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x

R(a) = 2 4 2
n P'(x)

where

nr? w—-k—1 TMh*

O(a) = Dy a {ovatus + DO cuts} ;
k==0 nm j=1

Now R(x;) =ao/n if, and only if, Q(«;)=0 ¢@=1,---, 72). But OQ is of degree

n—2, hence Q=0. It follows that the coefficients of P must satisfy the equations

n—-k—1 ke
(3a) Code + >) ajay =O (kR=0,1,-°-,n— 2)

Ht j=l

together with the condition J(P) =0, which is

(3b) Yao;=0 (a, = 1).
j=0

These equations are identical with those obtainable from (2) by the use of

Newton's identities which relate the sums of powers of the zeros of a polynomial

with the coefficients. However, such an approach presupposes familiarity with

these identities, and obscures the interpolatory origin of the formula. Of course,

the existence of P does not guarantee the existence of Q, since we can say (al-

most) nothing about the zeros x; except in special cases.
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A NOTE ON THE ALGEBRAIC CLOSURE OF A FIELD

ROBERT GILMER, Florida State University

In order to prove that a given field F has an algebraic closure, it is sufficient

to prove the existence of an extension field K of F such that each nonconstant

polynomial f over F splits into linear factors over K, for if such a field K exists,

then the set of elements of K algebraic over F is an algebraic closure of F [3, p.

194]. To establish the existence of such a field K, Lang in his text Algebra [2]

proceeds as follows. He first proves that if £ is any field, then there is an exten-

sion field £, of E such that each nonconstant polynomial f over E has a root in

Ey. Applying this result successively to £1, Es, - ++, Lang obtains an ascending

chain fiCf#,2C +++ of extension fields of # such that for each z, every non-
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constant polynomial over £; has a root in #41. Then if 2=U;2, i, it is easy to

show that each nonconstant polynomial over # splits into linear factors over L

so that L contains an algebraic closure of E. (See [2] pp. 169-170.) The purpose

of this note is to observe that in the above process, the field -; already contains

an algebraic closure of H. This we do by establishing the following result:

THEOREM. If Kisa subfield of a field L and tf each nonconsiant polynomial with

coefficients in K has a root in L, then each nonconstant polynomial with coefficients

in K splits into linear factors in L{[X].

Proof. It suffices to prove that for f a nonconstant irreducible monic poly-

nomial with coefficients in K, f is a product of linear factors in L[X]. If K has

characteristic 0, we define p =1; otherwise denotes the characteristic of K. (In

Bourbaki’s terminology [1, p. 71], pb ts the characteristic exponent of K.) Ina
splitting field F off over K, the roots of f all have the same multiplicity p° for

some nonnegative integer e:f=ITj., (X—- at) = Ty _1(X??—o?"). Further, if

fH Xr + fy aX oreos +f XP’ + fo, and if 8;=a? for eachi, { Br, .: Ba is
the set of roots of the irreducible, separable polynomial g=x"-+f, 1X7 '+ ---
+fo over K [3, p. 120]. The field K(@1, +--+, 8.) is a finite, normal, separable

extension of K. It is therefore a simple extension of K: K(G1,---, Bp) =K(y).

If 4 is the minimal polynomial for y over K, then K(y) is a splitting field for h

over K and there is, by hypothesis, a root 0 of # in L. The fields K(@) and K(y)

are each K-isomorphic to K|X]|/(h), and hence are K-isomorphic to each other.

It follows that k(@) is a splitting field of g over K. Therefore, if p? = 1—that is, if

f is separable over K, then LZ contains a splitting field offover K. Hence we have

proved our theorem in case the algebraic closure of K in L is separable over K.

In particular, our proof is complete if K is a perfect field.

In case K is not perfect, we let Ko be the subfield of L consisting of those

elements which are purely inseparable over K. We show that the field Ko is

perfect. Hence if SEK and if s*° CK, then by bypo‘hesis, x? _ 30 has a root
¢t in L. Therefore, pr CK, t€ Ko, and (#—s)??=0, implying that f=s so
that Ko is perfect [3, p. 124]. Further, if g(x)= See. is any nonconstant
polynomial over Ko, then for some positive integer e, [g¢(X) |??=v(X)

= > ig?’ X”° EK [X]| so that v(X) has a root a in L. We have 0=v(a) = [¢(a) |?’

implying that g(a) =0. We conclude that Ko is a perfect field with the property

that each nonconstant polynomial over Ko has a root in the extension field Z of

Ko. By our previous proof, each nonconstant polynomial over Ko splits into

linear factors in L[X]. This property holds then, in particular, for nonconstant

polynomials over K, and this completes the proof of our theorem.
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