
Displaying the Internal Structure of the Mandelbrot Set

Adam Cunningham
State University of New York at Buffalo

Numerical Analysis MTH 537
adamcunn@buffalo.edu

December 20, 2013

Abstract

Although images of the Mandelbrot set are ubiquitous, the detail shown in the majority of
such images is in fact of the complement of the set, while the set itself is usually displayed in
black. We consider here the problem of the display of the internal structure of the Mandelbrot
set itself. Seven different methods for displaying the internal structure are developed, based on
considerations of the geometry of the orbit associated with each point in the set. The resulting
images obtained using these methods are presented and analyzed.

1 Introduction

Since the work of Benoit Mandelbrot (1924 - 2010) first came to widespread public attention in the
1980s[1], images of the “Mandelbrot Set” have become ubiquitous. These images, both complex and
beautiful, introduced a wider audience to the areas of fractal geometry and to the deep connections
between this area of mathematics and self-similar structures present in the natural world. The detail
present in most of these images is however for points not in the set, but rather in its complement.
Points in the set are usually colored black, and show no internal features.

The problem addressed by this report is that of displaying the internal structure of the Mandelbrot
set. Several methods for doing so are developed and presented, either variations of existing techniques
or (to the authors best knowledge), new techniques for displaying this structure.

In section 2 following we first give a definition of the Mandelbrot set and describe its main com-
ponents. We then describe the most common algorithm used to create images of the set, the
“escape-time algorithm”, and discuss some issues that arise with this algorithm when images of the
set are magnified.

Section 3 on “The Internal Structure of the Mandelbrot Set” constitutes the main part of this report.
Several different methods for displaying the internal structure are described and images generated
using these methods are presented and discussed.

In section 4 we compare some of the results obtained with previously published images, and discuss
their similarities and differences.

In the final section 5, we analyze roundoff errors involved in computing images of the set and the
degree to which the images presented are accurate under magnification.

1

2 THE MANDELBROT SET 2

2 The Mandelbrot Set

We first consider the definition of the Mandelbrot set and the primary way in which the set is usually
displayed using the ‘escape-time’ algorithm.

2.1 Definition of the Mandelbrot Set

Consider the function Pc of a complex variable z defined for a parameter c ∈ C by

Pc(z) = z2 + c

Starting with the initial value z0 = 0, a sequence of complex values 0, c, c2 + c, . . . can be defined by

z0 = 0

zn+1 = Pc(zn) = z2n + c (1)

We shall denote the nth element of the sequence generated using the complex parameter c by Pn
c .

It can be readily seen that the behavior of this sequence is dependent on the particular value chosen
for c, as the following examples demonstrate:

c = 0 : 0 → 0 → 0 → 0 → 0 → 0 . . .
c = −0.5 : 0 → −0.5 → −0.25 → −0.4375 → −0.3086 → −.4048 . . .
c = −1 : 0 → −1 → 0 → −1 → 0 → −1 . . .
c = 1 : 0 → 1 → 2 → 5 → 26 → 677 . . .

Depending on the value of c, the sequences shown above either converge (to a single point or periodic
cycle), or else diverge to infinity. In the first case, the sequence is bounded, while in the second case,
the sequence is unbounded. Denoting the Mandelbrot set by M , a formal definition is given by

M = {c ∈ C | Pn
c 6→ ∞}

The Mandelbrot set is therefore defined as the set of all values of the parameter c in the complex
plane C for which the sequence (1) remains bounded. From the examples above it can be seen that
the points 0, -1/2 and -1 are in the set, while the point 1 is not.

The following figures illustrate the two kinds of sequences, which shall be referred to as orbits.
The diagrams will be referred to as orbit diagrams, which plot successive points in an orbit as
points in the complex plane connected by straight lines. The first two figures show orbits which do
not diverge, and which therefore correspond to points c ∈ M . The orbit on the left converges to
a single point, while that on the right converges to a cycle of period 3, a sequence of three points
that repeats infinitely.

2 THE MANDELBROT SET 3

The figures below illustrate two orbits which do diverge, and which therefore correspond to parame-
ters c 6∈M . In both cases |Pn

c | > 2 for some positive integer n. The value of n at which this occurs
is shown in the upper left of each figure.

2.2 Geometry of the Mandelbrot Set

It is useful to give a brief description of the geometry of the set.

1. The large central component is the main cardioid, which contains the parameters c for which
Pn
c converges to a single point.

2. Tangent to the main cardioid are an infinite number of period bulbs, each one corresponding
to a set of parameters giving rise to orbits of the same period. The largest of these is shown to

2 THE MANDELBROT SET 4

the left of the main cardioid and contains parameters c which give rise to orbits that converge
to cycles of period 2. The next largest bulbs directly above and below the main cardioid
contain parameters c which give rise to orbits that converge to cycles of period 3.

3. Surrounding the set, although connected to it by thin structures that are in the set, are an
infinite number of satellites, smaller copies of the main body of the set.

The ratio between the period of the attracting cycle of the main cardioid and the tangent period
bulbs is reproduced between these period bulbs and the bulbs which are tangent to them in turn.
So, the bulbs tangent to the main period 2 bulb have periods that are multiples of 2, the bulbs
tangent to the main period 3 bulbs have periods that are multiple of 3, and this same pattern is
repeated for period bulbs of longer period.

The following diagram labels these components, which we shall refer to throughout this report. The
numbers indicate the period of the cycle that orbits converge to in the closest period bulb.

2 THE MANDELBROT SET 5

2.3 Displaying the Mandelbrot Set

The images of the Mandelbrot set shown above are constructed by dividing the area to be displayed
into pixels, taking the value c to be the center of the pixel, and applying the iteration formula (1).
The simplest way to display the set is by coloring points c ∈ C black if they are in the set and
white otherwise. A more sophisticated display method use different colors to indicate the number
of iterations n needed for |Pn

c | to exceed some threshhold, as described below for the “escape-time
algorithm”.

2.3.1 The Escape Time Algorithm

It can be shown that if the absolute value attained by a point zn in an orbit is ever larger than both
|c| and 2, then the sequence Pn

c will diverge to infinity. Suppose that both |zn| > 2 and |zn| > c.
Then |z| ≥ 2 + ε for some positive ε, and we therefore have:

|zn+1| = |z2n + c|
≥ |z2n| − |c|
≥ |z2n| − |z|
= |z|(|z| − 1)

≥ |z|(1 + ε)

Repeating this process yields |zn+k| ≥ |z|(1 + ε)k → ∞. The “escape time algorithm” described
below uses this test of divergence to color pixels according to how many iterations n are needed until
|zn| > 2.

Algorithm 1 Escape-Time Algorithm

Require: C ∈ C
C = grid of points in a region of the complex plane
Z = grid of zero complex values
Image = grid of zero integers
iteration = 0
loop
Z = Z2 + C
iteration = iteration + 1
Image[|Z| > 2] = iteration
display Image

end loop

The following images were created using the escape-time algorithm and different color maps.

2 THE MANDELBROT SET 6

We note that:

1. For points in the set, the threshhold |zn| > 2 is never reached. In the images of the Mandelbrot
set most commonly seen these points are usually colored black.

2. For points far from the set (and immediately for points outside the circle |z| = 2), this value
is reached in just a few iterations.

3. For points outside of but close to the set, the number of iterations needed until |zn| > 2
increases without bound as the distance from the set decreases.

2 THE MANDELBROT SET 7

2.4 Magnification of the Set

When an image of the Mandelbrot set is magnified, the magnified region gives rise to a new set of
points in the complex plane, corresponding to the centers of the pixels that the region is partitioned
into for display. The simplest way to magnify the set is to compute the color for each new pixel
using the escape-time algorithm. This however is computationally expensive, so ways to reduce this
are needed.

The central problem that arises in magnifying the Mandelbrot set is that the number of iterations
needed to diverge is (on average) greater for points which are closer to the set. When an area of the
complex plane is magnified, typically this involves magnifying a region close to the edge of the set
(as this constitutes the “interesting” part of the image).

This can be seen in the sequence of images of increasing magnification shown below. The images
on the left shows regions in the complex plane, magnified by a factor of approximately 25 fold each
time relative to image above. The histograms on the right shows the distribution of the number of
iterations needed to diverge for the points shown in the images on the left. The mean number of
iterations needed is also shown.

Width = 3.0

Width = 0.09

2 THE MANDELBROT SET 8

Width = 0.0046

Width = 0.0002

The following observations can be made:

1. The mean number of iterations needed is greater with increasing magnification, resulting in
longer times for the image to display.

2. The histograms are “right-shifted” with increasing magnification, as the minimum number of
iterations needed to display any point in the image increases. When displaying an image, this
results in an increasing delay before any part of the image is shown, as a greater number of
iterations are needed before the magnitude of any orbit becomes greater than 2.

The issue of magnifying the Mandelbrot set is only pursued further in this report in the context
of a discussion of roundoff error in section 5. It can however be noted that magnification can be
conceptualized as a form of interpolation between points for which the number of iterations needed
is already known. Speeding up the magnification of a region of the set using previously calculated
results would therefore require an analysis of how values calculated using the escape-time algorithm
could be interpolated to a new set of points.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 9

3 The Internal Structure of the Mandelbrot Set

The most frequently seen images of the Mandelbrot set show points in the set in black, while the
escape-time algorithm colors points in the sets complement. The focus of this report is on ways of
displaying the internal structure of the set, which has received much less attention.

The question naturally arises as to which kinds of information to display for points inside the set.
For points outside the set, the number of iterations needed to diverge, as displayed by the escape-
time algorithm, defines a function mapping points in the complex plane to integers, which can then
be displayed as colors. For points inside the set, a natural counterpart to this function would be
one that maps points in the set to the number of iterations needed to converge to a set tolerance,
either converging to a point or to a periodic cycle. Such a method is developed later in this report
and the results presented.

Examination of these results indicates that this approach loses much information of interest. From
the orbit diagrams shown earlier, it can be seen that one of the primary difference between points
in the set is found in the structure of the orbits that they give rise to. Orbits differ not only in the
period of the cycle to which they converge, but also in the rate of convergence and in the period
of the orbit as it converges to this cycle. It can also be seen visually that different orbits have
geometries that differ in interesting ways. An approach to the internal structure of the set that
focuses on the geometry of the orbits therefore has the potential to produce some interesting results.

The previous section showed several images of orbits, where successive points in an orbit were plotted
and connected by straight lines. It can be seen that orbits differ in their geometry, with orbits of
period greater than one in the shape of simple polygons both convex and concave, or in the shape of
star polygons. Orbits that converge to a point display similarly complex structure, with orbits that
look like simple convex and star polygons, decreasing in size with increasing number of iterations.

A fundamental issue in displaying the internal structure of the Mandelbrot set in two-dimensions
is to find ways to collapse the complex geometric shape of an orbit to a single real number. If
this can be done, then the number can be mapped to a color, and an image produced for the set
showing the color associated with each point. The possibility also exists of displaying two pieces of
information about a point in a single color, where color hue and luminescence are used to plot two
values independently.

The following sections describe seven methods developed for this report to display information about
the orbits. The first two methods display graphs pertaining to a single point or to a restricted set
of such points. The last five methods show images of the whole set, with each displayed point c
color-coded to show particular details of the associated orbit Pn

c . These seven methods are:

Orbit Magnitude Plot Plot the distance |Pn
c − c| against n for a single point c.

Feigenbaum Diagrams Plot the distances |Pn
c − c| between points in an orbit against |c| for a

restricted set of points c ∈ C once the orbit has converged to a periodic cycle.

Orbit Convergence Display for a region the number of iterations needed for the orbit to converge
to a periodic cycle to within a given tolerance.

Orbit Cycle Display for a region plane the period of the cycle that the orbit converges to.

Orbit Period Display for a region plane the index n for which |Pn
c − c| is a minimum.

Orbit Infimum Display for a region the minimum value of |Pn
c − c|.

Total Orbit Angle Display for a region the sum of the internal angles of the first period of the
orbit Pn

c .

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 10

3.1 Orbit Magnitude Plot

As a first step towards displaying the internal structure of the set, we developed a method to display
a plot of the distance |Pn

c − c| between successive points in an orbit Pn
c and the parameter c. These

distances are then plotted against the iteration number n.

The motivation for this method is to visualize the way in which orbits converge to periodic cycles.
It will be shown that this distance provides information about both the period of an orbit and the
rate of convergence to a periodic cycle. In the following sections methods for displaying images of
the internal structure of the Mandelbrot set based on these two parameters will be presented.

Algorithm 2 Orbit Magnitude Plot

Require: c ∈ C
z = 0
iterations = 30
distance[0] = 0
for i = 1 to iterations do
z = z2 + c
distance[i] = ‖z − c‖

end for
plot distance

The images and graphs in the following sections show the orbits and orbit magnitude plots for several
points c in the complex plane. The image on the right shows the orbit Pn

c . The graph on the left
shows the distance |Pn

c − c| plotted against n.

3.1.1 Stable Period 4 Orbit

The orbit shown below was generated for a point in the largest period 4 bulb tangent to the upper
right of the main cardioid. On the left, the orbit can be seen to converge to the shape of a convex
quadrilateral. On the right, the orbit magnitude plot shows a stable cycle of period 4. So, from the
orbit magnitude plot - a graph - we can find information about the shape of the orbit.

Orbit converges to convex four-sided polygon Stable period 4 attractor

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 11

3.1.2 Stable Period 5 Orbit

The next orbit shown below was generated for a point in the period 5 bulb tangent to the upper left
of the main cardioid. On the left, the orbit can be seen to converge to a five-pointed star polygon.
On the right, the orbit magnitude plot shows a stable cycle of period 5, corresponding to the shape
of the orbit.

Orbit converges to five-pointed star polygon Stable period 5 attractor

3.1.3 Decaying Period 3 Orbit

The orbit shown below was generated for a point inside the main cardioid, but close to the largest
upper period 3 bulb. The orbit on the left can be seen to be a “shrinking triangle” that converges
to a point. The orbit magnitude plot on the right shows this as a cycle of period 3 bounded by an
exponentially decaying envelope.

Orbit converges to a point Decaying period 3 attractor

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 12

3.1.4 Stable Period 6 Orbit

The orbit shown below was generated for a point in the largest secondary period bulb tangent to the
largest upper period 3 bulb. The orbit on the left can be seen to be a “double triangle” attractor of
period 6. The orbit magnitude plot on the right shows this as a cycle of period 6..

Orbit converges to period 6 attractor Stable period 6 attractor

In the next section we turn to ways in which information about orbits can be displayed for sets of
points, rather than just for single points.

3.2 Feigenbaum Diagrams

The one-dimensional discrete logistic map is generated by the recurrence relation xn+1 = bxn(1−xn).
As with the Mandelbrot set, the behavior of sequences generated by this recurrence relation depend
on a single parameter, in this case the real parameter b. For different values of b, the orbits generated
may converge to a single point, converge to a periodic attractor, or may wander chaotically.

A frequently used method to illustrate the dependence of the orbits on the parameter b is the
“Feigenbaum diagram” or “bifurcation diagram”. These diagrams show the points in the sequence
{xn, xn+1, xn+2, . . .} plotted against the parameter b once the orbit has converged to a stable cycle.
An example of such a diagram is shown below. This diagram clearly shows that, at certain critical
values of b, the behavior of the sequence changes as the period of the orbit doubles.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 13

As a further step towards displaying the interior of the Mandelbrot set, we developed a method for
producing similar Feigenbaum diagrams for points in the interior of the set. Given a point z ∈ C, a
set of equally-spaced points on the straight line between the origin and z is generated. For each of
these points c, the orbit P 1000

c is generated, after which it is assumed that convergence to a periodic
cycle has occurred. The distances |Pn

c − c| for the next 1000 points on the orbit are then plotted
against |c|.

Algorithm 3 Feigenbaum Diagram Algorithm

Require: w ∈ C
points = set of equally spaced points from origin to w
for c in points do
z = 0
for i = 1 to 1000 do
z = z2 + c

end for
for i = 1 to 1000 do
z = z2 + c
plot ‖z − c‖ against ‖c‖

end for
end for

Some representative examples of the diagrams produced by this method are shown below. The image
on the left shows the Mandelbrot set and a radial line from the origin to a point in the complex
plane. The diagram on the right shows the Feigenbaum diagram produced for the points on this
line.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 14

3.2.1 Feigenbaum Diagram for Period 3 Bulb

The Feigenbaum diagram below was produced for a line between the origin and a point in the largest
upper period 3 bulb. As the line passes from the main cardioid into the period 3 bulb, it can be
seen from the diagram on the right that a “trifurcation” occurs as the orbit changes from one that
converges to a single point into one that converges to a cycle of period 3.

Radial line into bulb of period 3 orbits Diagram showing trifurcation inside period 3 bulb

3.2.2 Feigenbaum Diagram for Period 5 Bulb

The Feigenbaum diagram below was produced for a line between the origin and a point in the
largest period 5 bulb tangent to the main cardioid on the upper left. As the line passes from the
main cardioid into the period 5 bulb, it can be seen that the corresponding line on the Feigenbaum
diagram splits into 5. This occurs when the orbit changes from one that converges to a single point
into one that converges to a cycle of period 5.

Radial line into bulb of period 5 orbits Feigenbaum diagram showing split into 5

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 15

3.2.3 Feigenbaum Diagram for Period 2 Bulb, Doubled

The Feigenbaum diagram below was produced for a line between the origin and a point in the
secondary period 2 bulb tangent to the large period 2 bulb to the left of the main cardioid. As the
line passes from the main cardioid into the period 2 bulb, it can be seen that a “bifurcation” occurs
as the orbit changes from one that converges to a single point into one that converges to a cycle of
period 2. As the line then passes into the secondary period 2 bulb, a further bifurcation occurs as
the orbit changes to one that converges to a cycle of period 4.

Radial line into period 2 bulb Feigenbaum diagram

3.3 The “Capture-Time” Algorithm: Iterations needed to Converge

The “capture-time algorithm” is a natural counterpart for points inside the set to the “escape-time
algorithm”. Given some desired tolerance ε, the orbit Pn

c is generated for each point c ∈ C until
some point in the orbit is closer than ε to some previous point in the orbit. The number of iterations
needed for this to occur is mapped to a color and displayed at the pixel corresponding to c.

Algorithm 4 Capture-Time Algorithm

Require: C ∈ C
C = grid of points in a region of the complex plane
Z = C
Image = grid of zero integers
Orbits = [Z]
iteration = 1
loop
Z = Z2 + C
Distance = |Z − C|
iteration = iteration + 1
Image[Distance < Closest] = iteration
Closest = minimum(Distance, Closest)
display Image

end loop

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 16

3.3.1 Capture-time Map

An image generated using this algorithm is given below.

The following observations can be made:

1. The number of iterations needed to converge is least at the center of the main cardioid and
increases towards the edge.

2. The same pattern is seen in the period bulbs tangent to the main cardioid, where the orbits
at the center of each bulb converge to a periodic cycle the fastest.

The capture-time algorithm does not however show any features relating to the geometry of the
orbits, so better methods to do so are developed in the following sections.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 17

3.4 The “Orbit Cycle” Algorithm: Displaying the Period of the Cycles

The capture-time algorithm can be modified to display the period of the cycle to which orbits
converge, instead of the number of iterations needed to converge.

3.4.1 Orbit Cycle Map

An image generated using the “orbit cycle” algorithm is given below, labelled with the period of the
cycles to which orbits converge.

It can be seen that the orbit cycle algorithm partitions the set into distinct components, as described
in section 2.3 on the geometry of the Mandelbrot set.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 18

3.5 The “Orbit Index” Algorithm: Displaying the Period of the Orbit

It was seen from the orbit magnitude plots presented in section 3.1 that orbits have a characteristic
period associated with them that is different from the period of the cycle to which they converge.
As shown previously, the index of the closest point in the orbit Pn

c to the point c provides a way to
measure this period.

The orbit index is defined here as one less than the index of the point of minimum distance in the
orbit Pn

c from c. The diagram below shows how this index can be interpreted graphically. It can
be seen that in this case the orbit most closely resembles a triangle, and that the orbit index is
calculated to be three. Similarly, if the shape of the orbit approximates a polygon of a given number
of external points, either a simple polygon or a star polygon, then the orbit index will represent
the geometry of the shape by a single number. In a following section we will also present a more
sophisticated way to capture greater detail about the geometry of an orbit - the “total internal
angle” algorithm.

�
�
�
�
�
�
�
�
�
�
�
�
�
��@

@
@
@
@
@
@
@
@�
�
�
�
�
�
��@

@
@
@

origin = z0

z1 = cz2

z3

z4z5

orbit index = 4 - 1 = 3
@

@
@
@I

Algorithm 5 Orbit Index Algorithm

Require: C ∈ C
C = grid of points in a region of the complex plane
Z = C
Image = grid of zero integers
Closest = |C|
iteration = 1
loop
Z = Z2 + C
Distance = |Z − C|
iteration = iteration + 1
Image[Distance < Closest] = iteration
Closest = minimum(Distance, Closest)
display Image

end loop

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 19

3.5.1 Partitioning into Regions of Similar Orbits

An image generated using the orbit index algorithm is given below.

It can be seen immediately that there is an interesting and detailed structure. We can make the
following observations:

1. The interior of the Mandelbrot set has been partitioned into distinct regions.

2. The regions span the main cardioid and the period bulbs, including both orbits that converge
to a periodic cycle in a bulb with decaying orbits of the same period in the main cardioid.

3. The regions become smaller and more numerous closer to the edge of the main cardioid.

4. The period bulbs show an internal structure similar to that of the main cardioid.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 20

3.5.2 Labelling the Regions

To show this internal structure in greater detail, the following image was produced using a different
color map and with the regions labelled with their corresponding indexes.

The following observations can now be made:

1. The period of the orbits is greater closer to the edge of the main cardioid.

2. A relationship exists between any two regions and the new region that arises between them
closer to the edge of the set. This is referred to as a “Fibonacci” relationship, so called because
the period of the new region is the sum of those for the two regions it borders.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 21

3. The period bulbs tangent to the main cardioid are partitioned into similar regions as the main
cardioid, but the period of each region is multiplied by the period associated with the bulb.
For example, where the main cardioid has regions of period 1, 2, 3, . . ., the main period 2 bulb
has regions of period 2, 4, 6, . . ., the period 3 bulbs have regions of period 3, 6, 9, . . . and so on.

3.5.3 Fibonacci Relationships between Regions

The following two images show the Fibonacci relationships in more detail for the upper left and
upper right regions of the main cardioid.

Due to the Fibonacci relationships, it can be seen that bordering each region there exists a sequence
of smaller regions whose orbit periods differ by the period of the main region they border. For
example, bordering the region of period 2, there exists (going counter-clockwise) a sequence of
regions of period 5, 7, 9, 11, 13, Similarly, bordering the region of period 3, there exists (going
clockwise) a sequence of regions of period 5, 8, 11, 14,

It can also be seen that each region in the main cardioid is associated with one period bulb of
the same period, and spans the boundary between the two. We therefore have the following key
observation:

The structure of the regions in the orbit index map mirrors the structure of the period bulbs.

Hence, where a Fibonacci relationship exists between regions, an identical Fibonacciship relation
exists between the period of the orbits in their associated period bulbs.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 22

3.5.4 Orbit Index Structures in the Satellites

Magnification of the satellite “mini-Mandelbrot sets” surrounding the main body of the Mandelbrot
set shows that the structures seen in the main body of the set are duplicated in these satellites on a
smaller scale. It can also be seen that, associated with each satellite, there is a characteristic number
multiplying each period relative to the corresponding period in the main body of the set. This is
demonstrated in the following images.

The image on the left above shows the multiplier 4 associated with the satellite. Hence, the index
associated with each region is 4 times those seen in the corresponding regions in the main body of
the set. Similarly for the image on the right, there is a characteristic number 7 by which the indexes
are multiplied.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 23

3.6 The “Orbit Infimum” Algorithm: Estimating Convergence

The orbit index algorithm described in the previous section displayed the index of the closest point
in the orbit Pn

c to the point c. Following on from this algorithm, we present a further algorithm
which displays instead the minimum distance |Pn

c − c| directly. Since both the period and the decay
rate of an orbit are of importance, this is a natural complement to the previous algorithm which
showed the period of an orbit. It will be seen that the images produced show how close an orbit is
to being a cycle of a fixed integral period.

The diagram below shows the orbit infimum, formally defined as

inf{|Pn
c − c| | n > 1}

�
�
�
�
�
�
�
�
�
�
�
�
�
��@

@
@
@
@
@
@
@
@�
�
�
�
�
�
��@

@
@
@

origin

c

orbit infimum
@

@
@
@I

Algorithm 6 Orbit Infimum Algorithm

Require: C ∈ C
C = grid of points in a region of the complex plane
Z = C
Image = grid of zero integers
Closest = |C|
loop
Z = Z2 + C
Closest = minimum(|Z - C|, Closest)
Image = Color[Closest]
display Image

end loop

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 24

3.6.1 Orbit Infimum Map

An image generated using the orbit infimum algorithm is given below.

Comparing the image above to those produced by the orbit index algorithm, it can be seen that
the lines seen in the image above correspond to boundaries between regions. This is described more
fully in the following section.

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 25

3.6.2 The Orbit Infimum and the Boundaries between Orbit Index Regions

The following images compare the orbit index on the left with the orbit infimum on the right.

It can be seen that the lines in the orbit infimum image correspond to boundaries in the orbit index
image. The reason for this becomes clear if we examine what happens to an orbit when a parameter
c crosses the boundary between regions. If |c| is held constant while arg c is increased, then since
multiplication in the complex plane corresponds to the addition of angles, as arg c increases the
internal angles of the orbit will decrease. Visually, it can be seen that the orbit “closes up” when
this occurs. This is shown in the following set of images.

Period 3 orbit Between period 3 and 4 orbit Period 4 orbit

So, the boundaries in the orbit index map are regions where the orbit infimum is at a local maximum
with respect to arg c, as one point in the orbit moves further from c, but the next point in the orbit
has not yet come to its closest approach. This manifests as the darker lines between regions in the
orbit infimum map. If the orbit infimum were plotted as a surface, this would result in ridges of

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 26

local maxima dividing the regions of the orbit index map.

3.6.3 The Interaction between |c| and arg c in the Orbit Index Map

The partitioning of the Mandelbrot set into the regions seen in the orbit index map can also be
understood as arising from the interaction between changes in the orbit as arg c increases (which
decreases the internal angles of the orbit) and changes in the orbit as |c| increases (which decreases
the rate of convergence to a periodic cycle, as seen in the capture-time map).

This can be seen in the orbit index images below, which show the change in an orbit as arg c is held
approximately constant while |c| is increased along the border between the two largest regions in the
main cardioid of period 3 and 4. When c is closer to the origin, |c| is less and the rate of convergence
to a single point is greater. As a result, points in the orbit Pn

c for which n is higher converge faster
to the fixed point. This is seen in the image below on the left, where the fourth and fifth points P 4

c

and P 5
c are closer to c than the eights point P 8

c .

As |c| is increased, the rate of convergence decreases, which alters the relative distances Pn
c . In the

center image below, the points P 4
c and P 5

c are now equidistant from c with the point P 8
c . In the

image below on the right, as |c| is increased further, the point P 8
c has moved closer to c than either

P 4
c or P 5

c , and the orbit has changed to one of period 7.

Between period 3 and 4 orbit Between period 3, 4 and 7 orbit Period 7 orbit

3.7 The “Total Internal Angle” Algorithm

Although the orbit index algorithm does show the period of the orbit, the partitioning of the complex
plane into distinct regions corresponding to orbits of different periods has lost some of the information
characterizing the orbit. In particular, the closeness of an orbit to a periodic attractor of the same
period has been lost.

To recapture some of this information, we developed the “total internal angle” algorithm. The
motivation for this algorithm comes from the discussion in the previous section of the way in which
the geometry of the orbit changes with arg c while |c| is held constant. It was shown that, as arg c
increases, the orbit “closes up” as the internal angles of the orbit decrease. Eventually this results
in the orbit index changing as a different point in the orbit becomes closer to c than the previous
closest point in the orbit.

We would like a way to display these changes in the shape of an orbit within a region. The total
internal angle algorithm was developed as a way to do this. By summing the internal angles in the
first period of an orbit, we have a way to capture the changing shape of an orbit as the internal

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 27

angles change. Mapping this angle to a color then provides a way to display the changing shapes of
orbits within a given region.

The diagram below shows the total internal angle for an orbit, defined as the sum of the internal
angles up to the point of minimum distance in the orbit from c. It can be seen in this example that
the orbit most closely resembles a triangle, and that the sum of the internal angles will accordingly
be approximately 180◦.

�
�
�
�
�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@
@�
�
�
�
�
�
��@

@
@
@

origin

c

θ1θ2

θ3

total internal angle = θ1 + θ2 + θ3 ≈ 180◦

Algorithm 7 Total Internal Angle Algorithm

Require: C ∈ C
C = grid of points in a region of the complex plane
Z = C
Previous = grid of complex zeros
Line = Previous - Z
Previous = Z
Angles = grid of float zeros
Image = grid of integer zeros
Closest = |C|
loop
Z = Z2 + C
Angles = Angles + | arg Line/(Z - Previous)|
Closer = |Z − C| < Closest
Image[Closer] = Angles[Closer]
Closest = minimum(|Z − C|, Closest)
display Image

end loop

3 THE INTERNAL STRUCTURE OF THE MANDELBROT SET 28

3.7.1 The Total Internal Angle Map

The following image was generated using this algorithm.

It can be seen that this algorithm does show more detail of the internal structure of regions of the
orbit index map, while still preserving the boundaries of the map.

4 COMPARISON OF RESULTS 29

4 Comparison of Results

The images shown in this report are not the first ones that have been presented of the internal
structure of the Mandelbrot set. For example, the book “The Beauty of Fractals” [2] contains the
following figures:

Beauty of Fractals, Figure 33, page 60 Beauty of Fractals, Figure 34, page 61

These image on the left was produced using

α(c) = inf{|P k
c (0)| | k = 1, 2, . . .}

while the image on the right was produced using

index(c) = k providedα(c) = |P k
c (0)

The image on the left therefore displays the minimum distance from the origin for any point in the
orbit P k

c (0), while the images on the right shows the value of the index k for which this is so.

It can be seen that the image on the left is similar to that produced in this report using the orbit
infimum algorithm, while the image on the right is similar to that produced using the orbit index
algorithm. The following analysis shows why this is the case. If we consider successive points in an
orbit Pn

c , then we have:

zn+1 = z2n + c

⇒ zn+1 − c = z2n

⇒ |zn+1 − c| = |zn|2

⇒ inf{|zn+1 − c|} = inf{|zn|2}

5 ERRORS IN COMPUTING THE INTERNAL MAPS 30

So, the relationship is this: the index of the point in the orbit which is closest to c is one greater
than the index of the point in the orbit that is closest to the origin. This explains the similarity
between the two orbit infimum and orbit index images developed for this report and those shown
in “The Beauty of Fractals”. Although the orbit infimum images were developed with the goal of
displaying the underlying period of orbits corresponding to different parameters c, these particular
algorithms are therefore similar to those that have been produced before.

5 Errors in Computing the Internal Maps

Before we finish this report, we consider the roundoff errors involved in using floating-point arith-
metic.

5.1 Roundoff Error in the Parameter c

The effects of roundoff error in the parameter c become apparent when the set is repeatedly mag-
nified. As the width of the region being displayed is reduced, the distance between points in the
complex plane is corresponding reduced. Beyond a certain magnification depth, neighboring pixels
on the screen correspond to points in the complex plane which are separated by a relative distance
less than machine epsilon or εmach, where 1 + εmach is the smallest number greater than 1 that can
be represented in floating-point format. In the IEEE 754 standard for double precision arithmetic,
machine epsilon is 2−52, or approximately 2.22 × 10−16. For both the real and imaginary parts x
and y of the complex parameter c, we therefore have from [3] (where fl(x) denotes the floating point
representation of a real number x):

|fl(x)− x|
|x|

≤ 1

2
εmach ≈ 1.11× 10−16 and

|fl(y)− y|
|y|

≤ 1

2
εmach ≈ 1.11× 10−16

For sufficiently small regions, the roundoff that occurs when c is represented by a pair of finite-
precision floating-point numbers results in neighboring pixels on the screen being represented by the
same complex floating-point number. The escape-time algorithm will then take the same number of
iterations to diverge for both points, so they will be displayed in the same color. The visual effect
is that the image loses resolution and becomes segmented into blocks of the same color.

5.1.1 Roundoff Error in the Divergence Map

The effect of roundoff error on the divergence map created using the escape-time algorithm can
be seen graphically in the following two images. The image on the left shows a region of the
complex plane that is 4.3 ∗ 10−14 wide. With an 800 × 800 screen, the pixel separation in this
case is approximately 5.4 ∗ 10−17, which is less than εmach. The image on the right shows a region
magnified from the center of the image on the left that is 5.9 ∗ 10−15 wide, with a pixel separation
of approximately 7.4 ∗ 10−18. The loss of resolution and the division of the image into solid blocks
of color can be clearly seen.

5 ERRORS IN COMPUTING THE INTERNAL MAPS 31

Width = 4.3 ∗ 10−14 Width = 5.9 ∗ 10−15

The fact that roundoff error is relative rather than absolute can be seen in the following images.
The image on the left is from a region of the complex plane close to the real axis. The image on
the right is from a region close to the imaginary axis. Since the absolute values of the real and
imaginary parts of c are significantly different in both of these regions, the effect of roundoff error
in these cases is greater along one axis than another. This results in the elongated blocks of color
seen in the two images.

Divergence map at real axis, width = 1.6 ∗ 10−15 Divergence map at imaginary axis, width = 1.5 ∗ 10−15

6 CONCLUSION 32

5.1.2 Roundoff Error in the Orbit Index Maps

Roundoff error in the parameter c will also be an issue when any of the internal maps are magnified.
We show below two images from the orbit index map for the main cardioid. The image on the left
is from the boundary where regions of period 2, 3 and 5 meet. The image on the right is close to to
the edge of the main cardioid where regions of period 61, 112 and 173 meet.

Regions 2, 3, and 5, width = 8.6 ∗ 10−15 Regions 61, 112, and 173, width = 9.6 ∗ 10−16

It is in some ways surprising how good these images are at this degree of magnification. Despite the
relative separation of neighboring pixels being less than machine epsilon, the error seen is roundoff
error in the parameter c, rather than accumulated error due to the application of an iterative
algorithm.

6 Conclusion

This report described the successful implementation of several different methods for displaying the
internal structure of the Mandelbrot set and similarities to existing methods were discussed. In one
case, the “total internal angle” method, the images presented are (as far as the author is aware) new
images of the internal structure of the set.

Some of the errors involved in displaying the set were also discussed. It was seen that roundoff
error in the parameter c prevents magnification of the set beyond a certain point, where the relative
separation of pixels representing values in the complex plane approaches machine epsilon.

References

[1] Benoit Mandelbrot The Fractal Geometry of Nature 1983: W. H. Freeman and Company

[2] H.-O. Peitgen and P. H. Richter The Beauty of Fractals 1986: Springer-Verlag

[3] Timothy Sauer Numerical Analysis, Second Edition 2012: Pearson

A THE “MANDELBROT EXPLORER” PROGRAM 33

A The “Mandelbrot Explorer” Program

A program was written in Python specifically for this project - the “Mandelbrot Explorer”. This
program shows a square region of the complex plane in which different maps of the Mandelbrot set
can be displayed. The functionality and use of this program is described below.

A.1 The Main Screen

All interaction with “Mandelbrot Explorer” is done through a single main screen, keyboard com-
mands and mouse interaction with the main screen. This screen is shown below.

A THE “MANDELBROT EXPLORER” PROGRAM 34

The user interface has the following elements:

Main Screen This displays one of several different types of image of the Mandelbrot set, described
below under “Maps”.

Title Bar This shows the region in the complex plane that is being displayed, as well as the width
of the region being displayed.

Iteration Number The number in the top left-hand corner displays the current iteration for the
map being displayed.

Point number The number in the top right-hand corner displays information associated with the
pixel that the cursor is over. Information about any point can therefore be obtained by moving
the cursor over the point. The interpretation of this number depends on the type of map being
displayed as follows:

Divergence map Number of iterations needed to diverge.

Convergence map Number of iterations needed to converge to a given tolerance.

Cycle map Period of periodic cycle to which orbit converges.

Index map Period of orbit calculated using orbit index.

Infimum map Distance of closest point in orbit to c.

Angle map Sum of internal angles of first periodic orbit (in degrees).

A.2 Program Modes

Mandelbrot Explorer can be run in the following modes.

Magnify Selecting a section of the screen using the mouse results in the selected area being mag-
nified and displayed. The number in the top left corner of the screen shows the number of
iterations used for the current image.

Orbit Left mouse clicking on the screen results in the orbit Pn
c being displayed, where c is the

complex number corresponding to the point on the screen that was clicked. The number in
the top left corner of the screen shows the number of iterations taken for the orbit shown to
diverge i.e. the value n such that |Pn

c | > 2.

Cycle Color cycles (palette shifts) using the currently selected palette.

A.3 Maps

Six different maps of the Mandelbrot set can be displayed.

Divergence Map Colors pixels by the number of iterations needed to diverge according to the
escape-time algorithm.

Convergence Map Colors pixels by the number of iterations needed for points in the Mandelbrot
set to converge to an orbit to a given tolerance.

Cycle Map Colors pixels by the period of the periodic cycle to which the orbit converges.

A THE “MANDELBROT EXPLORER” PROGRAM 35

Period Map Colors pixels by the period of the orbit magnitude plot.

Infimum Map Colors pixels by the closest distance to the parameter c attained by any point in
an orbit.

Angle Map Colors pixels by the sum of the internal angles of the first period in the orbit magnitude
plot.

A.4 Data Analysis

The following types of analysis can be performed.

Distribution Produces a histogram of the number of iterations needed to diverge for the pixels in
the current image.

Feigenbaum Diagram Produces a Feigenbaum diagram for points from the origin to where the
mouse is clicked.

Orbit Plot Produces an orbit magnitude plot for the point where the mouse is clicked.

A.5 Keyboard Commands

The following keyboard commands are available.

a Switches the map to show the orbit angle.

c Toggles color cycling for the current palette Off - Forward - Backward.

d Switches the map to show the orbit divergence.

f Switch to Feigenbaum mode. Left mouse click then produces a Feigenbaum diagram for the radial
line selected.

g Cycles grid type None - Cartesian - Polar

h Switches the map to show orbit convergence.

i Switches the map to show the orbit infimum.

m Switch to magnify mode.

n Toggle image normalization on and off.

o Switch to orbit mode. Left mouse click then produces an orbit plot for the radial line selected.

p Switches the map to show the orbit period.

r Restarts the program at the initial screen in magnify mode.

t Switches the map to show the orbit cycle.

↑ Halve the quantization level on color palettes. Halves the difference needed to show two pixels as
a different color.

B CONVENTIONS USED FOR ALGORITHM DESCRIPTIONS 36

↓ Double the quantization level on color palettes. Doubles the difference needed to show two pixels
as a different color.

SPACE Pauses/unpauses currently active mode.

0 - 9 Select one of ten available palettes, zero being the default palette.

B Conventions used for Algorithm Descriptions

The following conventions are used for the algorithm descriptions in this report:

1. Variable names beginning with lower case letters denote single variables.

2. Variable names beginning with upper case letters denote arrays.

3. Python/Numpy indexing conventions are used for array indexing.

Note that the implementation of these algorithms in the Mandelbrot Explorer involves additional
steps for efficiency. At each step, the test for divergence is applied and points that have diverged are
removed from further computations. This ensures that we do not perform repeated (and unnecessary)
computations for points not in the set. Depending on the particular algorithm, points that have
already been classified (by capture-time, orbit index etc) are also removed from further computations.

These steps have been omitted from this report to simplify the descriptions. The code listing included
with this report provides full details of the implementation.

C Python Implementation

C.1 Packages Used

Mandelbrot Explorer was written using the following Python packages:

Numpy Supporting fast array processing.

Pygame Providing event handling and animation.

Pylab Data analysis and display.

C PYTHON IMPLEMENTATION 37

C.2 Python Code

The Python code written for the Mandelbrot Explorer program created for this report is listed
below.

Math 537, Introduction to Numerical Analysis 1, Fall 2013

Final Project

File created November 1st, 2013

#--

import pygame

import numpy

from pygame.locals import *

from sys import exit

from random import randint

from numpy import *

from pylab import hist, plot, show, xlabel, ylabel, title

import time

HEIGHT = 800

SCREEN_SIZE = (HEIGHT, HEIGHT)

ORBIT_MODE = 1

MAGNIFY_MODE = 2

CYCLE_MODE = 3

FEIGENBAUM_MODE = 4

DISTANCE_MODE = 5

DIVERGENCE_MAP = 1

HANKEL_MAP = 2

CONVERGENCE_MAP = 3

PERIOD_MAP = 4

ANGLE_MAP = 5

CYCLE_MAP = 6

NO_GRID = 0

CARTESIAN_GRID = 1

POLAR_GRID = 2

EPSILON = 10**(-6)

NUMBER_KEYS = (K_0, K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8, K_9)

#--

#

Color maps

#

#--

def make_palette(colors, nodes):

’’’Interpolates colors between given nodes to create a color palette’’’

palette = []

previous = 0

for index, n in enumerate(nodes):

r1, g1, b1 = colors[index]

C PYTHON IMPLEMENTATION 38

r2, g2, b2 = colors[index + 1]

rdiff = r2 - r1

gdiff = g2 - g1

bdiff = b2 - b1

gap = n - previous

for i in range(gap + 1):

r = int(r1 + i*rdiff/float(gap))

g = int(g1 + i*gdiff/float(gap))

b = int(b1 + i*bdiff/float(gap))

palette += [(r, g, b)]

previous = n

return palette

def make_palette_cycle(initial, colors):

’’’Create a color palette by cycling given colors, one per level’’’

ncolors = len(colors)

palette = [initial]

for i in range(1, 256):

color = colors[i%ncolors]

palette += [color]

return palette

blackwhite = make_palette([(0,0,0),

(255, 255, 255),

(255, 255, 255)],

[1, 255])

heatmap = make_palette([(0, 0, 0),

(0,0,160), # Dark blue

(0, 255, 255), # Light blue

(128, 255, 128), # Light green

(255, 255, 0), # Yellow

(255, 128, 64), #Light orange

(255, 128, 0)], # Orange

[2, 16, 32, 64, 128, 255])

jewel = make_palette([(0, 0, 0),

(0, 0, 128),

(128, 0, 128),

(221, 155, 34),

(0, 64, 0),

(0, 0, 255),

(0, 0, 128),

(0, 64, 0),

(221, 155, 34),

(128, 0, 128),

(0, 0, 255)],

[2, 4, 6, 8, 12, 16, 32, 64, 128, 255])

redgreen = make_palette([(0, 0, 0),

(0, 255, 0),

(255, 255, 0),

(255, 0, 0)],

C PYTHON IMPLEMENTATION 39

[204, 210, 255])

blackyellow = make_palette([(0, 0, 0),

(0, 0, 0),

(255,255,0),

(0, 0, 0)],

[10, 64, 255])

redpurple = make_palette([(0, 0, 0),

(240, 160, 20),

(231, 55, 24),

(78,47,170),

(22, 9, 151),

(240, 160, 20),

(231, 55, 24),

(78,47,170),

(22, 9, 151),

(255, 0, 0)],

[1, 2, 4, 8, 16, 32, 64, 128, 255])

indi = make_palette([(0, 0, 255),

(27, 198, 254),

(145, 102, 255),

(195, 23, 255),

(71, 20, 205)],

[64, 128, 192, 255])

indi2 = make_palette([(0, 0, 0),

(55, 16, 243),

(255, 0, 77),

(196, 0, 166),

(0, 255, 147),

(0, 128, 255)],

[2, 32, 64, 128, 255])

rainbow = make_palette([(0, 0, 0),

(0, 0, 255), # Blue

(0, 255, 0), # Green

(255, 255, 0), # Yellow

(255, 128, 0), # Orange

(255, 0, 0), # Red

(128, 0, 255), # Purple

(0, 0, 255)], # Blue

[1, 43, 85, 127, 170, 213, 255])

ocean = make_palette_cycle((0, 0, 0),

[(30, 144, 255),

(0, 128, 128),

(0, 100, 0),

(50, 205, 50),

(0, 255, 127),

(64, 100, 205),

(0, 191, 255),

(150, 80, 224),

(148, 0, 211),

(199, 21, 133),

C PYTHON IMPLEMENTATION 40

(138, 43, 226),

(0, 255, 127),

(0, 206, 209)])

#--

#

Escape-time algorithm

#

#--

def mandel(n, m, itermax, xmin, xmax, ymin, ymax):

ix, iy = mgrid[0:n, 0:m]

x = linspace(xmin, xmax, n)[ix]

y = linspace(ymin, ymax, m)[iy]

c = x+complex(0,1)*y

del x, y

img = zeros(c.shape, dtype=int)

ix.shape = n*m

iy.shape = n*m

c.shape = n*m

z = copy(c)

for i in xrange(itermax):

If all points have diverged

if not len(z): break

z(n + 1) = z(n)^2 + c

multiply(z, z, z)

add(z, c, z)

Check which points have diverged

rem = abs(z)>2.0

Save the iterations needed for the points which just diverged

img[ix[rem], iy[rem]] = i+1

rem is now an array showing the remaining points

rem = -rem

z becomes any points which have not yet diverged

z = z[rem]

ix, iy = ix[rem], iy[rem]

c = c[rem]

return img

#--

#

Class to hold all the data

#

#--

class Mandelbrot():

def __init__(self):

self.mode = MAGNIFY_MODE

self.map = DIVERGENCE_MAP

C PYTHON IMPLEMENTATION 41

self.cycle = True

self.paused = False

Bounding rectangle for the set

self.xmin = -2.

self.xmax = 1.

self.ymin = -1.5

self.ymax = 1.5

self.width = 800

self.height = 800

Display coordinates for iteration number and image cursor

self.text_x = 30

self.text_y = 20

self.cursor_x = HEIGHT - 70

self.cursor_y = 20

Magnification rectangle

self.startx = 0

self.starty = 0

self.endx = 0

self.endy = 0

self.magnify = False

Iterations

self.itermax = 10000

self.iter = 0

Orbits

self.orbit = []

self.zorbit = []

self.zc = 0

Colors

self.palettes = [blackwhite, heatmap, jewel, rainbow,

blackyellow, redpurple, indi, indi2, ocean]

self.palette_index = 0

self.palette = heatmap

self.color = [0, 0, 128]

self.word_color = [255, 255, 0]

self.rect_color = [255, 255, 0]

self.line_color = [255, 255, 0]

self.grid_color = [127, 127, 127]

Display options

self.levels = 256

self.normalize = False

self.grid = NO_GRID

self.origin = ((HEIGHT * 2)/3, HEIGHT/2)

self.current_pos = (0, 0)

C PYTHON IMPLEMENTATION 42

Fonts

self.word_font = pygame.font.SysFont("courant", 16, True)

self.button_font = pygame.font.SysFont("courant", 28, True)

image stores the current image

self.initialize_image()

pygame.surfarray.use_arraytype(’numpy’)

def add_palette(self, palette):

self.palettes = [palette] + self.palettes

self.palette = palette

def initialize_area(self):

pygame.display.set_caption("Mandelbrot Explorer by Adam Cunningham")

self.xmin = -2.

self.xmax = 1.

self.ymin = -1.5

self.ymax = 1.5

#--

Magnify image functions

#--

def initialize_image(self):

self.iter = 0

n = self.width

m = self.width

ix, iy = mgrid[0:n, 0:m]

x = linspace(self.xmin, self.xmax, self.width)[ix]

Array image is stored upside down for correct display

y = linspace(self.ymax, self.ymin, m)[iy]

c holds the complex plane - the parameter space

c = x+complex(0,1)*y

del x, y

img holds the number of iterations needed for divergence

img = zeros(c.shape, dtype=int)

ix.shape = n*m

iy.shape = n*m

c.shape = n*m

self.ix = ix

self.iy = iy

self.c = c

z holds the results of the latest iteration

self.z = copy(c)

Initialize the internal map - the first closest point is c itself

self.closest = abs(copy(c))

self.previous = zeros_like(c)

self.saved = [self.previous]

C PYTHON IMPLEMENTATION 43

self.angles = zeros(c.shape, dtype=float)

self.img = img

#--

Functions for updating the image using different maps

#--

def update(self):

’’’ Perform one iteration of the currently active mode’’’

if self.paused == True:

return

elif self.mode == MAGNIFY_MODE:

if self.map == DIVERGENCE_MAP:

self.update_divergence()

elif self.map == HANKEL_MAP:

self.update_hankel()

elif self.map == CONVERGENCE_MAP:

self.update_internal()

elif self.map == PERIOD_MAP:

self.update_period()

elif self.map == ANGLE_MAP:

self.update_angle()

elif self.map == CYCLE_MAP:

self.update_time()

elif self.mode == ORBIT_MODE:

self.update_orbit()

elif self.mode == CYCLE_MODE:

self.update_cycle()

def update_divergence(self):

’’’Updates the divergence map by one iteration’’’

z = self.z

c = self.c

i = self.iter

img = self.img

ix = self.ix

iy = self.iy

Update z to the next point in the orbit

multiply(z, z, z)

add(z, c, z)

Check which points have diverged

rem = abs(z)>2.0

Save the iterations needed for the points which just diverged

img[ix[rem], iy[rem]] = i+1

rem is now an array showing the remaining points

rem = -rem

z becomes any points which have not yet diverged

self.z = z[rem]

self.ix, self.iy = ix[rem], iy[rem]

self.c = c[rem]

C PYTHON IMPLEMENTATION 44

self.iter += 1

self.img = img

def update_convergence(self):

’’’Updates the convergence map by one iteration’’’

z = self.z

c = self.c

i = self.iter

img = self.img

ix = self.ix

iy = self.iy

closest = self.closest

multiply(z, z, z)

add(z, c, z)

Find the distance of the latest point in orbit from c

distance = abs(c - z)

closer = distance < closest

If latest point in orbit is closer than previous, update image

img[ix[closer], iy[closer]] = i + 1

Save the new minimum distance

minimum(distance, closest, closest)

Check which points have diverged

rem = abs(z)>2.0

Points which just diverged get set to zero in the image

img[ix[rem], iy[rem]] = 0

rem is now an array showing the remaining points

rem = -rem

z becomes any points which have not yet diverged

self.z = z[rem]

self.ix, self.iy = ix[rem], iy[rem]

self.c = c[rem]

self.closest = closest[rem]

self.iter += 1

self.img = img

def update_hankel(self):

’’’Updates the hankel map by one iteration’’’

z = self.z

previous = copy(z)

c = self.c

i = self.iter

saved = self.saved

img = self.img

ix = self.ix

iy = self.iy

Update z to the next point in the orbit

multiply(z, z, z)

add(z, c, z)

Check which points have diverged

rem1 = abs(z)>2.0

C PYTHON IMPLEMENTATION 45

Check which points have converged

rem2 = abs(previous - z) < EPSILON

Compare with all previous points in orbit

for s in saved:

rem3 = abs(s - z) < EPSILON

rem2 = logical_or(rem2, rem3)

rem = logical_or(rem1, rem2)

Any points which have diverged get set to zero in the image

img[ix[rem1], iy[rem1]] = 0

Any points which have converged get set to i + 1 in the image

img[ix[rem2], iy[rem2]] = i + 1

rem is now an array showing the remaining points

rem = -rem

Update z and c to only include points which have not yet diverged

self.z = z[rem]

self.ix, self.iy = ix[rem], iy[rem]

self.c = c[rem]

for j, s in enumerate(saved):

saved[j] = s[rem]

self.saved = saved + [copy(self.z)]

self.iter += 1

self.img = img

def update_time(self):

’’’Updates the cycle map by one iteration’’’

z = self.z

previous = copy(z)

c = self.c

i = self.iter

saved = self.saved

img = self.img

ix = self.ix

iy = self.iy

Update z to the next point in the orbit

multiply(z, z, z)

add(z, c, z)

Check which points have diverged

rem1 = abs(z)>2.0

Check which points have converged

rem2 = abs(previous - z) < EPSILON

rem = logical_or(rem1, rem2)

img[ix[rem2], iy[rem2]] = 1

Compare with all previous points in orbit

for j, s in enumerate(saved):

rem3 = abs(s - z) < EPSILON

Points which converge get set to the period of the cycle

img[ix[rem3], iy[rem3]] = i - j + 1

rem2 = logical_or(rem2, rem3)

#rem = logical_or(rem1, rem2)

#rem = rem1

C PYTHON IMPLEMENTATION 46

Any points which have diverged get set to zero in the image

img[ix[rem1], iy[rem1]] = 0

rem is now an array showing the remaining points

rem = -rem

Update z and c to only include points which have not yet diverged

self.z = z[rem]

self.ix, self.iy = ix[rem], iy[rem]

self.c = c[rem]

for j, s in enumerate(saved):

saved[j] = s[rem]

self.saved = saved + [copy(self.z)]

self.iter += 1

self.img = img

def update_internal(self):

’’’Updates the internal map by one iteration’’’

z = self.z

c = self.c

i = self.iter

img = self.img

ix = self.ix

iy = self.iy

closest = self.closest

Update z to the next point in the orbit

multiply(z, z, z)

add(z, c, z)

Save minimum distance of any point from c

minimum(abs(z - c), closest, closest)

Check which points have diverged

rem = abs(z)>2.0

Points which just diverged get set to zero in the image

img[ix[rem], iy[rem]] = 0

rem is now an array showing the remaining points

rem = -rem

z becomes any points which have not yet diverged

self.z = z[rem]

self.ix, self.iy = ix[rem], iy[rem]

self.c = c[rem]

self.closest = closest[rem]

img[ix[rem], iy[rem]] = ceil(self.closest * self.levels)

self.iter += 1

self.img = img

def update_period(self):

’’’Updates the period map by one iteration’’’

z = self.z

c = self.c

i = self.iter

img = self.img

ix = self.ix

C PYTHON IMPLEMENTATION 47

iy = self.iy

closest = self.closest

multiply(z, z, z)

add(z, c, z)

Find the distance of the latest point in orbit from c

distance = abs(c - z)

closer = distance < closest

If latest point in orbit is closer than previous, update image

img[ix[closer], iy[closer]] = i + 1

Save the new minimum distance

minimum(distance, closest, closest)

Check which points have diverged

rem = abs(z)>2.0

Points which just diverged get set to zero in the image

img[ix[rem], iy[rem]] = 0

rem is now an array showing the remaining points

rem = -rem

z becomes any points which have not yet diverged

self.z = z[rem]

self.ix, self.iy = ix[rem], iy[rem]

self.c = c[rem]

self.closest = closest[rem]

self.iter += 1

self.img = img

def update_angle(self):

’’’Updates the angle map by one iteration’’’

z = self.z

c = self.c

i = self.iter

img = self.img

ix = self.ix

iy = self.iy

closest = self.closest

previous = self.previous

angles = self.angles

previous_line = previous - z

previous[:] = z

Update z to the next point in the orbit

multiply(z, z, z)

add(z, c, z)

Keep cumulative total of the angles in the orbit

angles += abs(angle(previous_line/(z - previous), deg=True))

Find the distance of the latest point in orbit from c

distance = abs(c - z)

closer = distance < closest

If latest point in orbit is closer than previous, update image

Show sum of interior angles of orbit

img[ix[closer], iy[closer]] = maximum(1, rint(angles[closer]))

Save the new minimum distance

C PYTHON IMPLEMENTATION 48

minimum(distance, closest, closest)

Check which points have diverged

rem = abs(z)>2.0

Points which just diverged get set to zero in the image

img[ix[rem], iy[rem]] = 0

rem is now an array showing the remaining points

rem = -rem

z becomes any points which have not yet diverged

self.z = z[rem]

self.ix, self.iy = ix[rem], iy[rem]

self.c = c[rem]

self.closest = closest[rem]

self.previous = previous[rem]

self.angles = angles[rem]

self.iter += 1

self.img = img

def update_cycle(self):

’’’ Perform one iteration of currently active mode’’’

palette = self.palette

If cycling forward

if self.cycle:

if isinstance(palette, tuple):

self.palette = (palette[-1],) + palette[:-1]

else:

self.palette = [palette[-1]] + palette[:-1]

Else must be cycling backward

else:

if isinstance(palette, tuple):

self.palette = palette[1:] + (palette[1],)

else:

self.palette = palette[1:] + [palette[1]]

#--

Render the image and associated information

#--

def render(self, surface):

Draw the latest image to the surface

if self.normalize:

Normalize the image

image = copy(self.img)

m = image.max()

image *= 255

image /= m

pygame.surfarray.blit_array(surface, image)

else:

pygame.surfarray.blit_array(surface, self.img)

Draw the magnifying rectangle

if self.magnify == True:

C PYTHON IMPLEMENTATION 49

r = Rect(self.startx, self.starty,

self.endx - self.startx, self.endy - self.starty)

pygame.draw.rect(surface, self.rect_color, r, 1)

Draw the overlying grid

if self.grid == CARTESIAN_GRID:

intervals = 12

for i in arange(1, intervals):

x = (i * HEIGHT)/intervals

pygame.draw.line(surface, self.grid_color, (x, 0), (x, HEIGHT))

pygame.draw.line(surface, self.grid_color, (0, x), (HEIGHT, x))

elif self.grid == POLAR_GRID:

origin_x, origin_y = self.origin

Draw the lines of constant radius

for i in arange(1, 10):

radius = (i * HEIGHT)/12

pygame.draw.circle(surface, self.grid_color, self.origin, radius, 1)

Draw the lines of constant angle

lines = 6

radius = (HEIGHT * 2)/3

pygame.draw.line(surface, self.grid_color, (0, origin_y), (HEIGHT, origin_y))

for i in arange(1, lines):

theta = (i*pi)/lines

end_y = origin_y + (radius* sin(theta))

end_x = origin_x + (radius* cos(theta))

pygame.draw.line(surface, self.grid_color, self.origin,

(end_x, end_y))

end_y = origin_y - (radius* sin(theta))

pygame.draw.line(surface, self.grid_color, self.origin,

(end_x, end_y))

Update the iteration number on the screen

text_surface = self.button_font.render(str(self.iter), False, self.word_color)

surface.blit(text_surface, (self.text_x, self.text_y))

Update the cursor image number on the screen

pixel_value = self.img[self.current_pos[0], self.current_pos[1]]

text_surface = self.button_font.render(str(pixel_value), False, self.word_color)

surface.blit(text_surface, (self.cursor_x, self.cursor_y))

Draw the orbit

if self.mode == ORBIT_MODE and (len(self.orbit) > 1):

pygame.draw.lines(surface, self.line_color, False, self.orbit)

Draw the line along which the Feigenbaum disgram is created

if self.mode == FEIGENBAUM_MODE:

pygame.draw.line(surface, self.line_color, self.origin, self.current_pos)

If the palette is being cycled, make sure it shows up

if self.mode == CYCLE_MODE:

screen.set_palette(self.palette)

#--

Magnify mode

#--

C PYTHON IMPLEMENTATION 50

def start_magnify(self, x, y):

’’’Save the start of a magnify rectangle’’’

self.magnify = True

self.startx = x

self.starty = y

self.endx = x

self.endy = y

def end_magnify(self, x, y):

if self.magnify == False:

return

self.magnify = False

Dimensions of the area to magnify

left = min(x, self.startx)

right = max(x, self.startx)

top = min(y, self.starty)

bottom = max(y, self.starty)

pixel_width = min(right - left, bottom - top)

if pixel_width < 2:

self.magnify = False

return

old_width = self.xmax - self.xmin

new_width = pixel_width * old_width/800.

Update the new area of the image

self.xmin = self.xmin + (left * old_width/800.)

self.xmax = self.xmin + new_width

self.ymax = self.ymax - (top * old_width/800.)

self.ymin = self.ymax - new_width

pygame.display.set_caption(’x in [’

+ str(self.xmin) + ’, ’

+ str(self.xmax) + ’], y in [’

+ str(self.ymin) + ’, ’

+ str(self.ymax) + ’],’

+ ’ width = ’ + str(new_width))

self.initialize_image()

def move_magnify(self, x, y):

’’’Update the magnifying rectangle’’’

if self.magnify == False:

return

left = min(x, self.startx)

right = max(x, self.startx)

top = min(y, self.starty)

bottom = max(y, self.starty)

width = min(right - left, bottom - top)

Restrict the magnifying rectangle to be a square

self.startx = left

C PYTHON IMPLEMENTATION 51

self.starty = top

self.endx = left + width

self.endy = top + width

return

#--

Conversions between screen coordinates and points in complex plane

#--

def xy_to_z(self, x, y):

’’’Convert screen coordinates into a complex number’’’

width = self.xmax - self.xmin

zx = self.xmin + x * width/800.

zy = self.ymax - y * width/800.

return complex(zx, zy)

def z_to_xy(self, z):

’’’Convert complex number into screen coordinates’’’

width = self.xmax - self.xmin

zx = real(z)

zy = imag(z)

x = int(((zx - self.xmin) * 800.)/width)

y = int(((self.ymax - zy) * 800.)/width)

return (x, y)

#--

Orbit mode

#--

def initialize_orbit(self):

startz = complex(0, 0)

self.zorbit = [startz]

self.orbit = [self.z_to_xy(startz)]

def start_orbit(self, x, y):

self.initialize_orbit()

self.iter = 1

self.zc = self.xy_to_z(x, y)

def update_orbit(self):

z = self.zorbit[-1]

zn = (z * z) + self.zc

if abs(zn) <= 2 and (self.iter < self.itermax):

self.iter += 1

self.zorbit.append(zn)

self.orbit.append(self.z_to_xy(zn))

def plot_orbit(self, x, y):

max_iters = 30

c = self.xy_to_z(x, y)

C PYTHON IMPLEMENTATION 52

z = c

saved = empty(max_iters)

saved[0] = 0

total = 1

for i in xrange(1, max_iters):

z = z*z + c

distance = abs(z - c)

saved[i] = distance

plot(i, distance, ’ro’)

total += 1

Check if orbit has diverged

if abs(z) > 2.0:

break

Plot the points in the orbit

plot(arange(total), saved[:total])

xlabel(’Iteration’)

ylabel(’Distance from c’)

title(’Distance of orbit from c, c = ’ + str(c))

show()

#--

Distribution of iterations needed to diverge

#--

def show_distribution(self):

image = self.img

flat = reshape(image, HEIGHT*HEIGHT)

hist(flat, bins=self.iter + 1, fc=’b’, ec=’b’, normed=’True’)

av = mean(flat)

xlabel(’Number of iterations’)

ylabel(’Relative frequency’)

title(’Iterations needed to diverge, mean = ’ + str(int(av)))

show()

#--

Feigenbaum diagram for points on a given constant angle from the origin

#--

def show_feigenbaum(self, x, y):

max_iters = 1000

z_pt = self.xy_to_z(x, y)

theta = angle(z_pt)

r = linspace(0, abs(z_pt), 1024)

x_points = r*cos(theta)

y_points = r*sin(theta)

c = x_points+complex(0,1)*y_points

z = copy(c)

Initial run to get convergence

for i in arange(max_iters):

multiply(z, z, z)

C PYTHON IMPLEMENTATION 53

add(z, c, z)

Check which points have diverged

rem = abs(z)>2.0

z becomes any points which have not yet diverged

z[rem] = 2.0

Plot the orbits

for t in arange(max_iters):

plot(r, abs(z), ’k.’, markersize=0.1)

multiply(z, z, z)

add(z, c, z)

Check which points have diverged

rem = abs(z)>2.0

z becomes any points which have not yet diverged

z[rem] = 2.0

xlabel(’|c|’)

ylabel(’Distance from origin of orbit’)

title(r’$z = ’ + str(z_pt) + ’$’)

show()

#--

Event handlers

#--

def mousedown(self, x, y, screen):

self.current_pos = (x, y)

if self.mode == MAGNIFY_MODE:

self.start_magnify(x, y)

elif self.mode == FEIGENBAUM_MODE:

self.show_feigenbaum(x, y)

elif self.mode == ORBIT_MODE:

self.plot_orbit(x, y)

def mouseup(self, x, y, screen):

if self.mode == MAGNIFY_MODE:

self.end_magnify(x, y)

def mousemove(self, x, y, screen):

if self.mode == MAGNIFY_MODE:

self.move_magnify(x, y)

elif self.mode == ORBIT_MODE:

self.start_orbit(x, y)

self.current_pos = (x, y)

def keydown(self, key, screen):

if key == K_a:

Switch to angle map

self.map = ANGLE_MAP

self.mode = MAGNIFY_MODE

self.initialize_orbit()

self.initialize_image()

C PYTHON IMPLEMENTATION 54

elif key == K_c:

Cycle between palettes

if self.mode == CYCLE_MODE:

if self.cycle:

self.cycle = False

else:

self.mode = MAGNIFY_MODE

else:

self.mode = CYCLE_MODE

self.cycle = True

elif key == K_d:

Switch to divergence map

self.map = DIVERGENCE_MAP

self.mode = MAGNIFY_MODE

self.initialize_orbit()

self.initialize_image()

elif key == K_f:

self.mode = FEIGENBAUM_MODE

elif key == K_g:

Toggle the grid

self.grid = (self.grid + 1) % 3

elif key == K_h:

Switch to hankel map

self.map = HANKEL_MAP

self.mode = MAGNIFY_MODE

self.initialize_orbit()

self.initialize_image()

elif key == K_i:

Internal structure - closest approach to origin

self.map = CONVERGENCE_MAP

self.mode = MAGNIFY_MODE

self.initialize_orbit()

self.initialize_image()

elif key == K_m:

Switch to magnify mode

self.mode = MAGNIFY_MODE

self.initialize_orbit()

self.initialize_image()

elif key == K_n:

Toggle the image normalization

self.normalize = not self.normalize

elif key == K_o:

orbit mode

self.mode = ORBIT_MODE

self.initialize_orbit()

elif key == K_p:

Orbit period - which period is the orbit closest to

self.map = PERIOD_MAP

self.mode = MAGNIFY_MODE

self.initialize_orbit()

C PYTHON IMPLEMENTATION 55

self.initialize_image()

elif key == K_r:

restart in magnify mode

self.mode = MAGNIFY_MODE

self.initialize_area()

self.initialize_orbit()

self.initialize_image()

elif key == K_s:

Show the distibution of iterations needed to diverge

self.show_distribution()

elif key == K_t:

Cycle map - period of the orbit

self.map = CYCLE_MAP

self.mode = MAGNIFY_MODE

self.initialize_orbit()

self.initialize_image()

elif key == K_SPACE:

Turn pause on or off

self.paused = not self.paused

elif key == K_UP:

Halve the spacing shown between levels

self.levels *= 2

elif key == K_DOWN:

Double the spacing shown between levels

if self.levels > 1:

self.levels /= 2

elif key in NUMBER_KEYS:

Change the palette

palettes = self.palettes

num_palettes = len(palettes)

key_num = NUMBER_KEYS.index(key)

Check we’re not indexing past the end of the palettes

if key_num < num_palettes:

new_palette = palettes[key_num]

self.palette = new_palette

screen.set_palette(new_palette)

#--

#

Pygame Initialization

#

#--

pygame.init()

screen = pygame.display.set_mode(SCREEN_SIZE, 0, 8)

main = Mandelbrot()

main.render(screen)

pygame.display.set_caption("Mandelbrot Explorer by Adam Cunningham")

main.add_palette(screen.get_palette())

C PYTHON IMPLEMENTATION 56

pygame.display.update()

#--

#

Main event handling loop

#

#--

on = True

while on:

for event in pygame.event.get():

if event.type == QUIT:

on = False

pygame.quit()

if event.type == KEYDOWN:

main.keydown(event.key, screen)

if event.type == MOUSEBUTTONDOWN:

x, y = pygame.mouse.get_pos()

main.mousedown(x, y, screen)

if event.type == MOUSEBUTTONUP:

x, y = pygame.mouse.get_pos()

main.mouseup(x, y, screen)

if event.type == MOUSEMOTION:

x, y = pygame.mouse.get_pos()

main.mousemove(x, y, screen)

main.update()

main.render(screen)

pygame.display.flip()

