a primary 

unknown of the initial/boundary value problem? 

Perhaps, we should mention also that despite nearly two centuries since the introduction of 

Hamilton’s principle, the physical meaning and significance of L  has never been made clear.  Why 
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should one choose the difference between the kinetic and potential energies as the basis for this 

principle?  Furthermore, in applications, the incompatibility between the end point requirements 

in Hamilton’s principle and the specification of initial conditions is often de-emphasized or 

completely ignored. 

Complementary and mixed versions of Hamilton’s principle can be developed, as well, by 

applying Legendre transforms to convert to stress-related variables.  Of particular note is the mixed 

Lagrangian formalism (MLF) of Sivaselvan and Reinhorn [8], for which the functional 
SHI  can be 

written: 

 
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where ijJ  represents the impulse of stress.  Thus, 

0 0
( ) ( ) ( )

t t

ij ij ijkl klJ t d C d                                                  (13) 

By enforcing stationarity of 
SHI , performing integration-by-parts and invoking the divergence 

theorem, one can demonstrate the following Euler-Lagrange equations are associated with this 

functional: 

0o i ijk ij iu B J f                                                          (14.1) 

0ijkl kl ijk kiA J B u                                                            (14.2) 

over the domain  , where the constitutive relation Eq. (14.2) is now written in rate form and the 

differential equilibrium and strain operator 

 1
2 qijk ik jq iq jk xB     

                                                      (15) 

Meanwhile, the traction boundary conditions are enforced on t  as additional Euler-Lagrange 

equations. 
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The elegant symmetry and symplectic character of Eqs. (14) motivate the use of stress impulse, 

rather than stress, within this mixed Lagrangian formalism.  From Eqs. (14), we recognize 

displacement and stress impulse as analogous field variables or, alternatively, velocity and stress.  

Similar to other approaches based upon Hamilton’s principle, the end point constraint issue 

precludes the use of finite element formulations in time and the MLF computational approaches 

typically make use of ideas from discrete variational calculus [33, 8, 9]. 

The final category of integral forms that must be discussed here is the reciprocal theorems.  

Following the fundamental work by Betti to derive the reciprocal theorem for elastostatic 

problems, a number of corresponding relations have been developed for the dynamical case.  For 

example, consider two states of an elastic body, defined by  , ,i ij iu f  and  , ,i ij iu f   at times t  

and t , respectively.  Then, one can write [31] 

   i o i i i i i o i i i if u u d u dt tf u u d u d 
   

                                   (16) 

This can be obtained by multiplying Eqs. (1) and (2) for the first state by displacement and stress 

of the second state, respectively, and integrating over  .  Equation (16) is then produced after 

invoking integration-by-parts and the divergence theorem, which enables the cancellation of the 

contributions of stress in the domain.  Note that Eq. (16) resembles the elastostatic version, except 

for the addition of the inertial contributions throughout the domain.  Can these extra terms be 

eliminated so that the reciprocal theorem for elastodynamics retains the spirit and simplicity of 

Betti’s original elastostatic version? 

Graffi [34] addressed this issue by introducing several versions of the reciprocal theorem that 

involve integration over time.  Keeping in mind the nature of initial value problems, the most 

interesting of these formulations involves temporal convolutions.  Let us deviate slightly from the 

original work of Graffi by starting from the governing differential equations in the form of Eqs. 

(14) with  , ,i ij iu J f  and  , ,i ij iu J f  representing two solutions that now extend over time from 

zero to t .  Convolving Eqs. (14.1) and (14.2) with iu  and ijJ , respectively, we must have 

   ( ( 0) )o i ijk ij i i ijkl kl ijk k iju B J f u t d A J u J dB t
 

                                          (17) 
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where the Riemann convolution of two functions is defined as 

 
0

( ) ( ) ( )
t

u v t u v t d                                                     (18) 

After following the usual procedure of applying integration-by-parts, the divergence theorem and 

some algebraic manipulation, Eq. (17) can be rewritten in the form: 

 (0) ( ) ( ) (0)
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i i i i o i i o i i

i i i i o i i o i i
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The additional domain integrals in Eq. (19), involving the products of initial and final conditions 

of displacement and velocity, represent the contributions from inertia expressed in terms of values 

at the beginning and ending of the time interval. 

The reciprocal theorem, as expressed in Eq. (19), is often used as the basis for boundary integral 

representations and, ultimately, boundary element methods.  This can be accomplished by 

selecting one of the states, say  , ,i ij iu J f , to be the infinite space point force (or fundamental) 

solution of elastodynamics.  For simpler lumped parameter dynamical systems, the analogous 

approach is associated with the Duhamel integral [35].  Thus, formulations based on temporal 

convolutions are well-established for dynamical problems.  As a final note regarding Eq. (19), we 

should mention that the convolution based reciprocal theorem is in fact an action principle.  

Physically, we may say that the convolved action of one system of forces on the displacements of 

the other is equal to the convolved action of the forces of the second system on the displacements 

of the first. 

Let us conclude this section by coming full circle to introduce a general principle of virtual 

convolved action for continuum dynamics.  As we shall see, this can be derived without regard to 

a constitutive model and thus is valid for linear or nonlinear, rate independent or dependent 

materials undergoing infinitesimal deformation. 

To derive this new principle, we may begin by convolving Eq. (1) with a virtual displacement field 

iu  over time and then integrating over the spatial domain.  Thus, 
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  , 0o i ji j i iu f u d  


                                                      (20) 

After invoking the divergence theorem and assuming a kinematically compatible virtual field with 

0iu   on v  and at time zero, Eq. (20) can be expressed as the Principle of Virtual Convolved 

Action, which balances the internal and external contributions, as follows: 

 internal externalA A                                                            (21) 
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In a way, this extends the principle of virtual work Eq. (6) to dynamics in much the same manner 

that the reciprocal theorem of Eq. (16) is broadened to Eq. (19) through the introduction of 

temporal convolutions. 

 

3 Mixed convolved action for elastic continua 

Beginning in this section, we again consider the elastodynamic response of a continuum 

undergoing infinitesimal deformation, but now focus on the development of new mixed convolved 

action stationary principles.  The classical continuum approach based upon Hamilton’s principle 

is developed in Kirchhoff [36] and later in Love [37].  As noted previously, convolution-based 

continuum formulations appear first in Gurtin [21-23] and Tonti [24].  A broad range of these 

principles are collected and then generalized by Oden and Reddy [26] to Hellinger-Reissner type 

mixed principles.  Here we apply the ideas from References [8, 9, 13, 27, 28], along with relations 

from fractional calculus to formulate a mixed variational principle that recovers the governing 

partial differential equations, along with all initial and boundary conditions for the infinitesimal 

deformation linear elastodynamic problem. 

Following the mixed Lagrangian formalism of Sivaselvan and Reinhorn [8], we use displacement 

iu  and impulse of elastic stresses ijJ  as primary variables, but motivated by the concepts discussed 

in Sect. 2, we convert the inner products appearing in the functional 
SHI of Eq. (12) to temporal 
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convolutions.  We could develop this new convolved action by starting from the governing 

equations of elastodynamics, as was done in Sect. 2.  However, for a change of pace, in this section, 

we work the other way around by stating the mixed convolved action 
ECI  for elastodynamics and 

then demonstrating that this recovers all of the governing equations, along with initial and 

boundary conditions, as its Euler-Lagrange equations.  This single real scalar action functional can 

be written in terms of convolutions and fractional derivatives of impulse variables, while recalling 

that action itself represents the impulse of energy.  Let the mixed convolved action for 

elastodynamics be written as follows: 
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where a superposed breve is used to represent a left Riemann-Liouville semi-derivative with 

respect to time.  Although several different forms of semi-derivatives are available, here the 

Riemann-Liouville definition yields the desired Euler-Lagrange equations, as will be shown 

below.  Appendix A provides a brief overview of fractional calculus, emphasizing the aspects most 

relevant to the present work. 

Additionally, as a reminder, we use an overbar to denote quantities not subject to variation.  In 

particular, in Eq. (23), kj  represents the impulse of the applied body force density kf , while k  

is the impulse of kt , the applied surface tractions on a portion of the surface designated as t .  In 

a similar way, ku  represents the enforced surface displacements on v , with k  as the impulse of 

the resulting reactive tractions kt  on that surface.  Here, we assume the boundary conditions are 

defined, such that v t     and v t   . 

Comparing 
SHI of Eq. (12) with 

ECI  of Eq. (23), we notice several changes in addition to the 

conversion of temporal inner products to convolutions.  The coupling term in Eq. (12) between 

stress impulses and strain rates is now rewritten to provide more balance in the derivatives over 
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space, by separating into two terms, and in time, by introducing semi-derivatives.  The semi-

derivatives appearing in the body force and boundary traction contributions have a similar purpose.  

Notice also that in Eq. (23) there is a contribution from enforced boundary displacements on v .  

All of these changes are intended to maintain the elegant structure that appears in Eqs. (14) for 

displacement and stress impulse variables.  Just as in the reciprocal theorem of Eq. (19), each term 

represents a convolved action that conveys the essence of an evolving dynamical system.  Within 

Eq. (23), these represent in order the inertial, complementary stress, displacement-stress impulse, 

body force, applied traction and enforced displacement convolved actions. 

The first variation of the mixed convolved action in Eq. (23) becomes 
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               (24) 

We need to perform temporal integration-by-parts on all of the terms in Eq. (24).  However, we 

also require a spatial integration-by-parts operation on the terms involving ijk kB u   and ijk ijB J


.  

For this development within the classical size-independent theory, we make use of the symmetry 

of stresses kjJ  and the Cauchy definition of surface traction, where  k k j jkt J n   .  We also must 

recognize that similar relations hold for the left half-order time derivatives of these variables.  The 

reformulation for ijk kB u   proceeds as follows: 

 
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

                    (25.1) 
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Similarly, for ijk ijB J


, we have 

    ijijk ij k k k ij kkB J u d u d J B u d  
  
             

   
                       (25.2) 

After substituting Eqs. (25.1) and (25.2) into Eq. (24), we have 
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Next, we must perform temporal integration-by-parts to shift all time derivatives from the 

variations to the real fields.  For example, classical integration-by-parts must be used on the two 

terms on the first line of Eq. (26), while fractional integration-by-parts is needed to shift the semi-

derivatives of the variations in all of the remaining integrals in Eq. (26).  The required fractional 

calculus relations are provided in Appendix A, where the Riemann-Liouville definitions provide 

exactly the desired terms, as will be demonstrated in the following.   

After performing these necessary temporal integration-by-parts operations, the stationarity of the 

mixed convolved action may be written 
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Collecting terms according to the variations, we then may write 
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             (28) 

With arbitrary variations over space and time, from Eq. (28), we have the following set of Euler-

Lagrange equations, representing linear momentum balance and elastic constitutive behavior, 

respectively, 

k ijko kijJBu f                             x , (0, )t              (29.1) 

0ijkl kl ijk kuBJA                            x , (0, )t              (29.2) 

natural and essential boundary conditions, respectively, 

k kt t                                    tx , (0, )t              (30.1) 

k kv v                                   vx , (0, )t              (30.2) 

initial conditions over the domain 

(0) (0) (0)k ijko ij kBu J j                     x                              (31.1) 

(0) (0) 0ijkl kl ijk kA BJ u                     x                              (31.2) 

and initial conditions on the boundary 

(0(0) )k k                               tx                              (32.1) 
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(0(0) )k ku u                             vx                              (32.2) 

with the variations defined, such that 

0k                                     tx , (0, )t              (33.1) 

0ku                                    vx , (0, )t              (33.2) 

(0) 0ku                                  x                              (34.1) 

(0) 0ijJ                                   x                             (34.2) 

) 0(k t                                    tx                            (35.1) 

0( )ku t                                     vx                           (35.2) 

Consequently, we have established a Principle of Stationary Mixed Convolved Action for a Linear 

Elastodynamic Continuum undergoing infinitesimal deformation, which may be stated as follows:  

Of all the possible trajectories { ( ), ( )}k iju J   of the system during the time interval (0, )t , the one 

that renders the action 
ECI  in Eq. (23) stationary, corresponds to the solution of the 

initial/boundary value problem.  Thus, the stationary trajectory satisfies the equations of motion 

Eq. (29.1) and constitutive relations Eq. (29.2) in the domain  , along with the traction Eq. (30.1) 

and velocity Eq. (30.2) boundary conditions, throughout the time interval, while also satisfying 

the initial conditions defined by Eqs. (31.1) and (31.2) in   and Eqs. (32.1) and (32.2) on the 

appropriate portions of the bounding surface.  Furthermore, the possible trajectories under 

consideration during the variational process are constrained only by their need to satisfy the 

specified initial and boundary conditions of the problem in the form of Eqs. (33), (34) and (35). 

We should note that it may not be possible to obtain all of these conditions for the mixed 

initial/boundary value problem of elastodynamics without involving the combination of mixed 

variables, convolution and fractional derivatives.  However, due to special properties of the 

convolution of Riemann-Liouville fractional derivatives, alternative forms of the mixed convolved 

action can be written using complementary order fractional derivatives.  This is discussed in more 
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detail for the single degree-of-freedom case in Reference [27] and also Reference [28], where a 

computational method for mixed convolved action is developed. 

 

4 Mixed convolved action for viscoelastic continua 

In this section, we shift attention to a continuum problem involving energy dissipation and develop 

for the first time pure variational statements in irreversible solid mechanics, which capture all 

aspects of the initial/boundary value problem.  As the first example, we consider dissipative 

processes in viscoelastic media and develop mixed convolved action formalisms for infinitesimal 

deformations.  To formulate such a mixed convolved action for dynamic viscoelasticity, let us 

begin with the corresponding action for elastodynamics in Eq. (23) and then add terms for the 

viscoelastic contributions.   

4.1 Kelvin-Voigt velocity-dependent viscoelasticity 

As an extension of the development in Reference [28] for a single-degree-of-freedom Kelvin-

Voigt element, we may write for the continuum: 

1
2  

K EC jC j kkI I Cu u d

     
 

                                           (36) 

Here jkC  is the symmetric second order constitutive tensor associated with velocity-dependent 

viscoelastic response.  Notice that this additional contribution involves the self-convolution of 

semi-derivatives of displacement, which conveys the path-dependent dissipative nature of 

viscoelastic behavior.  This is in contrast to the self-convolutions of velocities and stresses that 

appear in the conservative mixed convolved action 
ECI , which carries over from the elastodynamic 

case, as shown in Eq. (36). 

The first variation of the mixed convolved action in Eq. (36) becomes 
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17 

Next, we perform classical and Riemann-Liouville fractional integration-by-parts on the 

appropriate terms in Eq. (37) in a manner similar to what was done for the elastodynamic case in 

Sect. 3.  Then, after collecting terms according to the variations, the statement for stationary action 

KCI  can be written 
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       (38) 

Notice that this is identical to the variation of 
ECI  in Eq. (28), except for the first and third volume 

integrals, which now contain an additional term involving jkC  associated with Kelvin-Voigt 

viscoelasticity. 

Then, by assuming arbitrary variations over space and time, we uncover the following set of Euler-

Lagrange equations, representing linear momentum balance with velocity-dependent Kelvin-Voigt 

contributions and elastic constitutive behavior, respectively, 

o jk jk i kjk ijC Bu u J f                          x , (0, )t              (39.1) 

0ijkl kl ijk kuBJA                              x , (0, )t              (39.2) 

natural and essential boundary conditions, respectively, 

k kt t                                    tx , (0, )t              (40.1) 

k kv v                                   vx , (0, )t              (40.2) 

initial conditions over the domain, including the initial viscoelastic contribution, 
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(0) (0) (0) (0)o k ijk ijjk j kC Bu u J j             x                              (41.1) 

(0) (0) 0ijkl kl ijk kA BJ u                        x                              (41.2) 

and initial conditions on the boundary 

(0(0) )k k                               tx                              (42.1) 

(0(0) )k ku u                             vx                              (42.2) 

These are precisely the equations that govern the behavior of a Kelvin-Voigt viscoelastic medium. 

In addition, from Eq. (38), the variations must be defined, such that 

0k                                     tx , (0, )t              (43.1) 

0ku                                    vx , (0, )t              (43.2) 

(0) 0ku                                  x                              (44.1) 

(0) 0ijJ                                  x                              (44.2) 

) 0(k t                                  tx                              (45.1) 

0( )ku t                                   vx                             (45.2) 

These correspond exactly to the known boundary and initial conditions of the Kelvin-Voigt 

velocity-dependent viscoelastic problem. 

Therefore, we have established a Principle of Stationary Mixed Convolved Action for a Linear 

Kelvin-Voigt Viscoelastic Continuum undergoing infinitesimal deformation.  This principle may 

be stated as follows:  Of all the possible trajectories { ( ), ( )}k iju J   of the system during the time 

interval (0, )t , the one that renders the action 
KCI  in Eq. (36) stationary, corresponds to the solution 

of the initial/boundary value problem.  Thus, the stationary trajectory satisfies the equations of 

motion Eq. (39.1) and constitutive relations Eq. (39.2) in the domain  , along with the traction 
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Eq. (40.1) and velocity Eq. (40.2) boundary conditions, throughout the time interval, while also 

satisfying the initial conditions defined by Eqs. (41.1) and (41.2) in   and Eqs. (42.1) and (42.2) 

on the appropriate portions of the bounding surface.  Furthermore, the possible trajectories under 

consideration during the variational process are constrained only by the need to satisfy the 

specified boundary and initial conditions of the problem in the form of Eqs. (43), (44) and (45). 

4.2 Maxwell stress-dependent viscoelasticity 

In a similar manner, we may consider Maxwell viscoelastic constitutive models within the mixed 

convolved action formalism.  For this case, the action can be written as follows: 

1
2  

M E ijklC C ij klJ JI I D d

     
 

                                           (46) 

where ijklD  is the fourth order constitutive tensor associated with Maxwell viscoelastic response 

and all of the other terms are directly from the elastic case in Eq. (23). 

Next, taking the first variation of the mixed convolved action from Eq. (46), we have 

 1
2

1 1
2 2

 

 

   
v

M

t

o ijklC k k ij ijkl kl ij kl

ij ijk k k ijk ij ijk k ij ijk ij

k k

k

k k k

I u u J A J D d

J B u u B J B u J B J u d

d

J

d

J

u j u u d

   

   

   









  

        

          
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  

  
 

 



    

   
             (47) 

After performing classical and Riemann-Liouville fractional integration-by-parts on the 

appropriate terms in Eq. (47), collecting terms according to the variations, and assuming arbitrary 

variations over space and time, we obtain the following set of Euler-Lagrange equations.  These 

represent linear momentum balance and Maxwell viscoelastic constitutive behavior, respectively, 

k ijko kijJBu f                          x , (0, )t              (48.1) 

0ijkl kl ijkl kl ijk kA D BJ J u                     x , (0, )t              (48.2) 

natural and essential boundary conditions, respectively, 

k kt t                                    tx , (0, )t              (49.1) 



20 

k kv v                                   vx , (0, )t              (49.2) 

initial conditions over the domain, including the initial viscoelastic contribution, 

(0) (0) (0)k ijko ij kBu J j                   x                              (50.1) 

(0) (0) (0) 0ijkl kl ijkl kl ijk kJ J uA D B             x                              (50.2) 

and initial conditions on the boundary 

(0(0) )k k                               tx                              (51.1) 

(0(0) )k ku u                             vx                              (51.2) 

These are precisely the equations that govern the behavior of a Maxwell viscoelastic medium. 

As in the previous cases, the variations must be defined, such that 

0k                                     tx , (0, )t              (52.1) 

0ku                                    vx , (0, )t              (52.2) 

(0) 0ku                                  x                              (53.1) 

(0) 0ijJ                                  x                              (53.2) 

) 0(k t                                  tx                              (54.1) 

0( )ku t                                   vx                             (54.2) 

which correspond exactly to the known boundary and initial conditions of the Maxwell viscoelastic 

problem. 

Therefore, we have established a Principle of Stationary Mixed Convolved Action for a Linear 

Maxwell Viscoelastic Continuum undergoing infinitesimal deformation, which may be stated as 

follows: Of all possible trajectories { ( ), ( )}k iju J   of the system during the time interval (0, )t , the 
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one that renders the action 
MCI  in Eq. (46) stationary, corresponds to the solution of the 

initial/boundary value problem.  In this case, the stationary trajectory satisfies the equations of 

motion Eq. (48.1) and viscoelastic constitutive relations Eq. (48.2) in the domain  , along with 

the traction Eq. (49.1) and velocity Eq. (49.2) boundary conditions, throughout the time interval.  

This trajectory also satisfies the initial conditions defined by Eqs. (50.1) and (50.2) in   and Eqs. 

(51.1) and (51.2) on the appropriate portions of the bounding surface  .  Furthermore, within the 

variational process, the possible trajectories under consideration are constrained only by the need 

to satisfy the specified boundary and initial conditions of the problem in the form of Eqs. (52), 

(53) and (54). 

4.3 Mixed convolved action for dissipative systems 

In this section, two examples of the application of the mixed convolved action formalism to 

viscoelastic media have been provided.  For both of these cases, and many others, the development 

of variational principles for dissipative phenomena is quite straightforward within this new 

approach, based upon mixed impulsive variables, Riemann-Liouville fractional calculus, and the 

convolution of convolutions.  The remainder of the paper focuses on the development of finite 

element methods and the numerical solution of several initial/boundary value problems. 

 

5 Weak forms and finite elements in space and time  

5.1 Weak form and stationarity of mixed convolved action 

In the previous two sections, we demonstrate that the mixed convolved action defined by Eqs. 

(23), (36) and (46) can recover the associated governing partial differential equations, along with 

the boundary conditions and initial conditions, which describe completely the initial-boundary 

value problem.  Next, we define an appropriate weak form to serve as the foundation for a finite 

element method in space and time.  For this, we consider the general dissipative problem involving 

both Kelvin-Voigt and Maxwell viscoelastic contributions, realizing that fully conservative 

elastodynamics is simply a special case having jkC  and ijklD  as null constitutive tensors. 
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Let us begin by defining the mixed convolved action for this combined viscoelastic problem, which 

from Eqs. (36) and (46) can be written: 

1 1
2 2  

V EC C j jk ik ij j l lk kI I C du u J dJD
 

           
  

                             (55) 

The first variation of Eq. (55) can be used as the weak form for a finite element method.  Of course, 

this weak form is not unique, because various integration-by-parts operations may be invoked.  In 

particular, one may tailor the weak form to provide desirable symmetries and continuity 

requirements.  For the present work, we choose to seek stationarity of the following weak form: 
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                (56) 

with 0ku   on v  and 0k   on t .  Notice the appearance of terms involving body forces 

and surface tractions in analogy with similar contributions in the usual weak form for quasistatic 

problems developed from, for example, the principle of minimum potential energy.  The difference 

here is that the problem is dynamical, which requires fractional derivatives and convolutions over 

time.  In addition, to create temporal balance between the kinematic and kinetic representations, 

the present weak form in Eq. (56) is written in terms of mixed impulsive variables. 

Closer examination of Eq. (56) reveals that first order spatial derivatives are applied on 

displacements ku  through the operator ijkB , while no spatial derivatives operate on the stress 

impulses klJ .  Consequently, for a convergent discretization of Eq. (56), displacement field 

variables must be 0C  continuous in space, while stress impulses require only 1C   continuity, or 

in other words, these latter field variables may be discontinuous in space.  For the temporal 

representation, first order time derivatives are present for both displacement and stress impulse 

field variables and, thus, 0C  continuity must be provided over the time domain.  This means the 

impulse of stress must be continuous in time, whereas stress may exhibit discontinuities in both 

time and space.    
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A further matter to emphasize concerning Eq. (56) is the complete absence of temporal end point 

constraints. On the other hand, any direct application of Hamilton’s principle would require zero 

variations of the field variables at the beginning and end of the time interval, which is problematic 

for the formulation of a finite element method in time.  The previous variational approaches of 

Kane et al. [38, 39], Marsden and West [40], Sivaselvan and Reinhorn [8], Sivaselvan et al. [9] 

and References [12-14] all attempt to circumvent this issue by invoking ideas from discrete 

variational calculus [33, 41] and by shifting the evaluation points to the interior of the temporal 

domain.  On the other hand, here with the weak form emanating from the mixed convolved action, 

there is no such restriction and temporal finite element approaches are easily constructed. 

With all of the above in mind, we begin with simple elements and a low order representation of 

the field variables in space and time for illustrative purposes.  Many more elaborate and higher 

order formulations are possible.  For plane stress and plane strain dynamic analysis, we choose 

three-node triangular elements with two degrees-of-freedom at each node and linear variations of 

displacement over the element.  In addition, stress impulses are assumed as spatially-constant 

element-based variables.  Both displacements ku  and stress impulses klJ  are described by linear 

shape functions in time.  Identical spatial and temporal representations are used for the 

corresponding variations ku  and klJ  and all integrals in Eq. (56) are evaluated analytically, 

including those involving the semi-derivatives, over a time interval from 0  to t . 

5.2 Spatial discretization of weak form 

Let us start by performing integration in space over an arbitrary three-node triangular element in 

the 1x - 2x  (or x - y ) plane for each of the volumetric terms in Eq. (56).  For this we use a consistent 

representation of each term, meaning in this case that we take only the term with constant variation 

[42].  After this spatial discretization and integration, we may write 

 
e

k k
T

ou u d 


    u M u                                                     (57.1) 
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                                                 (57.2) 

 
e

ij ijkl l
T

kJ A J d 


    J A J                                                  (57.3) 
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                                                 (57.5) 
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TB u J d 
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    u B J
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                                                (57.6) 

For an isotropic solid, the matrices in Eqs. (57) become 

6 / 3o A bM I                                                         (58.1) 

6 / 3A bcC I                                                         (58.2) 

2 3 3 1 1 2

3 2 1 3 2 1

3 2 2 3 1 3 3 1 2 1 1 2

0 0 0

0 0 0
2

y y y

x x x

x

y y y
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  


 

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

  

B                          (58.3) 

where qx  and qy  represent the coordinates of node q  of the triangular element, c  is the Kelvin-

Voigt damping coefficient, A  represents the area of the triangle, b  is the thickness and pI  is the 

p p  identity matrix. 

Furthermore, for plane strain, we may write 

1 0

1 0

0 0 2

1
b

E
A

 
  

  
   
  


A                                              (59.1) 

while for plane stress 

 

1 0

1 0
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1

2 1
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

 
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A                                             (59.2) 

with elastic modulus E  and Poisson ratio  .  Meanwhile, for the Maxwell matrix, we use the 

simple form 
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1

Mt
D A                                                                 (60) 

with relaxation time Mt . 

In a similar manner, after spatial discretization, the body force contributions over an element 

become: 

 
e

T
kku j d 


    u j

                                                   (61) 

while the terms from the boundary conditions can be obtained by integration over an element edge, 

producing 

   1 1
2 2 

t
k

T
k k du   


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v
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T
k kuu d 
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                                  (62.2) 

With higher order elements, there are some interesting ways to accommodate the influences 

defined in Eqs. (62).  Here we simply equate the unknown variables to the known values (i.e., 

τ τ


, u u


) on edges associated with t  and v , such that the enforced tractions have a 

contribution defined by 
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                                       (63.1) 

while the enforced displacement integral has no explicit additional effect, because  

 1
2  0

v
k kk uu d


     
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                                            (63.2) 

Substituting Eqs. (57), (61) and (63) into Eq. (56) provides the spatially discretized mixed weak 

form for an element, which can be written: 
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                                     (64) 
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5.3 Temporal discretization of weak form 

As mentioned previously, for the temporal representation of the displacement and stress impulse 

field variables, we use standard linear shape functions. Thus, over a time interval from 0 tt  

, we write shape functions: 

 0 ( ) 1 t
tN t   ;  1( ) t

tN t                                               (65.1,2) 

such that 

0 0 1 1( ) ( ) ( )t N t N t u u u                                                  (66.1) 

0 0 1 1( ) ( ) ( )t N t N t J J J                                                  (66.2) 

and similarly for the variations ( )tu  and ( )tJ .  For convenience, we may also assume 

0 0 1 1( ) ( ) ( )t N t N t j j j                                                (66.3) 

0 0 1 1( ) ( ) ( )t N t N t τ τ τ                                                (66.4) 

although one can instead just work directly with the given functions ( )tj  and ( )tτ . 

Next, we substitute Eqs. (66) into Eq. (64) and perform the necessary convolution integrals in 

closed form.  Details for all of these temporal integrals are provided in Reference [28].  Then, after 

collecting terms, we may write the following discretized weak form: 
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    (67) 

where now 0j  and 1j  are force impulses that collect all of the applied body force and surface 

traction contributions at times 0t   and t t  , respectively. 

For this time step from 0t   to t t  , we assume that the field variables 0u  and 0J  are known 

and we seek to determine 1u  and 1J .  Consequently, we must set the variations 0 u 0  and 
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0 J 0 , while allowing 1u  and 1 J  to remain arbitrary.  Satisfaction of Eq. (67) then requires 

that the following set of linear algebraic equations hold for each element:    
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where 

0 2
t M M C ;  21

t M M C                                             (69.1,2) 

0 2
t A A D ;  1 2

t A A D                                              (69.3,4) 

Recall that the stress impulses are interpolated element-by-element as 1C   functions.  

Consequently, the 1J  variables may be condensed out of the equations at the element level.  

Solving the second set of Eqs. (68) for 1J  produces the following: 

  1
1 1 1 02 2 0 0

t t    J A B u B u A J                                              (70) 

After substituting Eq. (70) into the first set of Eqs. (68), we may write the condensed relations for 

an element as: 

1 1 1
e eK u f                                                               (71) 
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e e T

t t   f j j K u B J                                          (72.4) 

with the superscript e  as a reminder that all of these relations are written at the individual element 

level.   
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Generalizing this formulation for any step n  in moving from a known solution at time 1nt   to the 

desired solution at time nt  with 1n nt t t    , we obtain the following for each element: 

1 n
e e

nK u f                                                              (73) 

where 

 2 4
01 01 1

e e T
n t n n tn n    f j j K u B J                                       (74) 

5.4 Global finite element system and comparisons 

At this stage, the element relations presented in Eq. (73) are in the form of a standard displacement-

based finite element method.  Assembly can now proceed in the usual way to produce the overall 

system of linear algebraic equations, which may be written simply: 

n nK U F                                                              (75) 

Of course, this simplicity tends to obscure the underlying fundamental differences, which in the 

present development arise from strict adherence to the variational principles presented in Sects. 3 

and 4. 

Interestingly, the coefficients appearing in the mixed convolved action finite element formulation 

defined above recall those associated with the well-known Newmark method for dynamic analysis 

[43, 44], which can be written: 
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with   and   as the parameters.  For the case without numerical dissipation, 1
2   and 1

4  .  

Then, the Newmark algorithm reduces to Eq. (76), along with the following: 
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    2
4 4 2

1 1 1 1 1
eff ext
n n n n n n nt tt      
    f f M u u u C u u                      (78.2) 

where ext
nf  represents the externally applied nodal forces at time nt .   

Notice that several familiar coefficients (e.g., 2
t ,  2

4
t

)  now appear in Eqs. (78).  Let us consider 

the case in which Maxwell damping is absent.  Then, 1 A A , 0 B B  and from Eqs. (69.2) and 

(72.1), 

 2
1 2 4

1
e T

t t


 

 K B A B C M                                              (79) 

which is identical to the Newmark effective stiffness from Eq. (78.1).  To compare e
nf  from Eq. 

(74) with eff
nf  from Eq. (78.2), several substitutions are needed.  This includes the equation of 

motion in discretized form at time 1nt  , which within the Newmark formalism may be written  

1 1 1 1
ext

n n n n     M u C u K u f                                                (80) 

and the corresponding discretized initial condition in terms of stress impulse that becomes 

1 1 1 1
T

n n n n     M u C u B J j                                              (81) 

Next, we may rearrange the terms in Eq. (78.2), as follows: 

       2
4 4

1 1 1 1 12
eff ext t
n n n n n n ntt


    

     f f Mu Cu M C u Mu Cu                   (82) 

Then, substituting Eqs. (80), (69.1) and (81), respectively, in the bracketed terms in Eq. (82), we 

obtain 

       2
4 4

1 1 0 1 1 1
eff ext ext T
n n n n n n ntt    

   f f f Ku M u j B J                         (83) 

or 

  2
4 4 4

1 1 0 1 1
eff ext ext T
n n n n n nt tt    
    f f f j K M u B J                             (84) 

However, for linear variation of applied external force impulses over the time step, 
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 1 12
ext extt

n n n n


   j j f f                                                   (85) 

and Eq. (84) becomes finally 

    2
2 4 4

1 0 1 1
eff T
n n n n nt tt   
   f j j K M u B J                               (86) 

Notice that the right hand side of Eq. (86) is now identical to that of Eq. (74) and, therefore, we 

have 

eff e
n nf f                                                              (87) 

Thus, the Newmark algorithm for a linear dynamic system with viscous damping is equivalent to 

the simplest mixed convolved action variational formulation using linear temporal shape functions.  

Unlike the Newmark algorithm, the mixed convolved action finite element method has been 

developed here to provide a variational framework for problems involving Maxwell damping 

processes.  We also should mention that Marsden and colleagues [38-40] previously identified the 

Newmark algorithm as a variational statement.  However, in their analysis, only purely reversible 

processes could be considered, while remaining strictly consistent with variational calculus 

principles.  Dissipation was considered only within the framework of the Rayleigh formalism.  

Furthermore, their approach represented a hybrid between finite element methods in space and 

discrete variational calculus in time, which sidesteps the endpoint constraint problem.  On the other 

hand, here we have a pure finite element approach in both space and time, which extends readily 

to non-conservative problems and to higher order representations. 

 

6 Computational examples 

In this section, four computational examples are considered to verify the mixed convolved action 

(MCA) numerical implementation for two-dimensional continuum problems.  The first example 

involves one-dimensional elastodynamic wave propagation in a square domain under plane strain 

conditions, where the mixed convolved action results are compared to the analytical solution and 

to the corresponding solutions from the ABAQUS commercial finite element package without 

artificial numerical dissipation.  As expected from the analysis of Sect. 5, the MCA and ABAQUS 

solutions are essentially identical.  For the second example, we study the dynamic response of a 
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square plate due to Heaviside loading under plane stress conditions with the medium modeled as 

a Maxwell viscoelastic material.  Interestingly, by using the most simplistic linear temporal shape 

functions within the mixed convolved action formalism, we are able to recover solutions consistent 

with the ABAQUS commercial software.  Then, we shift to consider two illustrative examples of 

stress wave attenuation.  The first of these involves shielding a portion of the boundary by using 

lower impedance inserts within a square plate subjected to a sudden sinusoidal pulse load on the 

opposite edge.  Lastly, we investigate elastodynamic stress wave attenuation in a layered medium 

with uniform wave speed, but graded impedances.  By proper design of the layer properties, 

significant attenuation can be achieved, as is shown here through MCA analyses of a pulse loaded 

square plate.  All four problems use the same basic geometric setting of a square planar body with 

rollers on three sides, but are designed to explore different aspects of dynamic response.  

6.1 Elastodynamic wave propagation along uniform bar 

First we consider a uniform square elastic body under plane strain conditions subjected to a 

suddenly applied Heaviside step loading at one end, as shown in Fig. 1.  The problem reduces to 

one-dimensional wave propagation with speed Lc , having a known analytical solution available 

for comparison.  We also compare results with the commercial finite element software ABAQUS 

6.9-1 [45], with the Hilber-Hughes-Taylor parameter 0   to avoid numerical dissipation and to 

align with the present MCA formulation. 

For the numerical analysis, we employ 512  uniformly sized three node triangle elements, as 

illustrated in Fig. 1, and take the following non-dimensional parameters: 

01/ 4,5 / 2 1, 1,, 1pE L                                          (88) 

with a constant time step 0.025t  .  Vertical displacements versus time at the upper edge and at 

mid-height are compared in Fig. 2.  As expected from the analysis at the end of Section 4, the 

MCA and ABAQUS solutions are essentially identical.  The deviation from the exact solution is 

due to the low order approximations used over space and time within this initial MCA numerical 

formulation.  However, despite the errors, the formulations are energy preserving and 

unconditionally stable.  Furthermore, the MCA formulation derives from a pure variational 

statement of elastodynamics that has as its Euler-Lagrange equations the partial differential 

equations, boundary conditions and initial conditions of the problem. 
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6.2 Dynamic response of Maxwell viscoelastic plate 

Next, we examine the response of a thin viscoelastic plate under dynamic excitation.  The 

geometry, constraints and loading conditions are identical to those from the previous problem 

displayed in Fig. 1.  The non-dimensional problem parameters defined in Eq. (88) are again used, 

along with a Maxwell relaxation time 4Mt  .  However, here we assume plane stress conditions.  

Fig. 3 provides the numerical solutions for the vertical displacement versus time at the loaded edge 

using ABAQUS and MCA, both with time steps of 0.0125t  .  The parameters have been set to 

illustrate inertial and creep effects, which are clearly visible in Fig. 3.  Also, as is apparent in the 

figure, the MCA and ABAQUS solutions are nearly identical.  This is further established by 

examining solutions using the two approaches with a much larger time step of 0.40t  .  

Interestingly, while the displacements at this longer time step are clearly in error, the two 

approaches again provide essentially the same results. 

At this point, we should emphasize that the MCA formalism provides a true variational statement 

for this dissipative viscoelastic system.  The action functional encapsulates the governing partial 

differential equations, boundary conditions and initial conditions of the problem.  The MCA 

numerical implementation employs finite element representations in both space and time.  

Remarkably, the simplest MCA formulation in time reproduces the results from a highly respected 

commercial finite element code.  On the one hand, this means that the dynamic viscoelastic 

formulation in ABAQUS is consistent with a pure variational statement of the problem.  On the 

other hand, this suggests that further improvements should be possible by exploiting extensions of 

the present MCA variational implementation.   

6.3 Stress wave shielding with reduced impedance inserts 

Geometric tailoring of material properties can be designed in many patterns to reduce stress wave 

amplitudes.  With the maturation of additive manufacturing processes, such designs can be readily 

fabricated.  For the next illustrative example, we study the effects of reduced impedance inserts to 

shield portions of the lower edge of an elastic square block, having the upper edge subjected to an 

applied half-sine pulse load, such that 
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 )( ) sin ( 1( ) ( )t H tS t t H                                                  (89) 

with ( )H t  representing the Heaviside step function. 

We again use non-dimensional parameters with 1L  .  Both the matrix and inserts have the same 

Poisson ratio 1/ 4   and wave speed Lc , but for the matrix the elastic modulus 40ME   and 

mass density 16M  , while for the inserts 5 / 2IE   and 1I  .  Thus, the impedance ratio is 

/16I MZ Z . The composite block is examined under plane strain conditions for the sinusoidal 

pulse load, defined in Eq. (89), applied to the top edge.  The problem definition and finite element 

mesh for two different insert patterns, one involving four uniform inserts and the other employing 

the same number and total volume of graded inserts, are shown in Fig. 4.  Each mesh consists of 

2048  equally sized triangular elements and is analyzed using MCA with a fixed non-dimensional 

time step 0.0125t  . 

The maximum vertical normal stress wave amplitudes for the two patterns are plotted in Fig. 5 

versus horizontal location along the bottom edge.  Also shown is the MCA result for the monolithic 

matrix case, which as expected is very nearly two all along that edge due to the wave reflection 

when reaching the hard boundary.  Notice both lower impedance insert patterns can provide 

significant shielding along the bottom edge, at the expense of increased stress wave amplitudes 

outside of this attenuation zone. 

6.4 Stress wave attenuation in layered media 

As a final example, we look at the problem of stress wave attenuation in layered media under 

impulse loading using the MCA formulation.  The problem setup is similar to that of the previous 

examples, except that now waves propagate through a heterogeneous domain composed of eight 

equal depth horizontal layers.  All layers have the same wave speed Lc , but with impedances 

graded from 1Z  at the bottom to 8Z  at the top, where i i LZ c  for layer i .  We assume non-

dimensional parameters with 1L  , and base elastic properties 1 5 / 2E  , 1/ 4   and 1 1  , 

under plane strain conditions for the sinusoidal pulse load defined in Eq. (89), using a fixed non-

dimensional time step 0.0125t  .  Fig. 6 provides more problem definition detail, including the 

baseline triangular finite element mesh.   
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For the first case, the impedance of all layers is set equal to that of the base, that is 1iZ Z  for 

,82,i   .  The MCA longitudinal stress solutions are displayed in Fig. 7, which clearly illustrates 

the expected stress doubling at the rigid bottom edge.  Next, graded impedances are defined, such 

that 12 iiZ Z   for ,82,i    and the corresponding stress results are presented in Fig. 8.  Notice 

that the peak stresses are greatly diminished and also significantly delayed.  Several related stress 

wave attenuator concepts can be found, for example, in Reference [46]. 

 

7 Conclusions 

In this work, we applied the idea of mixed convolved action to linear problems of continuum solid 

mechanics, involving both conservative and dissipative phenomena, namely, elastodynamics and 

viscoelasticity, respectively.  In each case, this led to the formulation in the time-domain of a new 

Principle of Stationary Mixed Convolved Action, which produced the governing partial differential 

equations, boundary conditions and initial conditions as its Euler-Lagrange equations.  In addition, 

the variations are taken in a manner that is completely consistent with the specified boundary and 

initial conditions. 

Remarkably, each of the weak forms defined in Eqs. (23), (36) and (46) has an elegant structure, 

featuring a balanced appearance of the primary variables and variations.  Thus, all of these 

formulations can lead to interesting and novel algorithms for computational dynamics.  Here we 

limited the numerical implementation to two-dimensions with three-node triangles and linear 

temporal shape functions employed within the time-space finite element formulation.  Several 

elementary examples are studied to verify the MCA formulation and numerical implementation 

versus analytical solutions and commercial finite element software.  Two illustrative applications 

of the concept of impedance tailoring for stress wave attenuation were also considered.  

Future work will focus on higher order shape functions in space and time, three-dimensional 

problems, multiphysics formulations and extensions to address geometric and material non-

linearity for both conservative and dissipative phenomena.  MCA formulations for consistent size-

dependent couple stress mechanics also are underway, as are extensions of the principle of virtual 

convolved action that was introduced here as a new and potentially powerful concept. 
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Appendix A: Fractional calculus overview 

Fractional calculus has a long history, dating back nearly to the beginning of calculus itself.  For 

example, the idea of generalizing derivatives to fractional order can be traced to l'Hôpital, Leibniz 

and their contemporaries.  A thorough historical review, including this earliest work, is presented 

in Ross [47], while the monographs by Oldham and Spanier [48] and Samko et al. [49] provide 

comprehensive collections of known results.  In this appendix, we will present only a few basic 

definitions and formulas that are needed for understanding and developing mixed convolved action 

principles. 

There are a number of different definitions of fractional integrals and derivatives in the literature.  

However, here we will focus on the versions attributed to Riemann and Liouville.  Following 

Samko et al. [49], let ( )u t  represent an 1L  Lebesgue integrable function over an interval  0, ft .  

Then, for the fractional integral of order  , we may write 

 
 10

0

)
0, 0

(

1 (
( ) fo

)
r

t

t

u
u t d t


  

 
   

 
 I                                (A1.1) 

   1
1 (

( ) fo
)

, 0
( )

r
f

ft

t
t

ft
t

u
u t d t


  

 
   





I                              (A1.2) 

where ( )   denotes the Gamma function.  Eqs. (A1.1) and (A1.2) represent the left and right 

Riemann-Liouville fractional integral of order  , respectively, where we have chosen the left 

fractional integral to operate over the interval from 0  to t , while the right fractional integral works 

over the range from t  to ft .  Notice from these definitions with 0 1   that we may view 

fractional integration as a convolution of a function, say ( )u  , with a weakly singular kernel 

1 / ( )   . 

Next, we consider the corresponding left and right Riemann-Liouville fractional derivatives of 

order  , which can be written, respectively, in the following form 
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 
 0

0

1 )
, 1

(

(
( ) for

1
0 0

) f

t
t t

t

d u
u t d

dt



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D                      (A2.1) 
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d u
u t d
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 
   

 
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
D                     (A2.2) 

These exist almost everywhere in the interval for absolutely continuous ( )u  .  Notice that with the 

Riemann-Liouville definition, a fractional derivative of order   is equivalent to the first derivative 

of a fractional integral of order 1  . 

While a broad range of fractional derivative orders could be used to establish convolution-based 

variational principles, we will focus initially on the Riemann-Liouville temporal semi-derivatives, 

which from Eq. (A2.1) and (A2.2) are defined as [48, 49] 

 
 

1/2
1/20

0

1 (
( )

)

(1/ 2)

td

t

u
u t d

dt

 





 


D                                          (A3.1) 
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u t d

 





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
D                                       (A3.2) 

For convenience, we will use a superposed breve to denote the left Riemann-Liouville semi-

derivative with respect to time.  Thus, we let 

 0
1/2( ( ))t u tu  D                                                           (A4.1) 

While not of the same importance in the present work, the right Riemann-Liouville semi-derivative 

will be written in shorthand notation using a superposed inverted breve as follows: 

 1/2( ( ))
ft

t uu t D                                                            (A4.2) 

We also will employ the usual notation with a superposed dot to represent a first order time 

derivative and let the symbol  indicate the Riemann convolution of two functions over time, such 

that 
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 *
0

( ) ( ) ( )
t

u v t u v t d                                                      (A5) 

Notice the finite lower and upper limits of 0  and t , respectively, in the convolution, which may 

differ from other definitions, but are chosen here to coincide with the typical temporal support of 

the functions at time t  in initial values problems. 

Next, we consider several different integration-by-parts formulas that are central to the 

development of variational principles in mechanics.  First, let us recall the classical integration-

by-parts result for the inner product of two functions, where we attempt to shift a first derivative 

from one function to the other.  Using our shorthand notation, we may write 

0 0
) )( ( ) ( ) ( ( ) ( ) (0) (0)

t t
d u d t v tv vv u uu                                            (A6) 

Of course, the sign of the integral on the right hand side flips with the shifting of the derivative 

between the two functions and there are product terms evaluated at the end and beginning of the 

time interval.  The sign change here is problematic for temporal response and precludes the 

possibility of using such terms to represent viscous dissipation.  Furthermore, the released terms 

are not consistent with the needs of an initial value problem [27]. 

Now we can attempt the same type of operation, but for the convolution of two functions.  The 

result becomes 

   * *( ) ( ) ( ) (0) (0) ( )u v t u v t u t v u v t                                             (A7) 

Notice that the sign of the convolution integral does not flip and each of the released terms involve 

products of the functions at the beginning and end of the time interval. 

These characteristic differences between inner product and convolution prove to be fundamental 

in the development of variational methods for dynamical problems of mechanics, as Tonti [24, 25] 

emphasized in much of his work on the subject.  However, in order to resolve all of the previous 

inconsistencies in the variational representations for such problems, we also must utilize the 

fractional calculus counterparts, which are developed in Reference [27], based on the work of 

Hardy and Littlewood [50] and Love and Young [51]. 
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Consider first the general integration-by-parts relation for fractional derivatives [27]: 

       0
0

1
0

1

0
( ) ( ( ( ) ( ) ( ) 0 )) ( )) (0

t t

t t
u w d u w d u t w t u w           

   D D I I              (A8) 

where we begin with the inner product of the left fractional derivative of one function ( )u   with 

another function ( )w   and then end with the inner product of the former function with a right 

fractional derivative of the latter function, plus some boundary terms involving both right and left 

fractional integrals.  Now, if we take  1/2( ) ( )
t

w v  D  and let 1/ 2   to specialize for semi-

derivatives, then this becomes in our shorthand notation 

0 0
( ( ) ( ) () ) ( ) ( )

t t
d u du u tv v v t                                                  (A9.1) 

Alternatively, if we reverse the roles of the two functions, we may write 

0 0
( ( ) ( ) ( (0) (0)) )

t t
u v v ud u d v       
                                           (A9.2) 

Notice that in order to end with a first derivative inside the integral on the right hand side, these 

relationships must start with the product of left and right Riemann-Liouville semi-derivatives on 

the left hand side.  Unfortunately, the sign of the left hand integral changes depending upon which 

semi-derivative is shifted and again the released endpoint terms are of an inconvenient form. 

On the other hand, for the convolutional integration by parts involving a left Riemann-Liouville 

fractional derivative, we have the following general result [27]: 

       0 0 0 0
0 0

1 1( ) ( ( ( ) ( ) (0) (0) () ))
t t

u t w d u t w d t w w tu u           
     D D I I          (A10) 

Again, letting  1/2( ) ( )
t

w v  D  and 1/ 2  , we have the following interesting and useful result: 

   * *( ) ( ) ( ) (0)u v t u v t u t v                                                (A11) 
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In Eq. (A11), we work with only left semi-derivatives on the left hand side and shift the half 

derivative to the second function without a sign change.  Furthermore, there is just a single released 

term, which involves the product of function evaluations at the beginning and end of the time 

interval.  These are exactly the characteristics needed for the development of new variational 

principles for both conservative and dissipative dynamical systems.  Thus, the key integration-by-

parts relations will be Eq. (A7) for integer derivatives and Eq. (A11) for semi-derivatives. 
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Fig. 1  Elastodynamic Wave Propagation along Uniform Bar – Problem Definition 
 

 
 

 
 

Fig. 2  Elastodynamic Wave Propagation along Uniform Bar – Displacement History 
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Fig. 3  Dynamic Response of Maxwell Viscoelastic Plate – Displacement History 
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Fig. 4  Stress Wave Shielding with Reduced Impedance Inserts – Problem Definition (Left: 
Uniform insert pattern; Right: Graded insert pattern) 

 

 

 

 
 

Fig. 5  Stress Wave Shielding with Reduced Impedance Inserts – Stress Amplitudes 



45 

 
Fig. 6  Stress Wave Attenuation in Layered Medium – Problem Definition 
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Fig. 7  Stress Impulse Response in Uniform Medium – Stress History 
 
 

 
 

Fig. 8  Stress Impulse Response in Graded Medium – Stress History 


