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Now R(x;) =aq/n if, and only if, Q(x;) =0 (=1, - - -, n). But Q is of degree

n—2, hence Q=0. It follows that the coefficients of P must satisfy the equations

R
(3a) @hpr ————+ D ;=0 (k=0,1,-+-,n—2)
n j=1

together with the condition I(P) =0, which is

(3b) i @iy = 0 (dn, = 1).

J=0

These equations are identical with those obtainable from (2) by the use of
Newton’s identities which relate the sums of powers of the zeros of a polynomial
with the coefficients. However, such an approach presupposes familiarity with
these identities, and obscures the interpolatory origin of the formula. Of course,
the existence of P does not guarantee the existence of Q, since we can say (al-
most) nothing about the zeros x; except in special cases.
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A NOTE ON THE ALGEBRAIC CLOSURE OF A FIELD
RoBERT GILMER, Florida State University

In order to prove that a given field F has an algebraic closure, it is sufficient
to prove the existence of an extension field K of F such that each nonconstant
polynomial f over F splits into linear factors over K, for if such a field K exists,
then the set of elements of K algebraic over F is an algebraic closure of F [3, p.
194]. To establish the existence of such a field K, Lang in his text Algebra [2]
proceeds as follows. He first proves that if £ is any field, then there is an exten-
sion field E; of E such that each nonconstant polynomial f over E has a root in
E,. Applying this result successively to Es, Es, - - -, Lang obtains an ascending
chain E;CE,C - -+ of extension fields of £ such that for each i, every non-
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constant polynomial over E; has a root in E;y. Then if L=U;2, E;, it is easy to
show that each nonconstant polynomial over Z splits into linear factors over L
so that L contains an algebraic closure of E. (See [2] pp. 169-170.) The purpose
of this note is to observe that in the above process, the field E; already contains
an algebraic closure of E. This we do by establishing the following result:

TurorREM. If K is a subfield of a field L and if each nonconstant polynomial with
coefficients in K has a root in L, then each nonconstant polynomial with coefficients
in K splits into linear factors in L[X].

Proof. 1t suffices to prove that for / a nonconstant irreducible monic poly-
nomial with coefficients in K, f is a product of linear factors in L[X]. If K has
characteristic 0, we define p =1; otherwise p denotes the characteristic of K. (In
Bourbaki's terminology [1, p. 71], p is the characteristic exponent of K.) In a

splitting field F of f over K, the roots of f all have the same multiplicity p¢ {or
some nonnegative integer e:f=TII", (X —a)?" =II"_;(X?* —a?"). Further, if
=X f, (XD e oo X7 fy and if B;=02" for each 4, {B, - - -, Ba} is
the set of roots of the irreducible, separable polynomial g=x"4f, X" 14 . . -

+fo over K [3, p. 120]. The field K(B, - - -, B,) is a finite, normal, separable
extension of K. It is therefore a simple extension of K: K (B, - - «, Bn) =K(v).
If % is the minimal polynomial for v over K, then K (v) is a splitting field for &
over K and there is, by hypothesis, a root 6 of % in L. The fields K(0) and XK (v)
are each K-isomorphic to K [X]/(%), and hence are K-isomorphic to each other.
It follows that k(9) is a splitting field of g over K. Therefore, if p¢=1—that is, if
fis separable over K, then L contains a splitting field of f over K. Hence we have
proved our theorem in case the algebraic closure of K in L is separable over K.
In particular, our proof is complete if K is a perfect field.

In case K is not perfect, we let K, be the subfield of L consisting of those
elements which are purely inseparable over K. We show that the field K, is
perfect. Hence if SEKO and if s*E K, then by hypothe51s, X?*"' —#* has a root
t in L. Therefore, [ €K, tEKy, and (#—s)**=0, implying that #=s so
that K, is perfect [3, p. 124]. Further, if g(x) = Y 5_0¢:X? is any nonconstant
polynomial over K, then for some positive integer e, [¢(X)]**=0v(X)
=Y "’ X" EK[X] so that v(X) has a root & in L. We have 0=v(a) = [g(a) ]**,
implying that g(a) =0. We conclude that K, is a perfect field with the property
that each nonconstant polynomial over K, has a root in the extension field L of
K,. By our previous proof, each nonconstant polynomial over K, splits into
linear factors in L[X]. This property holds then, in particular, for nonconstant
polynomials over K, and this completes the proof of our theorem.
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