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Abstract 

The location of base stations (BS) and the allocation of channels are of paramount importance for 

the performance of cellular radio networks. Also cellular service providers are now being driven 

by the goal to enhance performance, particularly as it relates to the receipt and transmission of 

emergency crash notification messages generated by automobile telematics systems.  In this 

paper, a mixed integer-programming (MIP) problem is proposed, which integrates into the same 

model the base station location problem, the frequency channel assignment problem and the 

emergency notification problem. The purpose of unifying these three problems in the same model 

is to treat the tradeoffs among them, providing a higher quality solution to the cellular system 

design. Some properties of the formulation are proposed that give us more insight into the 

problem structure. An instance generator is developed that randomly creates test problems. A few 

greedy heuristics are proposed to obtain quick solutions that turn out to be very good in some 

cases. To further improve the optimality gap, we develop a Lagrangean Heuristic technique that 

builds on the solution obtained by the greedy heuristics. Finally, the performance of these 

methods is analyzed by extensive numerical tests and a sample case study is presented. 

Keywords Health Sciences; Logistics; Location. 
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1. Introduction 
Motor vehicle crashes are a major health problem and an economic burden in the United 

States, see SmartRisk (1998), Walker (1996). According to the National Highway Traffic Safety 

Administration (NHTSA 2000), there were over 6.3 million motor vehicle crashes in 1999. These 

crashes led to over 40,000 deaths. Of note, approximately 50% of the fatalities occur before the 

crash victim reaches a hospital.  

 Current research is branching in two directions. One deals with methods of preventing 

vehicle crashes on roads. The second, and more pertinent to this work, is dealing with ways of 

reducing the response time in the event of a crash or a fatality. There is a substantial body of 

literature regarding the impact of emergency medical service (EMS) response time and time to 

definitive care on trauma victim outcomes. Terms like ‘golden hour’ in Jacobs et al. (1984); 

Lerner and Moscati (2001), ‘silver day’ in Blow et al. (1999) and ‘platinum ten minutes’ have 

been coined to describe the importance of time in treating trauma injuries. Evanco (1999) 

establishes a quantitative relationship between fatalities and crash notification time. According to 

this paper, if a rural mayday system were implemented (i.e., a 100% market penetration) and the 

service availability were 100%, then we would expect monetary benefits of about $1.83 billion 

per year and comprehensive benefits (which includes the monetary value attached to the lost 

quality of life) of $6.37 billion per year.  More recently Clark and Cushing (2002) studied data 

from fatal crashes to predict the effect of a fully functional ACN system on reducing crash-related 

mortality in the United States.  They estimate that an ideal system would reduce crash fatalities 

by 2-6% a year. 

Location of base stations and channel allocation in cellular communications plays a major 

role in reducing the notification time in the event of a crash, especially in rural areas where 

coverage is weak.  In this work we address tradeoff issues faced by a cellular service provider 

who needs to render efficient coverage to both “emergency” as well as “regular” calls. 

1.1 Automated Crash Notification (ACN) Systems 

Emergency Notification and Response (EN & R) systems and associated services aid a 

specific individual or motorist to request help from, and provide information to, authorities about 

a distress situation. Crucial to getting adequate help to a crash victim is prompt notification that 

(a) a crash has occurred, (b) the location of the crash, and (c) some measure of the severity or 

injury-causing potential of the collision. Automated Crash Notification (ACN) systems capable of 

performing tasks (a) and (b) have been installed as expensive options on a limited number of 

high-end luxury cars.  These devices are activated by air bag deployment.  More advanced 

sensors can also estimate the injury-producing capability of the crash. The first estimate of the 
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number of potential lives saved by ACN technology is 3,000 lives per year according to 

Champion et al. (1998). In general, there are many reasons that can cause an emergency crash 

message to fail to be generated or completed, including: 

• Damage caused to the ACN device due to the severity of the crash. 

• Loss of primary and backup power in the vehicle as a result of the crash. 

• Weak signal strength due to poor cellular coverage, damage to vehicle antenna, or final 

resting position of the crashed vehicle (i.e., rolling into a ditch).  

• Insufficient cell channel capacity. 

1.2 Base Station Location and Channel Allocation  

 The following are the four basic components of a cellular mobile network: 

• Mobile Station 

• Base Station 

• Mobile switching center 

• Public switched telephone network 

The mobile station (MS) constitutes the interface between the mobile subscriber and the base 

station. Base stations are responsible for serving the calls to or from the mobile units located in 

their respective cells. The mobile switching center (MSC) is a telephone exchange especially 

assembled for cellular radio services. Finally, the public switched telephone network (PSTN) 

treats the MSCs as ordinary fixed telephone exchanges. 

Given an area to serve the teletraffic, cellular providers would have to decide the following: 

• The number of base stations to be located. This would depend on budget limitations. 

• Optimal positioning of the base stations to maximize the coverage in the region given a 

restriction on the number of base stations to be built (particularly true in rural areas where 

the number of base stations is less and their locations are thus more critical). 

• Channel capacity of each base station subject to the total channel capacity. This would 

mainly depend on the teletraffic demand at each base station. 

• Maximal base station transmitting power. 

• Antenna height. 

The first three aspects constitute the design of the cellular network and are one of the major 

problems in cellular communications.  

A subsequent problem in the design of cellular communications is the efficient use of the 

limited available radio channels. There are two strategies for assigning channels to cells: Fixed 

Channel Assignment (FCA), and Dynamic Channel Assignment (DCA). The FCA strategy 
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allocates channels to each cell in advance according to estimated traffic intensity in the cell. The 

DCA strategy foresees the assignment of radio resources to various cells dynamically in real time, 

to meet rapidly changing demand for communication channels.  

 We now review previous work in the optimal positioning of base stations and in channel 

allocation. The Adaptive Base Station Positioning Algorithm (ABPA) was introduced by Fritsch et 

al. (1995). It uses an early version of the Demand Node Concept and the major drawback of 

ABPA is its lack of speed.  A promising approach to automatic network design was presented by 

Chamaret et al. (1997). The radio network design task is modeled as a maximum independent set 

search problem. In contrast to this, Ibbetson and Lopes (1997) proposed an algorithm that 

considers only traffic distribution as a constraint for cell site locations. 

The approach for the design of micro-cellular radio communications proposed by Sherali 

et al. (1996) concentrates on radio frequency (RF) constraints since in the considered micro-

cellular environment, so, network capacity is not of major importance. They used well established 

nonlinear local optimization algorithms (simplex method, i.e., Hooke and Jeeve’s method, quasi-

Newton, and conjugate gradient) in evaluating the objective function. Tcha et al. (2000) 

addressed the radio network design problem in a code division multiple access (CDMA) system. 

They use two heuristics: the construction heuristic for choosing an initial feasible subset of 

potential sites, and the improvement heuristic for reducing the cost associated with the selected 

subset by changing some of its constituent sites. Wright (1998) employed a direct search method 

to finding the optimal placement of base stations, since it requires only the value of the function 

to be optimized. Bose (2001) used dynamic programming to determine the optimal placement of 

base stations in an urban setting, given the cell coverage. Stamatelos et al.’s (1996) objective 

function was based on maximizing the coverage area while minimizing co-channel interference, 

and incorporated spatial diversity.  

1.3 Coverage models 

 The assumption underlying all coverage models is that customers beyond a specified 

service range are not adequately served by the service facilities.  The objective of the Set 

Covering Problem (SCP) is to determine the number of required service centers, i.e. base stations, 

and their locations such that all users of the wireless network are served with an adequate service 

level, i.e. field strength level. However, for an economic design of wireless communication 

networks, a tradeoff between the cost of coverage and the benefit resulting from covering this 

area is desired. Church and ReVelle (1974) define this problem as the Maximum Coverage 

Location Problem (MCLP). The MCLP assumes a limited budget and includes this as a constraint 
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on the number of facilities to be located.   The book by Daskin (1995) contains a thorough 

discussion of coverage models and their applications. 

 Our model builds on the SCP and MCLP models in the context of a cellular application. 

1.4 Motivation 

 To reduce crash-related fatalities and minimize crash notification times, NHTSA 

sponsored Veridian Engineering in the Automated Collision Notification (ACN) Field 

Operational Test Program from 1995 to 2000. ACN explored the ability of in-vehicle equipment 

to reliably sense and characterize crashes, and automatically transmit crash location and crash 

severity data to the proper public safety agencies. The paper by Akella et al. (2003) summarizes 

these findings. According to the paper, 70 crashes involving ACN-equipped vehicles occurred 

within Erie County, New York. Of the 22 crashes where the severity level was above the 

threshold, 14 ACN systems detected the crash and alerted the Erie County Sheriff. The failure to 

notify the EMS in the remaining 8 crashes can be attributed to insufficient signal strength. This 

number is quite large and hence to eliminate any possibility of failure of the ACN device to notify 

due to a weak signal, the Received Signal Strength Indicator (RSSI) should be strong at potential 

crash locations. 

 This paper makes the following three main contributions: 

• It models a typical cellular network design problem from the perspective of emergency 

notification.  

• It introduces a unique formulation involving the MCLP with set covering constraints. 

• It proposes efficient heuristic solution techniques for this problem.  

2. Model Formulation 
We use the discrete population model for the traffic description, denoted as the Demand 

Node Concept (DNC) introduced by Tutschku et al. (1996). A demand node represents the center 

of an area from which a given number of call requests per unit time originate. To take into 

account the time variation of call traffic, each day is divided into a fixed number of time slots. An 

emergency/crash node represents a region that is prone to crashes. Also, there is a limit on the 

number of available channels per time slot. We are initially given a set of potential locations of 

base stations. The problem is to find an optimal set of locations of a given number of base 

stations that would maximally cover the demand nodes based on their demands and cover the 

emergency nodes. We call this the Network Design Emergency Coverage Model (NDEC) model. 

We formulate the problem as a Mixed Integer Programming (MIP) problem. We assume that the 

demand nodes and the emergency nodes are spatially static with time and that we know the 

demands of each demand node for all time-slots.  

 5



Network Design Emergency Coverage (NDEC) Model: 

Sets: 
M = set of possible locations of base stations 
N = set of demand nodes 
E = set of emergency nodes  
 
Constants: 
T = total channel capacity, 
p = the number of base stations to be located, 
Wt = importance attached to time slot t, 
Hjt = demand at node j at time t.  
 
Aij =  

1 if BS i covers node j 
 
0 otherwise  

 
Variables: 
fijt = fraction of demand of node j satisfied by BS i at time-slot t. 
 
xi =  
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atrix defined above is a 0-1 matrix that indicates whether a node at j can be 

at i. Note that distance might not be the only criterion for coverage. Obstructions 

multiple reflections on walls etc. affect the signal strength at any point. We 

Aij matrix has been constructed taking into account these factors. The total 

 is assumed to be the same for all times slots. The objective function (1) 

mand coverage over all time-slots in a day. Constraint (2) states that at most p 
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cell towers are to be located. Constraint (3) is just a definitional constraint wherein the fractional 

coverage of node j at time t by a BS i exists only if BS i is located and node j falls within the 

coverage area of BS i. Constraint (4) ensures that the number of channels allocated to a demand 

node is at most equal to its demand at any given time slot. Constraint (5) imposes a restriction on 

the total channel capacity at any time t. To take into account the fact that coverage of emergency 

nodes is essential, we have constraint (6), which states that each emergency node should be 

covered by at least one BS.  

 There are numerous extensions to this problem that could be possible. For example, while 

allocating channels, we did not take into account effects such as co-channel interference and 

adjacent channel interference. We could treat the coverage of the special set of nodes E as a 

second objective, making it a bicriteria problem. In reality, signal strength varies with distance 

from the cell tower location. More specifically, under ideal conditions the RSSI value can be 

expected to decrease inversely in proportion to the square of the distance from the cell tower 

according to Macario (1997). Furthermore, the effect of foliage, terrain, etc. on RSSI value can be 

quite significant--see, for example, Delmelle et al., (2002). According to Akella et al. (2003), 

calls that have an RSSI value of -89dB or higher go through uninterrupted (i.e. with probability 

1). For values less than –119 dB, the call will not be completed (i.e. with probability 0). When 

RSSI values fall between –89 and –119 dB, there is a probability associated with call completion. 

The model can be changed to reflect this by considering partial coverage possibilities of calls. We 

could use some empirical results to postulate the decrease in signal strength with distance from 

the cell tower and then develop a partial coverage model to capture this intermediate range of 

RSSI values. This intermediate range of RSSI values can be particularly relevant since foliage 

effects can lower RSSI value by as much as 20%, making areas of decent coverage (say with 

RSSI value of –80dB) into areas where coverage can be questionable. Thus partial coverage 

models need to be explored to accurately model the true coverage of both “regular” and 

“emergency” customers. The NDEC model proposed here is the first of its kind and one of the 

basic models in cellular network design from the perspective of emergency notification. 

3. Model Properties 
The NDEC formulation is a Mixed Integer Programming (MIP) problem. A closer look at 

the problem reveals that it is a combination of the set covering and the maximal covering location 

problems. We could not find any articles that addressed this problem in the OR literature. Church 

et al. (1974) proposed a maximal covering location problem with mandatory closeness constraints 

wherein they maximize the population that can be covered within a given service distance S while 

at the same time ensuring that the users at each point of demand will find a facility no more than 
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T distance away (T>S). This is a set covering problem with respect to the distance T and a 

maximal covering problem with respect to S. The authors solve an example problem but there is 

no general solution technique proposed in that paper. Since this problem is a superset of the set 

covering and the maximal covering location problems, it is NP–complete. 

The problem becomes more realistic with an increase in the number of time slots. The 

actual time variation of demand can be modeled accurately only with a large number of time slots 

but then this presents a very large problem to be solved. For instance, if we take a typical problem 

with 1,000 demand nodes, 200 emergency nodes, 500 potential locations of BSs and 20 time 

slots, then it would have 107 variables and a much larger number of constraints. This presents a 

very large scale MIP and professional solvers like CPLEX would not be able to handle such huge 

data as will be seen later in the paper.  

According to the formulation, a demand node that is covered by more than one BS in a 

solution might not be assigned to not the nearest BS. Ideally, a cell phone call made from any 

location tries to connect to the nearest BS. Arriving at such a solution from a given optimal 

solution is trivial and there is no change in the objective function value in doing so. In other 

words, given an optimal solution, it is possible to construct an alternate optimal solution in which 

each demand node is assigned to its closest BS.  

Property 1: Let (x*, f*) be an optimal solution for the problem (P1) with an objective function 

value Z* and let M* (M*⊆M) be the optimal set of BSs. (x’, f’) is an alternate solution constructed 

from the original optimal solution such that 
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the problem (P1), 
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 Hence Z’ = Z*. Therefore, 

the alternate solution (x’, f’) is feasible and optimal to NDEC problem.  

� 

We now explore the solution structure to develop heuristics that give a near optimal 

solution in reasonable time. 

Property 2: Let F = {fijt | 0 < fijt < 1, ∀ i, j, t}. Then, ∃ an optimal solution (x*, f*), such that |F| 

≤ number of time slots. 

Proof: Given optimal locations of BSs, for any given time slot, each demand node can be 

assigned channels equal to its demand until all the channels are used up.  In such a case only one 

demand is satisfied partially. Therefore, we have at most one fractional variable for each time slot 

and hence the property.  

�       

 Property 2 gives insight to the final solution structure. Though the problem is a 

combination of set covering and maximal covering location problems, it can be modeled as a 

maximal covering problem by treating the emergency nodes as demand nodes of very high 

demand, say M (a large number). In such cases, we can use the vast amount of literature available 

to solve maximal covering location problems to solve this problem. But one intricacy involved 

would be in cases where the set covering problem is infeasible. The modified problem would not 

be able to detect any infeasibility in the original problem since the maximal covering location 

problem is never infeasible. So this kind of approach would work only when the underlying set 

covering problem is feasible. It should also be noted that the channel capacities should be altered 

accordingly to accommodate the coverage of emergency nodes of high demand.  

4. Solution Techniques 
4.1 Deterministic Addition (DA) Heuristic 

 The first heuristic considered is called the Deterministic Addition (DA) heuristic. It is 

similar to the Greedy Addition (GA) Algorithm proposed by Charles and ReVelle (1974) for the 

maximal covering location problem. The idea behind this approach is that, by covering a sparsely 
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covered emergency node, there is a high possibility of covering other emergency nodes that are 

better covered than this node. Once all of the emergency nodes are covered, the heuristic moves 

on to the maximal covering problem of the uncovered demand nodes. Now the problem is 

updated by removing the covered demand and emergency nodes, and by decreasing the total 

available channels for each time slot by the amount of demand covered in that time slot. Then the 

DA determines that emergency node with minimum coverage from among the uncovered 

emergency nodes. Repeating the process again, it selects the BS with maximum weighted 

coverage covering this emergency node. This process is repeated until all the emergency nodes 

are covered after which it follows the Greedy Addition (GA) algorithm of Church and ReVelle 

(1974) to maximally cover the demand nodes. The heuristic terminates if all the demand nodes 

are covered or p BSs are located or all the available channels are used up.  We note that the DA 

heuristic does not always guarantee a feasible solution even if the original problem is feasible.  

4.2 Probabilistic Addition (PA) Heuristic 

 In the PA heuristic there is a probability associated with selecting an emergency node to 

be covered and this is inversely proportional to the number of BSs covering that emergency node. 

This heuristic is run for a fixed number of iterations and terminates when it encounters a feasible 

solution or the iteration limit is reached. This approach is similar to the Simulated Annealing 

(SA) search technique and helps to prevent the search from getting stuck at local optima. The 

main advantage of this heuristic is that in most cases it returns a feasible solution (if one exists).  

4.3 Set Max Cover (SMC) Deterministic Heuristic 

This is a slight modification of the DA heuristic that concentrates totally on the coverage 

of emergency nodes in the first phase and then moves on to the coverage of demand nodes in the 

second phase. This should help remove infeasibilities in the final solution. We call this the SMC 

heuristic because the first phase of this heuristic involves the set covering problem of the 

emergency nodes and the second phase involves maximal covering of the demand nodes.  

4.4 Set Max Cover  (SMC) Probabilistic Heuristic 

This is a modification of the SMC deterministic heuristic with probabilistic selection.  

This heuristic would try to jump out of local optima (if any) while doing the search.  

4.5 Lagrangean Heuristic 

From our computational experience, the LP relaxation of P1 yielded IP optimal solutions in many 

cases. But this is not always the case.  Motivated by this we develop a Lagrangean heuristic for 

our problem using subgradient optimization, see e.g., Ravindra et al. (1993). Consider the 

problem P1. Upon relaxing the constraint set 2 with a penalty cost λijt and placing it in the 

objective function we obtain the formulation  
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Here, SP1t denotes the sub-problem SP1 for time slot t. This is just a linear program in the 

variable fijt. Also this resembles a knapsack problem and can be solved without the use of any 

standard solver. A simple algorithm can be developed to solve the problem to optimality for each 

time slot. The other sub-problem is: 

(SP2) Maximize ∑∑  ∑
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This is a 0-1 IP and is a weighted set covering problem (and hence is NP-complete). Though the 

problem is NP-complete our conjecture is that, since the number of emergency nodes is very 

small when compared to the number of demand nodes, finding an IP optimal solution to this 

problem is relatively easy (for a solver like CPLEX). The rationale behind using Lagrangean 

Relaxation can be summarized as follows:  

- One can show through numerical examples that L(λ) does not possess the integrality 

property, so the best Lagrangean bound will be strictly better than the LP bound.  

- For large-scale problems, the number of variables would be of the order of 107. 

Therefore, it would not be sensible to use a solver like ILOG CPLEX for solving even 

LP relaxations.  

- The problem decomposes into “manageable” sub-problems.  

- It generates a lower bound at every iteration since a solution to sub-problem SP2 gives a 

feasible set of BS locations x to cover emergency nodes. An overall feasible solution can 

then be generated by inspection 

4.5.1 Subgradient Optimization 

This technique starts with an initial set of values of the multipliers . The multipliers 

are then updated as follows: 

0
ijtλ

[ ]++ −+= )(1 k
iij

k
ijtk

k
ijt

k
ijt xAfµλλ  

In this expression,  and  is any solution to the Lagrangean subproblem when  

and 

k
ijtf k

ix k
ijtijt λλ =

kµ  is the step length at the kth iteration. Only the positive part of  is chosen because 

they are constrained to be non-negative. To ensure that this method solves the Lagrangean 

multiplier problem, we need to exercise some care in the choice of the step sizes. If we choose 

them too small the algorithm would become stuck at the current point and not converge; if we 

choose the step sizes too large, the iterates  might overshoot the optimal solution and perhaps 

even oscillate between non-optimal solutions. The following compromise ensures that the 

algorithm strikes an appropriate balance between these extremes and does converge: 

1+k
ijtλ

k
ijtλ

∞→→ ∑
=

k

j
jk

1
  and  0 µµ  

For example, choosing kk /1=µ  satisfies these conditions. In this paper, we would be using the 

standard subgradient search technique wherein the step size is determined as follows: 
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In this expression, LB is a lower bound on the optimal objective function value of the problem P1 

and kε  is a scalar chosen (strictly) between 0 and 2. The denominator is the Euclidean norm of 

the vector of the inequality constraint that was relaxed. Initially, the lower bound is the objective 

function value of any known feasible solution to the problem P1. As the algorithm proceeds, if it 

generates a better feasible solution, it uses the objective function value of this solution in place of 

the lower bound LB. Since this heuristic has no convenient stopping criteria, we run it for a 

specified number of iterations and then terminate.  

5. Computational Results 
All five heuristics have been tested on three types of data sets viz. small, medium and 

large scale problems. The heuristics have been coded in C, which interfaces with the ILOG 

CPLEX callable library while solving using the Lagrangean heuristic. These instances have been 

run on a 768 MB RAM, Intel Pentium 3, 800 MHz processor operating on a Windows platform.. 

The instances for the NDEC problem were created through a small algorithm specially designed 

for this purpose. 

5.1 Instance Generator 

We developed an algorithm to provide some instances for the NDEC problem. Basically, 

we had to estimate the size of the working area, the location and number of candidate BSs, the 

coverage area of each candidate BS, the location and number of demand and crash nodes, the 

demand of each demand node for each time slot, the total channel capacity and the weight of each 

time slot.  

For all the test problems, a square working area of either 10 units by 10 units or 20 units 

by 20 units was chosen. The demand and crash nodes were assumed to be randomly distributed 

over this working area (see Figure 2). The demands were generated randomly between 1 and 9 

(with a mean of 5). This is done over all the time slots. The locations of candidate BSs are 

assumed to follow a distribution similar to the spatial distribution of the demand nodes. This 

means that, there would be more candidate BSs where the demand density is high, and less where 

the demand density is low or 0. Note that the location of a candidate BS coincides with the 

location of one of the demand nodes. Initially, the BSs are assumed to have a circular coverage 

area for these test problems. With the coverage obtained, if an crash node is not covered by any 

candidate BS then it is assumed to be covered by the BS nearest to it. This is done to avoid 

infeasibilities at the initial stages. Hence the coverage region of a BS is not exactly circular. The 
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radius of coverage of a BS is chosen such that with the actual number of BSs to be located the 

whole working area is covered. It should be pointed out that the radius of coverage has been 

chosen to be more than that is required to cover the whole working area. This was done to avoid 

any kind of preprocessing to the test problem, which would otherwise reduce the actual number 

of non-zero variables to a great extent.   

 

Base Station 

Emergency Node 

Figure 1: Instance Generator 

10 

10 

Demand Node 

Figure 1 shows a test problem generated using the instance generator. Note that the location of 

the candidate BSs coincides with the locations of the demand nodes. 

5.2 Results 

A 10 unit by 10 unit working area was selected to create test problems for the first four 

heuristics. A total of 300 demand nodes and 50 crash nodes were randomly generated. Based on 

the spatial distribution of the demand nodes, 200 candidate BS locations were generated. The 

demand of each node was generated as a random number between 1 and 9 with a mean 5. The 

total channel capacity was assumed to be 1500. The coverage radius of a BS is 1 unit. The weight 

of each time slot was assigned on a scale from 1 to 10 randomly. With this input data, the actual 

number of BSs to be located was varied from 20 (the minimum number required) to 34 and 

solved using the heuristics. For each value of the actual number of BSs, 4 different test problems 

were created and solved using the 4 heuristics. The results are as shown in Table 1.  

 Table 1 lists the following. Under the CPLEX MIP column, the optimal objective 

function value and the running time of CPLEX (seconds) is shown. Under each heuristic, the 

solution is shown as a percentage of the optimal value. In case the heuristic reports an infeasible 

solution, then the percentage feasibility (i.e. percentage of the crash nodes that it could cover 

using the assigned number of BSs) is shown in the next column. The third column shows the 

running time of each heuristic. 
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Table 2 summarizes the performance of each heuristic. From this table we can conclude 

that either one of the heuristics or a combination of them can be used to arrive at an effective 

solution for the NDEC problem. The SMC probabilistic would prove effective only for cases 

where the actual number of BSs marginally covers the emergency nodes, because it rarely reports 

infeasibility when the original problem is feasible. 

Figure 2 shows a plot of the feasibility curves for the four heuristics versus the actual 

number of BSs located. The SMC probabilistic never reports an infeasible solution and hence it 

shows 100% feasibility in the graph (a parallel line to the X axis). Also note that, as the number 

of BSs to be located increases, the % feasibility of all the heuristics increases.  

5.2.1 Lagrangean Heuristic 

 As mentioned before, the Lagrangean heuristic was tested for three different problem 

sizes. The results for both the small and medium scale problems are presented in this section. The 

next section includes a case study that presents the results for large-scale problems.  

A test problem on a 10 unit by 10 unit working area was created.  The step size ( kε ) was 

chosen to have an initial value of 2 and if the upper bound did not improve in 3 successive 

iterations, the step size was reduced to half. In successive iterations, if the step size reduced to 

0.05, it was re- initialized to 2. This was done to avoid the solution from getting stuck at a local 

value. The test problem consists of 150 demand nodes, 30 crash nodes, 100 candidate BSs and 10 

time slots. The total channel capacity for each time slot was assumed to be 500. The SMC 

deterministic and probabilistic heuristics provided a starting solution to the Lagrangean heuristic. 

The subgradient search was terminated under the following criteria:  

• starting solution reported by one of the greedy heuristics is infeasible 

• optimality gap is reduced to less than 1% 

• there is no improvement in the upper bound in 200 successive iterations 

• iteration limit is reached 

The problem is also run on CPLEX 7.1 by creating an LP input file. Note that even in CPLEX the 

optimality gap was set to 1%, which means that it would come out with a solution if the 

optimality gap reduced to 1%. The results are shown in Tables 3 and 4. Note that the Lagrangean 

heuristic performs better in terms of the solution time. Also in Table 3, the heuristic itself gives a 

very good initial solution and the first bound obtained by the Lagrangean relaxation is good 

enough to obtain a <1% optimality gap. Hence the solution does not improve from the one 

provided by the heuristic. In the case of SMC probabilistic, Lagrangean actually builds on the 

starting solution and finally gives a <1% optimality gap. Since we terminate CPLEX when the 

gap falls below 1%, in some cases we find a heuristic solution better than the one obtained by  
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no of 
base 

stations

obj 
value

time-
sec

% 
optimality

% 
feasibili

20 27438 132 inf 88
20 27438 116 inf 96
20 27438 115 inf 88
20 27438 116 inf 92

21 27438 144 inf 82
21 25571 152 inf 88
21 25571 115 inf 90
21 30479 144 inf 96

22 23937 133 inf 98
22 26847 133 inf 96
22 21092 128 inf 88
22 28746 136 inf 94

23 19738 136 94.38 100
23 28210 135 inf 90
23 33362 158 95.33 100
23 24468 164 inf 98

24 31255 268 99.11 100
24 33835 161 96.42 100
24 23591 144 96.75 100
24 30462 139 inf 98

25 36095 137 98.23 100
25 37968 178 98.28 100
25 27222 146 inf 92
25 30400 164 96.84 100

26 31520 241 98.13 100
26 35514 216 96.3 100
26 22173 221 95.93 100
26 26197 172 99.42 100

27 30391 146 98.63 100
27 26107 150 98.08 100
27 34992 157 98.64 100
27 28890 234 98.31 100

28 28441 157 98.61 100
28 33480 138 98.3 100
28 26878 203 95.7 100
28 35007 161 98.25 100
29 32017 317 98.95 100

29 31844 279 97.06 100

29 34363 253 98.37 100

30 29617 856 98.75 100
30 28475 282 97.49 100
30 31889 361 97.73 100
30 30170 534 99.27 100

31 18831 332 96.49 100
31 38916 940 99.12 100
31 29834 603 98.24 100
31 17452 745 98.38 100

32 27754 254 98.48 100
32 32189 407 98.49 100
32 32085 239 98.41 100
32 27989 591 98.49 100

coverage radius = 1; number of time slots = 10; p

CPLEX MIP Det Addition (D

 

 

Table 1. Heuristics Performance
ty
time-
sec

% 
optimality

% 
feasibility

time-
sec

% 
optimality

% 
feasibility

time-
sec

% 
optimality

% 
feasibility

time-
sec

1 inf 84 24 inf 98 1 87.41 100 12
1 inf 76 24 inf 98 0 78.82 100 12
1 inf 80 23 inf 94 1 68.78 100 12
1 inf 86 27 inf 98 1 85.92 100 16

1 inf 80 32 inf 98 0 58.39 100 17
1 inf 88 26 90.25 100 1 77.45 100 13
1 inf 86 25 inf 98 1 91.69 100 13
1 inf 82 26 90.04 100 0 77.67 100 13

0 inf 90 26 89.94 100 0 81.88 100 13
0 inf 84 27 83.48 100 0 80.28 100 14
1 inf 90 26 89.63 100 1 81.4 100 14
1 inf 86 26 93.56 100 0 74.86 100 13

0 83.47 100 11 88.9 100 1 81.67 100 14
1 inf 86 27 87.08 100 0 79.28 100 14
0 88.1 100 12 94.78 100 1 82.26 100 8
1 inf 86 27 87.78 100 1 84.75 100 2

1 86.92 100 0 94.25 100 1 85.38 100 2
1 83.89 100 5 93.81 100 1 80.1 100 1
1 80.52 100 18 87.54 100 1 86.2 100 4
0 84.92 100 15 93.24 100 1 81.41 100 1

1 85.57 100 4 92.73 100 1 86.92 100 0
1 87.47 100 3 96.76 100 1 82.73 100 1
1 84.68 100 8 93.92 100 0 74.83 100 4
1 90.14 100 2 92.07 100 0 85.05 100 2

1 91.64 100 2 96.72 100 1 85.92 100 0
1 92.48 100 11 94.04 100 1 80.25 100 1
1 89.9 100 1 95.57 100 1 81.21 100 1
1 83.29 100 3 96.63 100 1 86.25 100 0

1 85.83 100 2 97.74 100 0 88.43 100 1
1 83.74 100 1 91.86 100 1 80.48 100 0
1 91.36 100 1 95.13 100 1 82.25 100 0
1 85.4 100 1 96.99 100 1 83.21 100 0

0 88.37 100 1 96.02 100 1 91.3 100 1
1 89.27 100 2 97.01 100 1 89.88 100 1
1 87.17 100 1 95.74 100 1 87.91 100 1
1 84.12 100 1 97.29 100 1 85.88 100 0
2 83.2 100 1 96.13 100 2 86.45 100 1

1 90.39 100 2 88.14 100 1 89.29 100 1

1 90.72 100 2 94.42 100 2 83.29 100 1

2 83.12 100 3 96.8 100 2 90.94 100 1
2 87.3 100 1 97.22 100 1 89.42 100 1
2 87.5 100 1 97.61 100 1 87.74 100 2
2 84.84 100 1 97.65 100 1 87.07 100 1

1 90.81 100 2 96.67 100 2 85.9 100 2
2 89.56 100 2 97.66 100 1 92.36 100 2
2 92.12 100 1 97.72 100 2 86.24 100 1
2 90.41 100 2 97.35 100 1 90.81 100 2

1 93.65 100 2 97.67 100 1 94.15 100 2
2 92.27 100 1 96.5 100 2 88.37 100 2
1 86.54 100 2 97.38 100 2 91.4 100 1
2 89.35 100 2 95.29 100 2 84.37 100 2

Heuristics Performance
otential number of BSs = 200; total channel capacity = 1500; number of demand nodes = 300; number of 

accident nodes = 50
A) Prob Addition (PA) Set Max Cover (SMC) Det Set Max Cover (SMC) Prob 
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Table 1. Continued 

 

 

 

 

 

 

no of 
base 

stations

obj 
value

time-
sec

% 
optimality

% 
feasibility

time-
sec

% 
optimality

% 
feasibility

time-
sec

% 
optimality

% 
feasibility

time-
sec

% 
optimality

% 
feasibility

time-
sec

33 19337 260 98.57 100 2 90.34 100 1 96.9 100 2 89.61 100 1
33 27550 455 98.32 100 1 90.87 100 1 96.12 100 1 89.93 100 1
33 23418 530 98.57 100 2 92.15 100 1 97.79 100 2 90.51 100 1

34 30881 280 98.37 100 1 90.57 100 1 97.25 100 1 89.1 100 1
34 25469 414 99.23 100 2 96.1 100 1 98.2 100 2 93.76 100 1
34 37185 215 98.39 100 2 90.25 100 1 97.15 100 2 88.04 100 1
34 37776 507 98.75 100 2 92.13 100 1 97.91 100 1 95.43 100 2

Set Max Cover (SMC) Prob CPLEX MIP Det Addition (DA) Prob Addition (PA) Set Max Cover (SMC) Det

 Table 2. Summary of Results for the Heuristics 

average % 
optimality

average % 
feasibility

no of 
infeasibilities 

out of 60

average 
computation 

time
Det 

Addition 
(DA)

97.94 97.9 16 1.17

Prob 
Addition 

(PA)
88.35 96.4 14 8.44

Set Max 
Cover 
(SMC) 

Det

94.62 99.7 6 1.03

Set Max 
Cover 
(SMC) 
Prob

84.96 100 0 4.23
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Figure 2. Feasibility Curves for the Heuristics 

 

 17



Table 3. Small Size problems–SMC Deterministic

 
Table 4. Small Size Problems–SMC Probabilistic  

 

  

  

 

 

 

 

 

 

 

 

 Table 5. Medium Size Problems–SMC Deterministic 
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Lagrangean Performance 
number of demand nodes=150;number of crash nodes=30;potential number of base Stations=100;coverage 

radius=2;channel capacity=500;number of time slots=10 

no of 
base 

stations 
CPLEX SMC 

Det Lagrangean Heuristic 

  solution time-
sec solution lower 

bound 
upper 
bound 

%optimality 
gap time-sec 

9 17101 141 16852 17023 17151 0.75 5 
10 12125 168 11782 12047 12155 0.90 5 
11 15690 163 15559 15559 15690 0.84 <1 
12 16317 301 16353 16353 16430 0.47 <1 
13 12398 332 12456 12456 12548 0.74 <1 
14 16592 279 16924 16924 16936 0.07 <1 
15 12564 332 13084 13084 13090 0.05 <1 

Lagrangean Performance 
number of demand nodes=150;number of crash nodes=30;potential number of base 

Stations=100;coverage radius=2;channel capacity=500;number of time slots=10 

no of 
base 

stations 
CPLEX SMC 

Prob Lagrangean Heuristic 

  solution time-
sec solution lower 

bound 
upper 
bound 

%optimality 
gap 

time-
sec 

9 14854 103 14156 14821 14961 0.94 24 
10 16194 310 15959 16352 16454 0.62 34 
11 13125 168 12702 13061 13142 0.62 7 
12 13268 321 13209 13344 13450 0.79 1 
13 14280 288 14319 14627 14675 0.33 1 
14 17710 258 17930 17930 17944 0.08 1 
15 12891 260 13160 13160 13166 0.05 1 

Lagrangean Performance 
number of demand nodes=500;number of crash nodes=150;potential number 

of base Stations=400;coverage radius=3; total channel capacity = 
2000;number of time slots=10 

no of 
base 

stations 
SMC 
Det Lagrangean Heuristic CPLEX 

  solution lower 
bound 

upper 
bound 

%optimality 
gap 

time-
sec solution time-

sec 
18 34592 37121 37815 1.87 1000 NA 1000 
19 53522 55379 56454 1.94 86 NA 86 
20 33167 34121 34659 1.58 79 NA 79 
21 45367 45491 46311 1.80 23 NA 23 
22 57643 57643 58772 1.96 4 NA 4 



CPLEX. As a conclusion, for small scale problems, the Lagrangean heuristic performs very well 

both in terms of the quality of the solution and the solution time. CPLEX takes an average of 4 

minutes to solve this class of problems, though not to optimality.  

For medium scale problems, a 20 unit by 20 unit working area was considered. Similar 

step sizes were chosen. The problem consisted of 500 demand nodes, 150 crash nodes, 400 

candidate BSs each with a coverage radius of 3 units and 10 time slots. The total channel capacity 

for each time slot was assumed to be 2000. The actual number of BSs was varied from 18 to 23. 

The Subgradient search was done for a maximum of 1000 iterations. The SMC deterministic 

heuristic was used as the starting solution. The Lagrangean heuristic was run with a preset 

optimality gap of 2% or 1000 iterations whichever is earlier. Note that in this case the solver 

CPLEX was run only until the time the Lagrangean heuristic finds a solution. The result is shown 

in Table 5. 

The results look impressive both in terms of arriving at a solution and in terms of 

computational efficiency. For the CPLEX solver, the problem became intractable. It failed to find 

a feasible solution within the time in which the heuristic finds a solution with less than 2% gap. A 

look at the problem tells us that this medium sized problem has approximately 2 million variables 

and an equal number of constraints. Solving a problem of a million variables is cumbersome even 

from a point of building input files for the solver. The Lagrangean technique exploits the special 

structure the problem presents, and reduces the load on CPLEX to solve a 0-1 IP of just 400 

variables (at each iteration). The knapsack problem is solved without using CPLEX by a simple 

algorithm. This involves building huge arrays and running search algorithms on these arrays. But 

comparatively this is much easier to do than to write an LP format file to CPLEX. Though the 

Lagrangean heuristic technique exposes some of the limitations of professional solvers, at the 

same time it advocates clever usage of solvers by solving tractable problems iteratively and 

searching for the best solution. In the results above, an interesting feature to be observed is that 

the solution time of the heuristic decreases with an increasing number of BSs, whereas the 

CPLEX solution time exhibits no such behavior. The main reason behind this is that the starting 

solution provided by the greedy heuristic improves with more BSs as the problem moves away 

from infeasibility. Improving that further to a 2% optimality gap also requires lesser time.  

From our computational experience, we observed that given a small-sized problem where 

the radius of coverage is smaller for each BS, CPLEX solves it as efficiently as the Lagrangean 

heuristic. This is because of the fact that, with a weak coverage of each BS, the number of non-

zero variables is greatly reduced and the resulting problem size becomes very small. But we 

focused on testing the performance of our heuristic on a real world problem where even after pre-
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processing, the resulting number of non-zero variables is very large. Moreover, we have not 

included any preprocessing techniques in the heuristic. And owing to this, when the subgradient 

search is done, the program scans the entire variable set even though pre-processing can ignore 

some of them. This, if implemented this would actually lead to a considerable reduction in the 

problem size and subsequently the solution time. 

6. Case Study 
 We have applied the Lagrangean heuristic technique to the rural parts of Erie County, 

New York, where the probability of automobile crashes is known. The motivation behind 

choosing this as our study region is twofold. First, the Emergency Medical Services (EMS) 

response time in rural areas is much greater than in urban areas, and it is precisely these areas of 

the County in which ACN offers the greatest promise. Secondly, for the consistency of our study, 

we used the same rural crash data as the one discussed in Akella et al.(2003). 

6.1 Background Information 

Rural areas of Erie County represent villages and towns excluding the City of Buffalo and its 

immediate suburbs. They cover approximately 61% of the county. The rural areas are slightly 

hilly, especially in the southeastern corner. The population density in 2000 was 72 people per 

square kilometer (NYSDOT 2000).  

6.2 Data 

For emergency nodes, the location of the 210 rural crashes of 1995 discussed in Akella et al. 

(2003) was used. The demand nodes were represented using the centroid of rural census blocks. 

A census block is a small area bounded by a series of street, roads, railroads, streams or any 

visible features. Census blocks are the smallest geographic areas for which the Census Bureau 

collects and tabulates decennial census data. The total population of each census block (Census 

2000) was assigned to its centroid. There are 2336 census blocks centroids in rural Erie County. 

A total of 1824 blocks were used since some do not contain population information. Figure 4 

shows the distribution of the demand and crash nodes in rural Erie County. 500 candidate BS 

locations were chosen from among the 1824 demand nodes in the region. The choice was made 

based on the spatial distribution of demand. The coverage radius of each BS is assumed to be 3 

km. However, in case an crash node is not covered by any of the candidate BSs, it is then 

assumed to be covered by the BS closest to it. The problem that remains is to find 50 optimal BS 

locations that cover the crash nodes and maximally cover the demand nodes.  

6.3 Results 

 The performance of the Lagrangean heuristic is shown in Table 6.  The problem was 

solved for three different instances. The optimality gap was preset to 5%, 2% and 1% respectively 
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in each of the three instances. This means that the heuristic would terminate if it finds a feasible 

solution within the preset optimality gap. Note that the same problem has not been solved for 

each instance. An entirely different problem was created and solved. This has been done to ensure 

the performance of the heuristic over a range of problems and simultaneously to study the 

solution time with increasing complexity. NA under the CPLEX column indicates that the solver 

was unable to find a feasible solution. In fact for these problem instances, the solver fails to read 

the input format files. The problem size is roughly 10 million variables and an equal number of 

constraints.  

From our computational experience for this class of problems, we observed that the 

Lagrangean starts with an initial optimality gap of around 35% (this is the gap between the 

starting solution and the first upper bound obtained) and improves it to less than 1%. This is a 

remarkable improvement in the gap though the actual solution improves by around 10%. We have 

the liberty of stopping the solution at any preset gap to work a tradeoff with solution time. The 

solution time increases greatly as the optimality gap is reduced. As shown in the table, with a 

preset gap of 1% the heuristic takes nearly 4hrs 30 mins to solve the problem. But this is 

reasonable considering the fact that the solver fails to find a feasible solution. Figure 5 shows the 

subgradient search behavior for the solution with 5% optimality gap. The solution starts with a 

large initial gap between the upper and lower bounds. The gap later reduces to less than 5%. This 

figure visually demonstrates the classical Subgradient optimization search technique. 

The optimal location of the Base Stations and the coverage obtained by the solution is 

shown in Figure 4. Note that there is a link connecting uncovered crash nodes to BSs. This should 

be interpreted as that crash node being covered by a BS to which it is connected by a link. As 

explained before, this was a measure taken to avoid unwanted infeasibilities in the problem 

structure. As is seen from the figure, we have BSs located in those regions where the demand 

density is high and where there are crash nodes. The coverage area shown in the figure is a buffer 

drawn around a BS with 3 km radius. This would be the coverage of a BS with respect to the 

demand nodes. There are a lot of uncovered demand nodes in the final solution. This is due to the 

fact that the number of BSs was limited to 50. Increasing this number would give better coverage 

with respect to the demand nodes while maintaining the coverage of the crash nodes. 
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Figure 3: Location of Crash and Demand Nodes in Rural Erie County, New York 
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Figure 4: Optimal Base Station Locations in Rural Erie County (1% optimality gap) 
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 Table 6. Case study results 

 Lagrangean Performance 
number of demand nodes=1824;number of crash nodes=210;potential number of 
base stations=500;coverage radius=3;channel capacity=80000;number of time 

slots=10 

no of 
base 

stations 
CPLEX SMC 

Det Lagrangean Heuristic 

  solution time-
sec solution lower 

bound 
upper 
bound 

%optimality 
gap(preset) 

time-
sec 

50 NA NA 59409 63164 66017 4.52(5) 3949 
50 NA NA 69502 77849 79404 1.99(2) 8496 
50 NA NA 62873 71082 71666 0.82(1) 16584 
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Figure 5. An Example of Subgradient Search for Case Study–5% gap   

7. Conclusions and Future Research 
 A cellular network design problem has been addressed from the perspective of 

emergency notification. The problem has been formulated as a Mixed Integer Program (MIP). 

Several properties that help in gaining a deeper insight into the problem structure have been 

developed. Four different solution techniques have been proposed that produce high quality 

solutions in reasonable time. Finally, a Lagrangean heuristic is developed that takes a starting 

solution from one of the above heuristics and performs a subgradient search to improve the 

optimality gap. Results show that the Lagrangean heuristic performs remarkably well when 

compared to the ILOG CPLEX solver for all kinds of problem sizes. Finally, a case study is 
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presented that applies this solution technique to a practical problem in the  rural sections of Erie 

County, New York. 

 The Lagrangean heuristic technique developed can be further improved in terms of its 

computation time by exploiting the LP nature of the knapsack problem. Instead of solving it as a 

knapsack problem every time the multiplier is updated, one can input the problem to CPLEX after 

some preprocessing. The main reason behind this is that at successive iterations, we are 

effectively solving the same problem with some changed coefficients. With the use of certain 

features embedded in CPLEX to re-optimize an LP problem, the computational burden of re-

solving it from the beginning may be reduced. Also, efficient pre-processing techniques can be 

incorporated in the heuristic to eliminate redundant variables and constraints. This is a suggested 

future research direction.  

 Though we assumed that the signal strength varies deterministically, in reality it does not 

do so. There would be a probability associated with covering a customer at a given point. A 

stochastic model that incorporates this feature and maximizes the expected coverage would come 

closer to real-world problems in rural areas, where emergency coverage is important.  This is 

another suggested future research direction. 
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