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In this paper, we propose an approach for locating an additional facility—to add to a chain of existing 

facilities—based on geo-statistical methods. This approach does not make assumptions on customer demand behavior 
with respect to distance from the nearest facility (as is commonly made in location models) but rather implicitly takes 
into account intrinsic factors. The goal is to maximize the probability of a randomly chosen customer visiting the chain. 
Our model is derived from the adaptive spatial sampling problem in geo-statistics. We present a case study for a 
cellular application to illustrate the behavior of the non-linear objective function. Two versions, based respectively on 
discrete and continuous optimization techniques, are presented. A Simulated Annealing heuristic is developed to solve 
the discrete version whereas a special heuristic called Geometric Search is proposed to solve the continuous version. 
Results show that both of these heuristics perform remarkably well considering the fact that the objective function is 
highly non-linear and complex (non-differentiable; discontinuous). Geometric Search reports optimal solutions in all 
the instances tested. Our empirical investigation reveals that the continuous version cannot be solved efficiently by 
using a discrete modeling approximation.  
Subject Classifications: Location Models, Correlation, Estimation, Sampling. 
 

1. Introduction 

Facility location is a critical aspect of strategic planning for a broad spectrum of public and 

private firms. Geographic location choice can determine the success or failure of firms, 

communities, and even nations. With the rapid increase in demand for products and services and 

with increasing competition, firms are faced with the task of expanding their existing facilities or 

networks. Expanding a network might imply adding one or more facilities or stores to its existing 

set. The problem of locating a single additional facility becomes equally important when the cost 

of such an installation runs into millions of dollars. Retail stores like Wal-Mart and Target are 

typical examples. Hence a substantial amount of planning, research and computations go into 

facility location problems. 

Whilst researchers to date have considered modeling facility location problems with the 

primary variable as distance or cost (which is again a direct function of distance) to a facility, 

very few papers consider other aspects that influence locations. Though we are aware of several 

factors, it is highly difficult if not impossible to model these dependencies and develop a closed 

form expression for the objective function. Certain stochastic facility location problems do 



incorporate demand and distance uncertainty in them in order to take these parameters into 

account. But these are entirely dependent on the distribution functions chosen to represent 

uncertainty. 

Consider the case of a restaurant franchise such as Burger King (BK).  Suppose that they 

have seven restaurants in a region and wish to open another one. They want to do this in a way 

that maximizes the total demand generated from the region. What determines whether a consumer 

chooses to visit a BK is not just distance, but several other factors, which include, but are not 

limited to, waiting time at the restaurant, competitor locations, and traffic conditions en route.  

Building a model that takes all of these factors into account is difficult to calibrate. The approach 

used commonly in location theory is to isolate one factor and to study its effect in depth. By far 

the most studied of these factors is distance, where the objective is to minimize the demand 

weighted travel distance (p-median), or minimize the maximum distance of a customer to a BK 

center (p-center). Another factor that has been modeled is the influence of competitors, often 

using a game theoretic framework (see, e.g. Ghosh and Craig 1983, DePalma et al. 1989). Yet 

another factor that has been studied is the effect of waiting time, which usually uses basic 

formulas for waiting time from queueing theory and focuses not just on travel time but on a 

combination of travel time and queueing delay, e.g. see Brandeau and Chiu 1994, Brandeau et al. 

(1995), and Huff (1963). Our method directly seeks to use data on the probability of a customer 

visiting the existing chain at certain discrete locations. Inherent in this data is the effect of non-

quantifiable parameters such as competitor locations, waiting times, and traffic conditions en 

route. Spatial interpolation using kriging (see Section 3) does exactly this. One use of spatial 

interpolation is in the field of adaptive sampling, where one is interested in determining where 

additional readings should be taken so as to reduce the uncertainty of the quantity being estimated 

(see Thompson and Seber 1996 for a basic reference on adaptive sampling). What we are doing is 

to use the same technique for locating additional facilities. The technique we develop can locate 

additional facilities sequentially. 

Another area of application of our model is that of a cellular provider who is faced with 

the problem of locating an additional cell tower so as to improve, as best as possible, cellular 

coverage in a region. A commonly accepted measure of the strength of the bond between a cell 

phone and a cell tower is the Relative Signal Strength Indicator (RSSI)—see Akella et al. (2003) 

for a discussion. Given the location of existing cell towers, one can use RSSI propagation models 

to predict the values at specific points in the region. These estimates ignore signal attenuation due 

to the presence of buildings, foliage, season, etc. To use our approach we would need only to 

collect RSSI data at a suitable set of discrete locations. Then our geo-statistical model can be used 
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to determine the location of an additional cell tower, with the goal of maximizing the completion 

probability of a randomly placed cell call in the region. 

The paper is organized as follows: Section 1 presents a brief introduction of facility 

location and the need for efficient planning methods. The justification for using a geo-statistical 

technique on existing data to locate an additional facility is also provided. In section 2, we present 

some background work on facility location and adaptive spatial sampling. We define the adaptive 

spatial sampling in section 3 and relate it to additional facility location problems in section 4. 

Section 5 introduces the discrete optimization version followed by computational results of 

proposed heuristics. The continuous optimization version is presented in section 6 along with a 

Geometric Search heuristic to solve this problem. Finally we perform a comparison of the 

discrete and continuous optimization versions in section 7. We assume the reader has prior 

understanding of some of the basic geo-statistical interpolation techniques. 

 

2. Literature Review 

Based on our survey, we did not find any previous paper that studied the additional 

facility location problem from the perspective of adaptive spatial sampling. In this section, we 

review some fundamental problems in facility location and then proceed to present some closely 

related problems in the literature.  We also review the relevant adaptive sampling literature. 

Hakimi (1964) introduced the p-median problem. The problem is stated as follows: Find 

the location of p facilities so as to minimize the total demand-weighted travel distance between 

demands and facilities. ReVelle (1986) present a modified version of the p-median problem for 

locating retail facilities in the presence of competing firms. The objective in this retail 

environment is to locate facilities to maximize the number of new customers captured or to 

maximize the retailer's added market share. This modification illustrates how the p-median 

problem can be applied in a strategic decision making context. 

The p-center problem is also known as the minimax problem, since we seek to minimize 

the maximum distance between any demand and its nearest facility. If facility locations are 

restricted to the nodes of the network, the problem is a vertex center problem. Center problems 

that allow facilities to be located anywhere on the network are absolute center problems. Texts by 

Daskin (1995), Drezner (1995), and Drezner and Hamacher (2002) provide surveys of location 

problems and solution algorithms—we refer the reader to these for recent advances in the field. 

The p-median and p-center problems are design problems, in that no facilities are 

assumed to presently exist. The problem of augmenting an existing set of facilities has been more 

recently studied. Berman and Simchi-Levi (1990) and Drezner (1995) considered the problem of 
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adding some new facilities. Chhajed and Lowe (1992) studied the problem of adding m new 

facilities on a tree, given that there are n pre-existing facilities. They found an O(mn) algorithm 

for this problem. Savage et al. (Associated Press 1998) studied the relocation of ATMs for Wells 

Fargo Bank. Complementary to the problem of augmenting facilities is the problem of deleting 

facilities in the least harmful way, which was studied by Dell (1998) in the context of US Army 

installations. More recently, Wang et al. (2003) consider a more general model that allows for 

both addition and deletion of facilities. 

Adaptive sampling was first introduced under the concept of progressive sampling 

(Makarovic 1973). It provides an objective and automatic method for sampling terrain of varying 

complexity, characterized by great altitude variation. The size of the matrix with altitude 

information increases progressively as the complexity increases. 

Ayeni (1982) conducted a similar study to determine the optimum number and spacing of 

terrain elevation data points to produce a Digital Elevation Model (DEM). Ayeni stressed the 

importance of evaluating an adequate number of data points, as well as the appropriate sampling 

distribution of such points, which in turn constitutes a good match to characterize a given terrain. 

The ideas suggested in progressive sampling by Makarovic and Ayeni were later carried 

over to the field of adaptive sampling. Adaptive sampling uses Bayesian theory, based on 

conditional probability to guide subsequent sampling search. A major difference with 

conventional designs lies in the selection of additional samples in adaptive designs—here 

iterations depends upon the new sample value observed in the field. In other words, the procedure 

for selecting additional samples is a function of the outcome of the variable of interest, as 

observed during the survey of an initial sampling phase of the survey. 

 

3. Adaptive Spatial Sampling Problem 

There are different techniques to spatially interpolate a variable and predict its value at 

unknown locations. The common nearest neighbors and inverse-distance-weighted methods are 

distance-based approaches. They account for the fact that nearby sample observations should be 

given more weight in determining the value at an unknown location. However, these techniques 

are of a purely deterministic nature and do not account for the presence of spatial autocorrelation 

among sample observations (Burrough 1986). The French mathematician Matheron (Cressie 

1990) developed a stochastic interpolation method, naming it kriging after a South-African miner 

(D.G. Krige). Central to his theory is the covariogram Ĉ(h), an empirical statistical function 

modeling the spatial covariance among pairs of data points given their separating distance h.  A 

covariogram model C(h) is then fitted to the empirical covariogram Ĉ(h).  Kriging is an optimal 
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technique in the sense that its estimates are not only unbiased but the estimation variance is also 

kept to a minimum.  We introduce the following notation: 

• h: distance of separation 

• n(h): number of data points separated by a distance of h  

• z: variable under study—customer probability 

• z (h): average value of z over all data points that are separated by a distance h 

• si: ith sample site  

• z(si): observed value of the variable at sample site si 

The covariogram function is then given by:  

1ˆ ( ) ( ( ) ( ))( ( ) ( ))
( )

i j

i j
s s h

C h z s z h z s z h
n h − =

= −∑ −      (1) 

This defines the spatial correlation between any two points. The covariogram is a maximum for 

values of separation close to 0 and then gradually drops as the distance increases. After a certain 

distance called the range r, it almost falls to 0. This is the distance beyond which a sample point 

does not have any effect on the predicted values. There are several mathematical models that 

approximate the covariogram, e.g. exponential, spherical, Gaussian etc. 

Depending upon the assumptions of the phenomenon under study, different types of 

kriging can be used. In this paper, we focus on a method derived from simple kriging, which is a 

weighted linear interpolation technique that estimates the value of a variable at unknown 

locations based on observed values at pre-specified locations. The first-order component of the 

data is constant and known, and can be subtracted from the original sample to provide a set of 

residuals (Bailey and Gatrell 1995). The main reason behind using simple kriging in this paper is 

the ease of computations. We introduce the following additional notation:  

• M: set of initial sample observations, with cardinality m 

• s: location at which to predict 

• z(s): predicted value at location s 

• λ(si): weight at location si 

Then the predicted value at a location s is given by: 

( ) ( ) ( )i i
i M

z s s z sλ
∈

= ∑          (2) 

This is a linear estimator that predicts z at a location s as a linear combination of the 

values at observed points. The weights are chosen such that the expected mean square error 

across all points (also called the kriging variance) is minimized (Cressie 1993). The optimal 

weights for the minimum kriging variance are: 
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1( ) ( )s sλ −= C c          (3) 

where C is the matrix of covariances among the original sample points, and c is the column vector 

of covariances of location s with the original sample points. From equations (2) and (3) it follows 

that: 
1( ) ( ) ( )T Tz s s s −= =z c Cλ z         (4) 

where z represents the vector of z(si) values. The goal of adaptive sampling is to optimally locate 

additional samples that minimize the uncertainty in the estimates. In simple kriging, the variance 

at a point g is defined as:  
2 2 1( ) ( ) ( )Tg gσ σ −= − c C c g         (5) 

where cT(g) is a (1 x m) vector and C is of dimension (m x m). Here 2σ  denotes the sill, which is 

the semivariance value corresponding to the range r.   

 

4. Implication for Additional Facility Location 
In this section, we develop an analogy between the adaptive spatial sampling problem 

and the additional facility location problem. The customer probabilities are assumed given as 

input. Locating an additional sample point in the variance minimization problem is equivalent to 

locating an additional facility. The only difference is that the objective in the sampling problem is 

to minimize the variance of an estimate whereas here we maximize the estimate itself. Thus if we 

let z(si) denote the customer probability at sample site si, z(g) denote the predicted probability at 

location g, where g is the set of grid points where the probability has to be maximized, we can use 

Equation (4) for a grid point g to get:  
1( ) ( ) ( )T T

s s s s sz g g g −= = sz c C zλ        (9) 

The subscript s denotes that a new point has been added to the sample set whose optimal 

location has to be determined. zs is the vector of probability values with the last entry being equal 

to the probability at the new point added. This would correspond to the location of the new 

facility. Since zs requires the probability information at the added sample point (the last entry in 

the column vector zs), we assume this value to be equal to one since the probability of a customer 

(located at a facility) visiting the chain is one. The objective in the additional facility location 

problem would then be: 
1( ) ( ) ( ) ( ) ( ) ( )opt T T

s s s s ss g G g G g G
s Max w g z g w g g w g g −

∈ ∈ ∈

= = =∑ ∑ ∑ sz c C zλ    (10) 

Here w(g) represents the weight of grid point g. Theoretically, it is the probability of 

selecting grid point g. This can be computed for instance by taking the ratio of the population at g 
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to the total population. The single additional facility location we consider is the problem of 

allocating one additional facility to maximize the probability that a customer randomly chosen 

from a region specified in the set G visits the chain.  

On the contrary, consider an indoor microcellular environment in cell tower location. In 

such a region, coverage might be desired over the whole area and just not at discretely spaced 

points. It might be argued that a discrete problem with a large number of equally spaced grid 

points spread throughout the region might approximate the continuous version. As will be shown 

later, the number of grid points greatly influences the computational complexity—hence the need 

for a study of the continuous version. 

We consider both the discrete and continuous versions of the problem. To evaluate the 

heuristics for the discrete version we also solve the problem instances by using a discrete 

enumeration algorithm. A common assumption to both the discrete and continuous approaches is 

that of a negative exponential covariogram model. 

 

5. Discrete Version 

We start by presenting a case study for a cellular application and study the output surface that is 

generated for the location of up to three additional cell towers. This is followed by two 

heuristics—one based on a simulated annealing heuristic and the other based on the Nelder Mead 

simplex method. Computational results for both heuristics are then reported.  

5.1. Case Study from a Cellular Application 

Here we try to maximize the completion probability for a randomly chosen call (a call is 

a surrogate for a customer). The input data is the cell phone RSSI values over the study area. This 

was measured using a modified Automated Crash Notification (ACN) device. We then mapped 

these signal strengths to call completion probability values from the results of Akella et al. 

(2003). The study area is located in the southern part of Erie County (see Figure 1b), within 

western New York State (Figure 1a). It is a 15 km by 15 km area, characterized by large altitude 

variation. The grid points (demand points) are the centroids of actual census blocks (Figure 1c) 

for the study area. Each of the 166 grid points is characterized by a weight associated with it, 

which is the population of the census block for the year 2000, which ranges from 1 to 300. There 

are 380 RSSI data points (Figure 1d) in this region. 

The first step in the analysis was the development of the covariogram. We based this on 

the initial RSSI data points collected within the study region. This covariogram captures the 

spatial interaction between the data points — it has a range of 850m — this value for the range is 

used throughout our computational runs. The next step is to draw a bounding rectangle based 
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upon the coordinates of the grid points. Note here that the optimal location of the cell tower does 

not go beyond the bounding rectangle. The rectangular area is divided into 75 horizontal and 

vertical lines with 200 meter spacing. The intersection of these lines forms the discretized search 

space. The choice of 75 and 200 is arbitrary here, since we are presenting this for the purpose of 

illustration. The possibility of locating a cell tower at each of these potential points is evaluated 

by measuring the call completion probability value. A graph of call completion probability versus 

the cell tower location is developed and the optimal point (that potential point at which the 

probability is maximum) is observed. All of the output figures have been developed using 

MATLAB version 6.5. 
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1 additional cell tower: The problem is to determine the location of one additional cell tower. 

Figure 2 shows that the total call completion probability values are low in most of the regions, 

except at one location where it peaks to 0.868. This is the optimal location of the cell tower since 

it maximizes the call completion probability of a random call over the grid points. Development 

of this graph is computationally expensive (approx 50 minutes on a high-end PC) though a clear 

picture of the call completion probability surface is obtained. 
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Figure 2: Location of first tower

 The problem is to determine the optimal locations of two towers that 

tion probability. In this paper, we employ a greedy heuristic technique 

 use a myopic approach where we evaluate the location of each tower. 

 tower, fix its location and search for the second tower using the same 

tained may be suboptimal. This method helps us in understanding the 

th every new tower added to the existing set. The solution obtained for 

en be one of the towers in the final solution. This location is added to 

th a call completion probability value of 1. The search for the second 

 same manner as before. The graph obtained is shown in Figure 3 with 

ed by an asterisk. Note that the running time now includes the time 

t tower. A look at the graph shows that multiple peaks exist with  
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Figure 3: Location of second tower
 
Figure 4: Location of third tower
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approximately similar values. The optimal location now moves far from the location of the first 

tower. 

3 additional cell towers: A similar approach is used to locate the third cell tower — see Figure 4. 

The running time is approximately 3 hours, but this is justified considering the fact that we use a 

total enumeration scheme to locate the towers.  

In this section, we have developed several numerical examples along with a case study to 

illustrate the behavior of the objective function. It should be noted that this behavior could be 

extended to any other standard additional facility location problems since the only change would 

be the values of probabilities and the range of the covariogram. Hence the example of cell tower 

location provides an important base to understand the additional facility location problem. 

5.2. Simulated Annealing 
The algorithm is based upon that of Metropolis et al. (1958), which was originally 

proposed as a means of finding the equilibrium configuration of a collection of atoms at a given 

temperature. Pincus (1970) was the first to note the connection between this algorithm and 

mathematical minimization, but it was Kirkpatrick, Gelatt and Vecchi (1983) who proposed that 

it forms the basis of an optimization technique for combinatorial (and other) problems.  

SA’s major advantage over other methods is an ability to avoid becoming trapped at local 

minima. The algorithm employs a random search that not only accepts changes that decrease the 

objective function f, but also some changes that increase it. The latter are accepted with a 

probability 
f

tp e
δ

−
=           (11) 

where δf is the increase in f and T is a control parameter, which by analogy with the original 

application is known as the system ‘temperature’ irrespective of the objective function involved. 

The algorithm is run for a fixed number of iterations and may terminate before if the termination 

criteria are met. 

Some of the output figures shown in the previous example indicate clearly that the 

surface generated is highly uneven and any search technique has the drawback of getting stuck at 

local optima. Since simulated annealing has the inherent property of jumping out of local optima 

we employ this technique for finding the optimal solution.  In most of our implementations of SA, 

we start with a temperature of 7000K and cool it by a factor of 0.8 at the end of a fixed number of 

iterations. The algorithm proceeds until the temperature drops to 1K. The neighborhood is 

selected in the following manner. We first pick a random direction in the interval (0, 2π). Then 

the neighbor of the current solution will be the new point obtained by moving a distance of step 

 12



size in the chosen direction. The step size is also reduced by a factor after a fixed number of 

iterations. This new solution is accepted if it is better. If the solution obtained is poor then it is 

accepted with a probability as described above. This procedure is repeated until the temperature 

falls to 1K. The best solution obtained is reported.  

5.3. Nelder Mead Simplex Algorithm 

The simplex method is one of many direct search techniques used in optimizing a 

nonlinear function over a finite region. Parenthetically, it should be mentioned that the simplex 

method of unconstrained minimization should not be confused with the simplex method in linear 

programming, although the origin of the name is the same for both. A simplex is the convex hull 

of n + 1 points in Rn – for example, a line segment in R, a triangle in R2 and so forth. The simplex 

method of unconstrained minimization was devised by Spendley, Hext and Himsworth (1962) 

and later improved by Nelder and Mead (1965). 

Consider a minimization problem. The simplex algorithm considers a set of points that 

form a simplex. From among the set of vertices, replace the vertex with the poorest function value 

by a new point. The replacement of this point involves three types of steps: reflection, contraction 

or expansion. For a detailed description of this algorithm see Avriel (1976). 

The original simplex method of Spendley, Hext, and Himsworth, based on regular 

simplexes without expansion and contraction steps, as well as the Nelder and Mead (NM) version 

just described, have been successfully tested on many problems, but they were found to be 

considerably affected by the scale and orientation chosen for the first simplex. The NM version, 

which is usually superior to the original method, was reported to be quite inefficient for problems 

with a large number of variables say n ≥ 10 (Pierre 1969). 

5.4. Computational Results 

We now present performance results for the three heuristics, discrete enumeration (DE), 

SA, and NM. DE provides a benchmark to assess the quality of solutions obtained using other 

heuristic techniques. Note that the degree of optimality of DE is based on the extent to which the 

search space is discretized. All problems were programmed in MATLAB 6.1 and run on a 

Pentium III, 800 MHz processor and 768MB RAM. The fminsearch function available in the 

MATLAB optimization library was used for the NM method. The starting point for SA is chosen 

by picking the best grid point solution, whereas NM is run with randomly chosen and multiple 

starting points (due to its computational efficiency).  

There are three sets of problems on which the three methods are tested: discrete small 

(DS), discrete medium (DM) and discrete large (DL). Table 1 lists the problem library with the 3 
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types of data sets and a brief description of each type.  The interval for discrete search during 

enumeration was set to 0.5.  

5.4.1. Discrete Small 

The results for small size problems are shown in Table 2a, in which CP refers to 

customer probability of a randomly chosen customer visiting the chain.  We can conclude the 

following from this table: 

• The NM algorithm performed best both in terms of time and quality of solution reported.  

• For DE we note a decrease in solution quality due to a sparser measurement point set.  

• SA has intermediate performance and its running time is slightly less than DE. For the 

problem instance DS4, note that the simplex algorithm reports a suboptimal solution. On 

the other hand SA reports the optimal solution in all instances.  

• NM performs better due to its feature of quickly converging to a local optimum rather than 

trying to diversify the search to seek the global optimum. 

Table 2b shows the improvement in coverage obtained by locating an additional tower. 

The percentage improvement in coverage is defined as 

% cov *100final CP initial CPimprovement in erage
initial CP

 −
= 

 
     (12) 

 Table 1: Problem library (discrete) 
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 Table 2a: Discrete small results 

CP
time 
(sec)

optimal 
point CP

time 
(sec)

optimal 
point CP

time 
(sec)

optimal 
point

DS1 0.3217 26.01 (6.8, 4.6) 0.3219 23.67 (6.81, 4.52) 0.3219 2.802 (6.83, 4.49)
DS2 0.2277 24.56 (7.4, 4.8) 0.2285 24.18 (7.32, 4.91) 0.2287 3.59 (7.31, 4.92)
DS3 0.2907 24.84 (6.8, 4.4) 0.2912 23.86 (6.85, 4.32) 0.2911 3.03 (6.43, 4.66)
DS4 0.2911 25.83 (4.6, 7) 0.2932 24.15 (4.71, 6.95) 0.2855 2.83 (2.98, 6.35)
DS5 0.2024 24.83 (6.8, 4.4) 0.2039 23.7 (6.84, 4.33) 0.2048 3.23 (6.86, 4.29)

Discrete Enumeration Simulated Annealing Nelder Mead Simplex
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Here we notic

DE and NM. The impr

DE and 7.2% over NM

just over 2 minutes w

difference is not much
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time
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DM6 0.1669 198.8
DM7 0.1578 199.4
DM8 0.1746 201.9
DM9 0.1787 198

DM10 0.1616 198.5

Discrete En

 

 

 Table 2b: Percentage improvement in coverage
Initial 
Coverage

% imp of 
DE

% imp of 
SA

% imp of 
NM

DS1 0.235 37.09 37.18 37.18
DS2 0.119 91.34 92.02 92.18
DS3 0.195 48.97 49.23 49.17
DS4 0.215 35.39 36.37 32.78
DS5 0.102 98.86 100.33 101.22

% improvement in coverage

 
ium 

e a difference in the running times and the SA heuristic outperforms both 

ovement over the initial solution obtained by the SA heuristic is 1.2% over 

. NM fails to report a good solution owing to its localized search. SA takes 

hereas DE takes more than 3 minutes to solve this problem. Still, the time 

 to suggest that SA is the recommended technique to solve the additional 

m.  

 
)

o

4 (29
9 (29
7 (29
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 Table 3a: Discrete medium results
ptimal 
point CP

time 
(sec)

optimal 
point CP

time 
(sec) optimal point

, 45.5) 0.1694 132.78 (28.91, 45.28) 0.1698 14.15 (28.97, 45.20)
, 45.5) 0.1599 147.64 (28.81, 45.36) 0.1416 15.03 (21.03, 48.21) 
, 45.5) 0.1768 134.16 (28.99, 45.21) 0.1531 13.06 (29.95, 35.81)
, 45.5) 0.18 131.07 (22.28, 6.89) 0.1666 13.7 (47.45, 21.64)
, 45.5) 0.1635 134.52 (28.90, 45.30) 0.1637 15.11 (41.41, 49.53)

ation Simulated Annealing Nelder Mead Simplex
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Table 3b: Percentage improvement in coverage

Initial 
Coverage

% imp of 
DE

% imp of 
SA

% imp of 
NM

DM6 0.12253 36.21 38.25 38.58
DM7 0.12105 30.36 32.09 16.98
DM8 0.13305 31.23 32.88 15.07
DM9 0.14555 22.78 23.67 14.46
DM10 0.12122 33.31 34.88 35.04

% improvement in coverage

 
Another point worth clarifying about the results pertains to the fact that the grid locations 

for all of the problems of DM are the same. An explanation for this is as follows: We only 

generate the locations of the sample point data. Due to a greater concentration of grid points 

around the coordinates (29, 45.5) the optimal coordinates remain unchanged with change in the 

sample locations. Table 3a and 3b list the results. 

5.4.3. Discrete Large (Case Study for Cellular Application) 

This data was collected from a section of rural Erie County for the cell tower location 

problem. Due to the large area for the case study we use a smaller search interval of 50 units as 

opposed to 200 from the example. Due to this there is a change in the optimal location of the 

second tower from the one shown in the example. SA performs remarkably well for this size of 

problem and gives a better solution than the one obtained using DE. Though NM takes the least 

amount of time to solve this class of problems, it fails in terms of the quality of the solution. 

Whereas DE takes nearly three hours to optimally locate the first tower, SA takes just over four 

minutes. This is a significant difference in computation time and it makes sense to rely on SA for 

solving real life additional facility location problems using spatial interpolation. The three 

problems represent sequential addition of facilities. So the optimal location obtained in DL11 is 

added to the sample data set in DL12 and the location obtained in DL12 is added to the sample 

data set in DL13 to determine the location of the third facility. Results are shown in Tables 4a and 

4b. Note that the improvement obtained in CP declines with the addition of each facility. It makes 

sense in this case to add just one facility because the improvement obtained in coverage by 

adding the second and third facility is less than 1%. 

 Table 4a: Discrete large results 

CP
time 
(min) optimal point CP

time 
(min) optimal point CP

time 
(min) optimal point

DL11 0.868 180 (14600, 11644) 0.8692 4.15 (14493, 11672) 0.8625 1.36 (7725, 10997)
DL12 0.8765 183.42 (11750, 7950) 0.8765 4.18 (11755, 7951) 0.874 1.39 (11467, 5496)
DL13 0.8836 185.29 (5500, 2950) 0.8838 4.2 (5483.9, 2961) 0.8813 1.45 (8389.1, 7860.2)

Discrete Enumeration Simulated Annealing Nelder Mead Simplex
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 Table 4b: Percentage improvement in coverage 

Initial 
Coverage

% imp of 
DE

% imp of 
SA

% imp of 
NM

DL11 0.86 1.38 1.52 0.74
DL12 0.87 0.84 0.84 0.55
DL13 0.88 0.81 0.83 0.55

% improvement in coverage

 
An overall conclusion is that SA performs remarkably well for discrete problems. The 

largest problem size was solved in just above 4 minutes. This clearly shows that SA can solve 

much larger problems if allowed to run for more than an hour. Since most network design 

problems need a one-time solution, this heuristic can be used to solve large problems. 

 

6. Continuous Version 

To develop a solution approach for this case we rewrite equation (10) for the continuous 

case by replacing the summations by integrals, to get: 
1( ) ( ) ( )opt T T

s s s s ss s s
g G g G g G

s Max z g Max g Max g −

∈ ∈ ∈
s = = =  ∫ ∫ ∫z c C zλ    (13) 

Notice that although the last term of the above expression is a product of three matrices, the 

integration is performed only on the first term. This is because the matrix C or the vector z does 

not depend on the grid points. Hence (13) can be rewritten as 

1 1( )

where ( )

opt T T
s s s s s ss s

g G
T T
s s

g G

s Max g Max

g

− −

∈

∈

 = = 

=

∫
∫

c C z h C

h c

z
      (14) 

6.1. Numerical Examples 

We start by presenting some simple examples to better understand the behavior of the 

objective function with varying locations of the new facility. Consider the problem in one 

dimension: Given a set of sample observations on a line of length L, what is the optimal location 

of a facility on the line that maximizes the customer probability integrated on this line? The 

objective function for this one-dimensional case is 
1( ) ( ) ( )Tf x x −= h C x z          (15) 

where x is the location of the new facility—note that the vector z is independent of x, and that the 

entries of the vector z vector are the customer probability values measured at the sample locations 

and this vector has a value of one for its last entry (which corresponds to the measurement taken 

at the new facility location).  
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We now examine the vector h  

1 2 3 4

1

0

( ) ( )

( ) ...

, 1, 2,... represents the sample points
represents the covariance betweeen a grid point g and sample point 

L
T T

x

T
x gs gs gs gs

i

gs i

h x c g dg

where c g c c c c

s i n
c s

=

 =  
=

∫

   (16) 

With the assumption of a negative exponential model for the covariogram (assuming R = 1) we 

have: 
( ) ( )

( )

( )

0 0 0

( )

1 1

2

i ii

i

i

ii

ii

y x x y y xxL L L
h h

s
x

L xx
h h

L xx
h h

c g dg e dy e dy e dy

h e h e

h h e e

− −
− − −

−
− −

−
− −

= = +

  
  = − − −

      
 
 = − +
 
 

∫ ∫ ∫ ∫
i

h
−

    (17) 

Thus, for the one-dimensional case, each term of the h vector is represented by equation 17. This 

expression appears to be manageable. But when the problem is extended to two dimensions the 

expression becomes highly cumbersome. Hence we perform theoretical analysis for the one 

dimension case and then extrapolate our observations to two dimensions. This analysis has been 

done mainly to get some insight into the structure of the function. 

 

6.2. Analysis 

To establish an efficient solution procedure we investigate some theoretical properties of 

the objective function. 

Theorem: For the simplest case with one sample observation on a line, the customer probability 

graph is concave with the location of the second sample point (new facility). 

Proof: Consider a line of length 1 unit. Assign values to the parameters: h = 1, R = 1 without loss 

of generality. We will show that the function is piecewise concave with the location of the second 

sample point (new facility). 
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2 2( ) ( )
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t
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C
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h C  

Each of the two terms in the above vector can be shown to be concave by twice differentiation. 

Since z is a vector of positive numbers, a positive linear combination of concave functions is also 

concave. Hence we have proved that f(x) is concave for x > x1. Similarly we can prove the 

concavity for the case when x < x1. The theorem follows. 

 

We have tried several generalizations of the above result, e.g. several sample points in 

one/two dimensions. In all cases we tested we found that the result holds but we are unable to 

theoretically establish it. However, we proceeded to develop a heuristic based on the following 

hypothesis in two dimensions. 

Hypothesis: The customer probability is concave in the convex polygon formed with the sample 

points as vertices such that there is no sample point within any polyogon. 

The choice of convex polygons in the hypothesis is explained as follows: The customer 

probability is undefined at the sample locations and in one dimension it is concave in any chosen 

convex region. Hence one way to choose a convex region in two dimensions is to consider a 

convex polygon with the sample points as vertices and not including the sample points in the 

polygon.  

6.3. Geometric Search (GS) 

We propose a geometric search (GS) heuristic based on the hypothesis presented in 

section 6.2.  We use the Delaunay triangulation routine (a polynomial time algorithm) available in 

MATLAB to construct the triangles with the sample points as vertices.  
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procedure GEOMETRIC SEARCH 

begin 

 input sample point coordinates with call completion probabilities, samplepoint 

 numtriangles = delaunay(samplepoint) // this is a routine in matlab that constructs a 

Delaunay triangulation with the sample points as vertices 

 for i = 1, …, numtriangles  

 begin // perform a steepest ascent search within each triangle to approximately determine 

the optimal objective function value within that triangle 

  select ith triangle, triangle(i) 

  opt(i), tccp(i) = steepestsearch(triangle(i)) 

 end 

 ccp*, index = max(tccp(i)) // find the maximum value among the optimal points within 

each triangle 

 opt* = opt(index) 

end 

The procedure begins with input of the sample point coordinates, with the corresponding 

customer probability values. We then use the routine to construct the triangulation of the sample 

points. Note that to cover the entire rectangular region we add the coordinates of the four corner 

points to the sample set. This partitions the region into mutually exclusive and collectively 

exhaustive triangles, and allows us to get the optimum solution by searching over all of these 

triangles. 

A steepest descent search within each triangle is implemented as follows: We measure 

the CP values at the midpoints of each side and choose the maximum. A neighborhood of a point 

is defined as the six points generated by moving parallel to each side by a distance equal to 1/12th 

(the choice of 1/12 is empirically determined as the tradeoff between quality of the solution and 

computational complexity) the length of the corresponding side. This in a way divides the triangle 

into grid lines parallel to each one of the three sides. Now the best point (in terms of the objective 

function) is chosen from among its neighbors to be the new point. If the value of the function at 

all of its neighbors is less than the value at the current point, then the search stops and steepest 

descent returns the current point as the optimal solution for that triangle. If not, the best neighbor 

is updated to be the current point and search proceeds in a similar manner. 

6.4. Results 

All problems have been programmed in MATLAB 6.1. The problems were run on a 

Pentium III, 800 MHz processor and 768MB RAM. There are two sets of problems on which the 
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three methods are tested: continuous small (CS) and continuous medium (CM) and continuous 

large (CL). We use the same problem library used for the discrete case. The only modification in 

that problem set is the elimination of grid point data since we are maximizing customer 

probability over a continuous region. Figure 5 demonstrates the geometric search heuristic. It first 

constructs the triangulation and then searches within each triangle. Circles show the search within 

each triangle, with the optimal location shown in bold. 

 Figure 5: Geometric Search heuristic 

6.4.1. Continuous Small 

The results for small size problems are shown in Table 5. We note that there is a 

substantial increase in running time when compared to the discrete case for the same size 

problems. In the continuous version, we have to resort to numerical methods to evaluate the 

integral as mentioned before and this takes a considerable portion of the running time. DE takes 

35 minutes on average to solve small size problems, whereas GS takes 1.6 minutes. There is a 

considerable reduction in the running time by the use of GS heuristic. Both heuristics report the 

same solution in all 5 cases. Also note that there was no major change in the location of the 

optimal solution with different sample inputs. This emphasizes the fact that the location of sample 
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points did not have much effect on the location of the new facility and we would get maximum 

improvement in coverage by locating the facility at the center.  

 

 Table 5a: Continuous small results 

CP
time 
(min)

optimal 
point CP

time 
(min)

optimal 
point

CS1 0.2936 34.84 (4.2, 8) 0.2936 1.59 (4.16, 8)
CS2 0.1788 34.11 (5.4, 2.2) 0.1788 1.59 (5.75, 2.3)
CS3 0.2052 34.08 (5.2, 3.8) 0.2052 1.47 (5.11, 3.73)
CS4 0.209 34 (2.6, 4.4) 0.209 1.63 (2.6, 4.3)
CS5 0.1584 34.06 (3.8, 6.6) 0.1584 1.59 (3.57, 6.64)

Discrete Enumeration Geometric Search

 
 Table 5b: Percentage improvement in coverage 

 

Initial 
Coverage

% imp of 
DE

% imp of 
GS

CS1 0.2472 18.77 18.77
CS2 0.1286 39.04 39.04
CS3 0.1532 33.94 33.94
CS4 0.1551 34.75 34.75
CS5 0.1015 56.06 56.06

% improvement in coverage

 
 

6.4.2. Continuous Medium 

In continuous medium size problems, we notice a large difference in the running times of 

the GS and DE heuristics. And both report exactly the same solution in all five problems tested. 

While DE takes nearly six hours to solve each problem GS heuristic takes around 30 minutes. 

This is a significant improvement considering the fact that the problem size is considerably big. 

Here we notice a shift in the optimal location for each new problem set. This means that the 

sample locations influenced the location of the new tower unlike the small size problem set. 

Results are shown in Table 6. 

Notice that we get an improvement of 5 to 6 % in coverage with the introduction of a new 

facility. A 5% improvement when translated to number of additional customers served during a 

day and consequently over a period of time would be very significant and might lead to 

substantial profits for a firm. 
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Table 6a: Continuous medium results 

 

CP
time 
(min)

optimal 
point CP

time 
(min) optimal point

CM6 0.133 343.66 (27, 38.5) 0.133 32.58 (26.47, 39.12)
CM7 0.1392 341.46 (42.5, 12.5) 0.1392 31.65 (42.86, 12.17)
CM8 0.1531 342.71 (23, 26) 0.1531 30.92 (22.56, 26.02)
CM9 0.1634 343.96 (42, 18.5) 0.1634 34.51 (41.7, 19)

CM10 0.1416 342.06 (32, 8) 0.1416 32.38 (31.3, 8.89)

Discrete Enumeration Geometric Search

 
 

 Table 6b: Percentage improvement in coverage 

 

Initial 
Coverage

% imp of 
DE

% imp of 
GS

CM6 0.1253 6.15 6.15
CM7 0.1315 5.86 5.86
CM8 0.1454 5.30 5.30
CM9 0.1555 5.08 5.08
CM10 0.1339 5.75 5.75

% improvement in coverage

 
 

From the results shown above for the three problem sizes, we can conclude that 

Geometric Search heuristic performs significantly better than DE for continuous problems. As 

mentioned before since network design problems usually need a one-time solution, GS heuristic 

can be used to solve huge problems. The quality of the solution obtained is better than the best 

heuristic (discrete enumeration) so far. 

 

7. Which should we use: Continuous or Discrete? 

We now compare the SA heuristic for the discrete problem with the GS heuristic for the 

continuous problem. In order to solve the continuous version of the problem using discrete 

methods, we break the region into finely spaced grid points. The customer probability is summed 

over all these grid points. 

7.1. Results 

7.1.1. Continuous Vs Discrete Small 

Results of Table 7 show that although there is not much difference in the running time of 

GS and SA, the quality of solution obtained using GS is much better than that of SA. On average, 

GS improves the initial coverage 7% more than the improvement obtained using SA. The 

continuous surface was discretized into equally spaced grid points using a gap of 0.5 between grid 

lines. We might obtain a better solution with even finer grid spacing but that is at the expense of 
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the computation time. Note that the optimal locations in the two heuristics are quite close and the 

solution improves by nearly 6% in such a small distance. 

7.1.2. Continuous Vs Discrete Medium 

Table 8 tabulates results for continuous vs. discrete medium. Again we see that GS 

outperforms SA both in terms of solution time and objective function value. We have used a 

discretization interval of 0.5 again for this although this is not a fine enough resolution. From our 

experience we observed that increasing the resolution of discretization greatly increases the 

computation time. Hence we chose this interval for our computational study. Where SA takes 48 

minutes on average to solve, GS solves the problem in 32 minutes. In terms of the solution, GS 

provides a better solution (1% more than SA) than SA for all five of the problem instances. Note 

that in order to get the same quality of solution as GS using SA the region has to be finely 

discretized and this made the problem run for several hours. 

 

CP
time 
(min)

optimal 
point CP

time 
(min)

optimal 
point

CS1 0.277 2.12 (4, 8.05) 0.294 1.59 (4.16, 8)
CS2 0.17 2.12 (5.03, 2) 0.179 1.59 (5.75, 2.3)
CS3 0.196 2.14 (5.03, 3.5) 0.205 1.47 (5.11, 3.73)
CS4 0.198 2.13 (2.48, 4.48) 0.209 1.63 (2.6, 4.3)
CS5 0.15 2.13 (4, 4.49) 0.158 1.59 (3.57, 6.64)

Simulated Annealing Geometric Search

 

Table 7a: Continuous vs Discrete small results 

 

Initial 
Coverage

% imp of 
TE

% imp of 
GS

CS1 0.2472 12.10 18.77
CS2 0.1286 32.50 39.04
CS3 0.1532 28.00 33.94
CS4 0.1551 27.34 34.75
CS5 0.1015 48.08 56.06

% improvement in coverage

 

Table 7b: Percentage improvement in coverage 

 Table 8a: Continuous vs Discrete medium results 

CP
time 
(min)

optimal 
point CP

time 
(min) optimal point

CM6 0.132 48.55 (26.34, 39.45) 0.133 32.58 (26.47, 39.12)
CM7 0.138 48.14 (41.19, 10.68) 0.139 31.65 (42.86, 12.17)
CM8 0.151 48.3 (23.17, 26) 0.153 30.92 (22.56, 26.02)
CM9 0.162 48.24 (42.51, 18.96) 0.163 34.51 (41.7, 19)
CM10 0.14 48.34 (32.06, 7.48) 0.142 32.38 (31.3, 8.89)

Simulated Annealing Geometric Search
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Table 8b: Percentage improvement in coverage
Initial 
Coverage

% imp of 
TE

% imp of 
GS

CM6 0.1253 5.43 6.15
CM7 0.1315 4.94 5.86
CM8 0.1454 4.06 5.30
CM9 0.1555 4.24 5.08
CM10 0.1339 4.63 5.75

% improvement in coverage

 
r the continuous versus discrete version show that SA cannot be used 

is type of problem and new heuristics have to be developed. The GS 

nt results and can be used to efficiently solve large problems. 

Future Research  

we have addressed the adaptive spatial sampling problem and its relation to 

ocation problem. The problem of determining an optimal additional sample 

 to be analogous to that of determining the optimal additional facility. The 

 for the optimization of both functions has been explained. Several 

ave been developed to illustrate the behavior of this optimization function 

tion context. We also developed a case study to locate one, two and three 

in a rural section of Erie County, New York.  

te case, we developed a SA heuristic and obtained good quality solutions—

monstrated to be superior to the NM and DE methods. For the continuous 

behavior of the objective function. This led us to a hypothesis of piecewise 

tive function. We proposed a GS heuristic based on this observation and 

al tests that it performed extremely well. We also performed a comparison 

nd continuous modeling approaches. Our empirical results show that the 

ethod using the GS heuristic is the best algorithmic choice.  

ral opportunities for future research in this area: 

e concavity property would be an important step towards the development 

algorithm for additional facility location using spatial interpolation.  

ed simple kriging to develop the optimization routine. Use of ordinary 

posed to simple kriging) would be useful since ordinary kriging assumes a 

nt mean.   

approach more practically applicable, research needs to be done to extend 

ultiple facility locations. 
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