BRADLEY DARRALL

bdarrall@buffalo.edu (716) 645-1415 Website: buffalo.edu/~bdarrall/

EDUCATION

University at Buffalo, State University of New York Ph.D., Mechanical Engineering, June 2016 M.S., Mechanical Engineering, June 2015 B.S., Mechanical Engineering, June 2011

PROFESSIONAL EXPERIENCE

Assistant Professor of Teaching (2016-) Instructor (2014-2016) Teaching Assistant (2013-2016) NSF Research Fellow (2011-2016) Research Consultant at Sprung-brett RDI (2012) Undergraduate Assistant (2010-2011)

AWARDS

SEAS Early Career Teacher of the Year Nominee (2019)
Tau Beta Pi "Professor of the Year" (2017)
National Science Foundation Graduate Research Fellowship (2011-2015)
SUNY Chancellor's Award Nominee (2016)
UB Presidential Fellowship (2011-2015)
Senior Scholar Award (2011)
Zimmer Undergraduate Research Scholarship (2010)
UB Provost Scholarship (2007-2011)
Buffalo Engineering Society Scholarship (2007-2011)
NYS Regents Scholarship (2007-2011)

RESEARCH SUMMARY

Primary research fields

- Computational and applied mechanics
- Numerical methods
- Variational approaches to classical, continuum, and quantum mechanics
- Multi-physics and small-scale continuum mechanics

Recent research projects

- Finite element methods and variational methods for three dimensional and anisotropic micro-scale elasticity (couple-stress elasticity)
- Finite element methods and variational methods for micro-scale incompressible flow (couple-stress fluids)
- Finite element methods and variational methods for size-dependent piezoelectricity (flexoelectricity) and thermoelasticity
- Least action variational principles for dissipative continuum dynamics (thermoelastodynamics, dynamic poroelasticity, heat diffusion etc)
- Least action principles for quantum mechanics

PUBLICATIONS

Many publications are available as pdfs at buffalo.edu/~bdarrall/

Journal papers:

- 1. **Darrall, B.T.**, "Convolved energy variational principle in heat diffusion", *Int. J. Heat Mass Transf*, **175**, 121315 (2021).
- Pedgaonkar, A., Darrall, B.T., Dargush, G.F., "Mixed displacement and couple stress finite element method for anisotropic centrosymmetric materials", *Eur. J. Mech. A-Solids*, 85, 104074 (2021).
- Darrall, B.T., Dargush, G.F. "Variational principle and time-space finite element method for dynamic thermoelasticity based on mixed convolved action". *Eur. J. Mech. A-Solids*, 71, 351-364 (2018).
- 4. **Darrall, B.T.**, Dargush, G.F. "Mixed convolved action variational methods for poroelasticity", *ASME J. App. Mech*, **83**, 091011 (2016).
- 5. Dargush, G.F., Apostolakis, G., **Darrall, B.T.**, Kim, J. "Mixed convolved action variational principles in heat diffusion", *Int. J. Heat & Mass Transfer*, **100**, 790-799 (2016).
- 6. Dargush, G.F., **Darrall, B.T.**, Kim, J., Apostolakis, G. "Mixed convolved action principles in linear continuum dynamics", *Acta Mech.*, **226**, 4111-4137 (2015).
- Darrall, B.T., Hadjesfandiari, A.R., Dargush, G.F. "Size-dependent piezoelectricity: A 2D finite element formulation for electric field-mean curvature coupling in dielectrics", *Eur. J. Mech. A-Solids*, 49, 308-320 (2015).

 Darrall, B.T., Dargush, G.F., Hadjesfandiari, A.R. "Finite element Lagrange multiplier formulation for size-dependent skew-symmetric couple-stress planar elasticity", *Acta Mech.*, 225, 195-212 (2014).

Conference papers:

1. **Darrall, B.T.**, Dargush, G.F. "Mixed convolved action principles for dynamics of linear poroelastic conitinua", ASME, IMECE2015-53163, Houston, TX, November 2015.

Theses:

- 1. **Darrall, B.T.** "True variational principles and time-space finite element methods for classical and quantum mechanics", *Ph. D Dissertation*, University at Buffalo, The State University of New York (2016).
- 2. **Darrall, B.T.** "Variational and 2D finite element formulations for size-dependent elasticity and piezoelectricity", *M.S. Thesis*, University at Buffalo, The State University of New York (2015).

Submitted / In Preparation:

- 1. **Darrall, B.T.**, Hadjesfandiari, A.R., Dargush, G.F. "Finite element method for size-dependent thermoelastic analysis", *Lat. Am. J. Solids Struct.*, in submission.
- 2. **Darrall, B.T.**, Bambrah, H.E., Dargush, G.F. "Three-dimensional finite element formulation for size-dependent couple stress elasticity", in preparation.
- 3. **Darrall, B.T.**, Tan, J. "2D Finite element method for size-dependent linear incompressible fluid mechanics", in preparation.
- 4. **Darrall, B.T.**, Dargush, G.F. "Mixed convolved action principle for the time-dependent Schrodinger's equation and corresponding time-space finite element method", in preparation.
- 5. **Darrall, B.T.**, Dargush, G.F. "A least convolved action principle for quantum mechanics", in preparation.
- 6. Pedgaonkar, A., **Darrall, B.T.**, Dargush, G.F., "2d analysis and finite element method for noncentrosymmetric couple stress materials", in preparation.

REVIEWER

International Journal of Solids and Structures AIP Advances Special Topics and Reviews in Porous Media Reports on Mathematical Physics

TEACHING SUMMARY

RECENT EVALUATION METRICS

MAE Lab II (MAE338) Summer 2020, Overall Instructor Rating: 5.0 /5

Intermediate Dynamics (MAE345) Spring 2021, Overall Instructor Rating: **4.8**/**5**

Applied Math for MAE (MAE376) Fall 2020, Overall Instructor Rating: 4.7 /5

Analysis of Structures (MAE315) Fall 2019, Overall Instructor Rating: 4.6/5

INSTRUCTOR

Applied Mathematics for MAE (MAE376) Fall 2020, 2 sections, enrollment: 160 Fall 2019, 2 sections, enrollment: 200

Dynamics (EAS208) Spring 2019, 1 section, enrollment: 65 Spring 2018, 1 section, enrollment: 100 Spring 2017, 2 sections, enrollment: 130 Spring 2015, 2 sections, enrollment: 130 Fall 2014, 1 section, enrollment: 65 Spring 2014, 2 sections, enrollment: 130

Fluid and Thermal Sciences Lab (MAE338)

Summer 2020, 1 section, enrollment: 20 Summer 2019, 1 section, enrollment: 18 Fall 2018, 8 sections, enrollment: 200 Summer 2018, 1 section, enrollment: 15 Fall 2017, 8 sections, enrollment: 200 Summer 2017, 1 sections, enrollment: 10 Fall 2016, 10 sections, enrollment: 250 Winter 2016, 1 section, enrollment: 10

Analysis of Structures (MAE315)

Fall 2020, 1 section, enrollment: 90Fall 2019, 1 section, enrollment: 100Fall 2018, 1 section, enrollment: 80Fall 2017, 1 section, enrollment: 65Fall 2016, 1 section, enrollment: 60

Intermediate Dynamics (MAE345)

Spring 2021, 2 sections, enrollment: 160 Spring 2020, 2 sections, enrollment: 190 Spring 2019, 2 sections, enrollment: 160 Spring 2018, 2 sections, enrollment: 135 Spring 2017, 1 section, enrollment: 75

Engineering Computations (EAS230)

Summer 2016, 1 section, enrollment: 40

TEACHING ASSISTANT

Dynamics (EAS208) Spring 2016, 4 sections, enrollment: 220

Fluids and Thermal Lab (MAE338)

Fall 2015, 7 sections, enrollment: 200

Statics (EAS207)

Spring 2013, 3 sections, enrollment: 150

"SCIENCE IS ELEMENTARY" TEACHER

Tours of UB fluids and thermal lab and lesson/experiment for (K-8) Winter 2016

Guest STEM teacher at Westminster Elementary School Spring 2016, 2017, 2018, 2019

ADVISEMENT and ADDITIONAL ACADEMIC ROLES

UNDERGRADUATE RESEARCH ADVISEMENT

Student: Herman Bambrah Project: *Applications of 3d couple-stress FEM* (Summer 2020-Summer 2021)

Student: Jingye Tan Project: *FEA of linear incompressible couple-stress fluids* (Spring 2018 – Spring 2019)

Student: Seth Messer Project: Design of 2D conduction experiment: comparing infrared thermal maps to FEA (Summer 2018)

Student: Paul Leoniak Project: *Couple-stress contact mechanics finite element algorithm* (Summer 2017)

Student: William Abt Project: Acoustic analysis and design of composite drum shells using FEM (Summer 2016)

Student: Lim Yi Ang Project: *Experimental analysis of size-dependent flow through micro-needles* (Spring 2016)

OTHER SERVICE / ACADEMIC ROLES

SEAS Graduation Marshall	Spring 2019
MAE Undergraduate Studies Committee	Spring 2018-Present
MAE Undergraduate Lab Upgrades Committee	Fall 2017-Present
Teaching Faculty Search Committee	Fall 2017
EAS Undergraduate Mentor Program	Spring 2017-Present
MAE Department Undergraduate Advisement	Fall 2016-Present
Undergraduate Student Excellence and Diversity Committee	Fall 2016-Present
"Science is Elementary" Teaching Volunteer	Spring 2016-Present
MAE Open House Volunteer	Spring 2016-Present
MAE Orientation Speaker	Summer 2018-Present

SOFTWARE and PROGRAMMING

Programming: Matlab, Fortran, Maple, HTML, c++, MPI, OpenMP *CAD/Graphics:* AutoCAD, Pro Engineer, Adobe Photoshop, Adobe Illustrator *Finite Element:* Abaqus, ANSYS *Other:* Microsoft Office Suite