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1. Introduction

Zorn’s lemma is a result in set theory that appears in proofs of some non-constructive
existence theorems throughout mathematics. We will state Zorn’s lemma below and use it
in later sections to prove some results in linear algebra, ring theory, and group theory. In
an appendix, we will give an application to metric spaces. The statement of Zorn’s lemma
is not intuitive, and some of the terminology in it may be unfamiliar, but after reading
through the explanation of Zorn’s lemma and then the proofs that use it you should be
more comfortable with how it can be applied.

Theorem 1.1 (Zorn’s lemma). Let S be a partially ordered set. If every totally ordered
subset of S has an upper bound, then S contains a maximal element.

To understand Theorem 1.1, we need to know four terms: partially ordered set, totally
ordered subset, upper bound, and maximal element.

A partial ordering on a (nonempty) set S is a binary relation on S, denoted ≤, which
satisfies the following properties:

• for all s ∈ S, s ≤ s,
• if s ≤ s′ and s′ ≤ s then s = s′,
• if s ≤ s′ and s′ ≤ s′′ then s ≤ s′′.

When we fix a partial ordering ≤ on S, we refer to S (or, more precisely, to the pair
(S,≤)) as a partially ordered set.

It is important to notice that we do not assume all pairs of elements in S are comparable
under ≤: for some s and s′ we may have neither s ≤ s′ nor s′ ≤ s. If all pairs of elements
can be compared (that is, for all s and s′ in S either s ≤ s′ or s′ ≤ s) then we say S is
totally ordered with respect to ≤.

Example 1.2. The usual ordering relation ≤ on R or on Z+ is a partial ordering of these
sets. In fact it is a total ordering on either set. This ordering on Z+ is the basis for proofs
by induction.

Example 1.3. On Z+, declare a ≤ b if a|b. This partial ordering on Z+ is different from the
one in Example 1.2 and is called ordering by divisibility. It is one of the central relations in
number theory. (Proofs about Z+ in number theory sometimes work not by induction, but
by starting on primes, then extending to prime powers, and then extending to all positive
integers using prime factorization. Such proofs view Z+ through the divisibility relation
rather than through the usual ordering relation.) Unlike the ordering on Z+ in Example
1.2, Z+ is not totally ordered by divisibility: most pairs of integers are not comparable
under the divisibility relation. For instance, 3 doesn’t divide 5 and 5 doesn’t divide 3. The
subset {1, 2, 4, 8, 16, . . . } of powers of 2 is totally ordered under divisibility.
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Example 1.4. Let S be the set of all subgroups of a given group G. For H,K ∈ S (that
is, H and K are subgroups of G), declare H ≤ K if H is a subset of K. This is a partial
ordering, called ordering by inclusion. It is not a total ordering: for most subgroups H and
K neither H ⊂ K nor K ⊂ H.

One can similarly partially order the subspaces of a vector space or the ideals (or subrings
or all subsets) of a commutative ring by inclusion.

Example 1.5. On Z+, declare a ≤ b if b|a. Here one positive integer is “larger” than
another if it is a factor. This is called ordering by reverse divisibility.

Example 1.6. On the set of subgroups of a group G, declare subgroups H and K to satisfy
H ≤ K if K ⊂ H. This is a partial ordering on the subgroups of G, called ordering by
reverse inclusion.

In case you think ordering by reverse inclusion seems weird, let’s take a look again
at Example 1.3. There positive integers are ordered by divisibility, and nothing seems
“backwards.” But let’s associate to each a ∈ Z+ the subgroup aZ of Z. Every nonzero
subgroup of Z has the form aZ for a unique positive integer a, aZ = bZ if and only if a = b
(both a and b are positive), and a|b if and only if bZ ⊂ aZ. For instance, 4|12 and 12Z ⊂ 4Z.
Therefore the ordering by divisibility on Z+ is essentially the same as ordering by reverse
inclusion on nonzero subgroups of Z. Partial ordering by reverse inclusion is used in the
construction of completions of groups and rings.

Example 1.7. Let A and B be sets. Let S be the set of functions defined on some subset
of A with values in B. The subset can vary with the function. That is, S is the set of pairs
(X, f) where X ⊂ A and f : X → B. Two elements (X, f) and (Y, g) in S are equal when
X = Y and f(x) = g(x) for all x ∈ X.

We can partially order S by declaring (X, f) ≤ (Y, g) when X ⊂ Y and g|X = f . This
means g is an extension of f to a larger subset of A. Let’s check the second property of
a partial ordering: if (X, f) ≤ (Y, g) and (Y, g) ≤ (X, f) then X ⊂ Y and Y ⊂ X, so
X = Y . Then the condition g|X = f means g = f as functions on their common domain,
so (X, f) = (Y, g).

Example 1.8. If S is a partially ordered set for the relation ≤ and T ⊂ S, then the relation
≤ provides a partial ordering on T . Thus T is a new partially ordered set under ≤. For
instance, the partial ordering by inclusion on the subgroups of a group restricts to a partial
ordering on the cyclic subgroups of a group.

In these examples, only Example 1.2 is totally ordered. This is typical: most naturally
occurring partial orderings are not total orderings. However (and this is important) a
partially ordered set can have many subsets that are totally ordered. As a dumb example,
every one-element subset of a partially ordered set is totally ordered. A more interesting
illustration was at the end of Example 1.3 with the powers of 2 inside Z+ under divisibility.
As another example, if we partially order the subspaces of a vector space V by inclusion
then any tower of subspaces

W1 ⊂W2 ⊂W3 ⊂ · · ·
where each subspace is a proper subset of the next one is a totally ordered subset of V .

Here is a result about totally ordered subsets that will be useful at a few points later.

Lemma 1.9. Let S be a partially ordered set. If {s1, . . . , sn} is a finite totally ordered
subset of S then there is an si such that sj ≤ si for all j = 1, . . . , n.



ZORN’S LEMMA AND SOME APPLICATIONS 3

Proof. The si’s are all comparable to each other; that’s what being totally ordered means.
Since we’re dealing with a finite set of pairwise comparable elements, there will be one that
is greater than or equal to them all in the partial ordering on S. The reader can formalize
this with a proof by induction on n, or think about the bubble sort algorithm �

An upper bound on a subset T of a partially ordered set S is an s ∈ S such that t ≤ s for
all t ∈ T . When we say T has an upper bound in S, we do not assume the upper bound is
in T itself; it is just in S.

Example 1.10. In R with its natural ordering, the subset Z has no upper bound while
the subset of negative real numbers has the upper bound 0 (or any positive real). No upper
bound on the negative real numbers is a negative real number.

Example 1.11. In the proper subgroups of Z ordered by inclusion, an upper bound on
{4Z, 6Z, 8Z} is 2Z since 4Z, 6Z, and 8Z all consist entirely of even numbers. (Note 4Z ⊂ 2Z,
not 2Z ⊂ 4Z.)

A maximal element m of a partially ordered set S is an element that is not below any
element to which it is comparable: for all s ∈ S to which m is comparable, s ≤ m.
Equivalently, m is maximal when the only s ∈ S satisfying m ≤ s is s = m. This does
not mean s ≤ m for all s in S since we don’t insist that maximal elements are actually
comparable to every element of S. A partially ordered set could have many maximal
elements.

Example 1.12. If we partially order Z+ by reverse divisibility (so a ≤ b means b|a), the
number 1 is a maximal element. In fact 1 is the only maximal element. This is not a
good example because 1 is comparable to everything in this relation, which is not a typical
feature of maximal elements.

Example 1.13. Consider the positive integers greater than 1 with the reverse divisibility
ordering: a ≤ b when b|a. The maximal elements here are the positive integers with no
positive factor greater than 1 except themselves. These are the prime numbers, so the
primes are the maximal elements for the reverse divisibility relation on {2, 3, 4, 5, 6, . . . }.

Equivalently, if we partially order the proper subgroups of Z by inclusion then the maximal
elements are pZ for prime numbers p.

We now return to the statement of Zorn’s lemma:
If every totally ordered subset of a partially ordered set S has an upper
bound, then S contains a maximal element.

All the terms being used here have now been defined.1 Of course this doesn’t mean the
statement should be any clearer!

Zorn’s lemma is not intuitive, but it turns out to be logically equivalent to more readily
appreciated statements from set theory like the Axiom of Choice (which says the Cartesian
product of any family of nonempty sets is nonempty). In the set theory appendix to [13],
Zorn’s lemma is derived from the Axiom of Choice. A proof of the equivalence between
Zorn’s lemma and the Axiom of Choice is given in the appendix to [16]. The reason for
calling Zorn’s lemma a lemma rather than an axiom is purely historical. Zorn’s lemma is

1The hypotheses refer to all totally ordered subsets, and a totally ordered subset might be uncountable.
Therefore it is a bad idea to write about “totally ordered sequences,” since the label “sequence” is often
understood to refer to a countably indexed set. Just use the label “totally ordered subset.”
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also equivalent to the Well-Ordering Principle (which says every nonempty set has a well-
ordering: that means a total ordering in which every nonempty subset has a least element),
but do not confuse the totally ordered subsets in the hypotheses of Zorn’s lemma with well-
orderings on the whole set. They are different concepts, and you should never invoke the
Well-Ordering Principle in the middle of an application of Zorn’s lemma unless you really
want to make bad mistakes.

Zorn’s lemma provides no mechanism to find a maximal element whose existence it as-
serts. It also says nothing about how many maximal elements there are. Usually, as in
Example 1.13, there are many maximal elements.

In a partially ordered set S we can speak about minimal elements just as much as maximal
elements: m ∈ S is called minimal if m ≤ s for all s ∈ S to which m is comparable. Zorn’s
lemma can be stated in terms of minimal elements: if any totally ordered subset of a
partially ordered set S has a lower bound in S then S has a minimal element. There
really is no need to use this formulation, in practice, since by reversing the meaning of the
partial ordering (that is, using the reverse ordering) lower bounds become upper bounds
and minimal elements become maximal elements.

The applications we will make of Zorn’s lemma are to algebra, but it shows up in many
other areas. For instance, the most important result in functional analysis is the Hahn-
Banach theorem, whose proof uses Zorn’s lemma. Another result from functional analysis,
the Krein-Milman theorem, is proved using Zorn’s lemma. (The Krein-Milman theorem is
an example where Zorn’s lemma is used to prove the existence of something that is more
naturally a minimal element than a maximal element.) In topology, the most important
theorem about compact spaces is Tychonoff’s theorem, and it is proved using Zorn’s lemma.

When dealing with objects that have a built-in finiteness condition (such as finite-
dimensional vector spaces or finite products of spaces X1× · · · ×Xn), Zorn’s lemma can be
avoided by using ordinary induction in a suitable way (e.g., inducting on the dimension of
a vector space). The essential uses of Zorn’s lemma are for truly infinite objects, where one
has to make infinitely many choices at once in a rather extreme way.

2. Applications to ideals

The ideals in a commutative ring can be partially ordered by inclusion. The whole ring,
which is the unit ideal (1), is obviously maximal for this ordering. But this is boring and
useless. Proper ideals that are maximal for inclusion among the proper ideals are called
the maximal ideals in the ring. (That is, a maximal ideal is understood to mean a maximal
proper ideal.) Let’s prove they always exist.

Theorem 2.1. Every nonzero commutative ring contains a maximal ideal.

Proof. Let S be the set of proper ideals in a commutative ring R 6= 0. Since the zero ideal
(0) is a proper ideal, S 6= ∅. We partially order S by inclusion.

Let {Iα}α∈A be a totally ordered set of proper ideals in R. To write down an upper bound
for these ideals in S, it is natural to try their union I =

⋃
α∈A Iα. As a set, I certainly

contains all the Iα’s, but is I an ideal? We may be hesitant about this, since a union of
ideals is not usually an ideal: try 2Z ∪ 3Z. But we are dealing with a union of a totally
ordered set of ideals, and the total ordering of the ideals will be handy!

If x and y are in I then x ∈ Iα and y ∈ Iβ for two of the ideals Iα and Iβ. Since this
set of ideals is totally ordered, Iα ⊂ Iβ or Iβ ⊂ Iα. Without loss of generality, Iα ⊂ Iβ.
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Therefore x and y are in Iβ, so x± y ∈ Iβ ⊂ I. Hence I is an additive subgroup of R. The
reader can check rx ∈ I for r ∈ R and x ∈ I, so I is an ideal in R.

Because I contains every Iα, I is an upper bound on the totally ordered subset {Iα}α∈A
provided it is actually in S: is I a proper ideal? Well, if I is not a proper ideal then 1 ∈ I.
Since I is the union of the Iα’s, we must have 1 ∈ Iα for some α, but then Iα is not a proper
ideal. That is a contradiction, so 1 6∈ I. Thus I ∈ S and we have shown every totally
ordered subset of S has an upper bound in S.

By Zorn’s lemma S contains a maximal element. This maximal element is a proper ideal
of R that is maximal for inclusion among all proper ideals (not properly contained in any
other proper ideal of R). That means it is a maximal ideal of R. �

Corollary 2.2. Every proper ideal in a nonzero commutative ring is contained in a maximal
ideal.

Proof. Let R be the ring and I be a proper ideal in R. The quotient ring R/I is nonzero,
so it contains a maximal ideal by Theorem 2.1. The inverse image of this ideal under the
natural reduction map R→ R/I is a maximal ideal of R that contains I. �

It is crucial in the proof of Theorem 2.1 to have the multiplicative identity 1 available,
which lies in no proper ideal. For instance, the analogue of Theorem 2.1 for groups can
fail: the additive group Q contains no maximal proper subgroups. Indeed, if H is a proper
subgroup of Q then [Q : H] = ∞ (if the index were finite, say n, then H ⊃ nQ = Q, so
H = Q) and if we pick r ∈ Q−H then the subgroup H+Zr properly contains H with finite
index (why?), so H + Zr 6= Q. (See the exercise below for an instance where groups do
contain maximal proper subgroups.) The importance of Theorem 2.1 in the foundations of
commutative algebra is one reason that rings should always have a multiplicative identity,
at least if you are interested in areas of math that depend on commutative algebra (e.g.,
number theory and algebraic geometry).

Exercise. If G is a nontrivial finitely generated group, use Zorn’s lemma and Lemma
1.9 to prove G contains a maximal proper subgroup, and more generally if H is a proper
subgroup of G then there is a maximal proper subgroup M of G such that H ⊂ M ⊂ G.
(The step analogous to showing I is proper in the proof of Theorem 2.1 will need the finite
generatedness hypothesis on G.)

The proof of Theorem 2.1 exhibits a standard disconnect between upper bounds on totally
ordered subsets and maximal elements in the whole set. Consider proper ideals of Z under
inclusion. The maximal ideals are pZ for prime numbers p. The ideals {6Z, 12Z, 24Z} are
totally ordered under inclusion, and in the proof of Theorem 2.1 the upper bound created
on this subset is the union 6Z ∪ 12Z ∪ 24Z = 6Z. (A finite totally ordered subset of a
partially ordered set always has one of its members as an upper bound on the subset, by
Lemma 1.9.) This upper bound is not a maximal ideal in Z. So the task of checking Zorn’s
lemma can be applied is a completely separate matter from applying Zorn’s lemma: an
upper bound on a totally ordered subset does not have to be a maximal element of the
whole set. Remember that!

The following very important theorem concerns nilpotent elements. In a commutative
ring, an element r is nilpotent if rn = 0 for some n ≥ 1.

Theorem 2.3. The intersection of all prime ideals in a commutative ring is the set of
nilpotent elements in the ring.
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This is striking: it tells us that if we know an element in a commutative ring lies in
every prime ideal, some power of it must be 0. When R = Z this result is obvious, since
the prime ideals are (0) and (p) for prime numbers p, and the intersection is obviously {0},
which is the only nilpotent integer. As a somewhat more interesting (and finite) example, let
R = Z/(12). Its prime ideals are (2)/(12) and (3)/(12) (not (0)/(12)!), whose intersection
is (6)/(12) = {0, 6 mod 12}, which is also (by inspection) the nilpotent elements of Z/(12).

Proof. Let R be the ring. Pick a nilpotent element r and a prime ideal P . We have rn = 0
for some n ≥ 1, so rn ∈ P . Since P is prime we must have r ∈ P . Thus every nilpoent
element is in the intersection of all prime ideals.

Now we want to show the intersection of all prime ideals consists only of nilpotent ele-
ments: if r ∈ P for all prime ideals P then rn = 0 for some n ≥ 1. That is kind of amazing.
How could it be shown? The right thing to do is not to attempt to prove rn = 0 for some n
directly, but rather to prove the contrapositive statement: any non-nilpotent element does
not lie in some prime ideal (so anything that is in all prime ideals has to be nilpotent).

Pick a non-nilpotent element r. Since r is not nilpotent, rn 6= 0 for every n ≥ 1. Consider
the set S of all ideals I in R that don’t contain any positive power of r:

I ∈ S ⇐⇒ {rn : n ≥ 1} ∩ I = ∅.
The zero ideal (0) doesn’t meet {rn : n ≥ 1}, because r is not nilpotent, so S is nonempty.
We partially order S by inclusion. After checking the conditions for Zorn’s lemma can be
applied to S, we will show that a maximal element of S is a prime ideal.2 Since none of the
ideals in S contain r, we will have found a prime ideal of R not containing r.

Let {Iα}α∈A be a totally ordered set of ideals in S. Their union I is an ideal (same proof
as that in Theorem 2.1). Since no Iα contains a positive power of r, their union I does not
contain any positive power of r either. Therefore I ∈ S. As Iα ⊂ I for all α, I is an upper
bound in S for the set of Iα’s. Thus every totally ordered subset of S contains an upper
bound in S.

By Zorn’s lemma there is a maximal element of S. This is an ideal P that does not
contain any positive power of r and is maximal for this property (with respect to inclusion).
We denoted it as P because we’re going to show P is a prime ideal. The ideal P is obviously
proper. Suppose x and y are in R and xy ∈ P . To prove x ∈ P or y ∈ P , assume otherwise.
Then the ideals (x) + P and (y) + P are both strictly larger than P , so they can’t lie in S.
That means we have rm ∈ (x) + P and rn ∈ (y) + P for some positive integers m and n.
Write

rm = ax+ p1, rn = by + p2

where p1 and p2 are in P and a and b are in R. Now multiply:

rm+n = abxy + axp2 + byp1 + p1p2.

Since P is an ideal and xy ∈ P , the right side is in P . But then rm+n ∈ P , which contradicts
P being disjoint from the positive powers of r (because P ∈ S)3. Hence x ∈ P or y ∈ P , so
P is prime. By construction P contains no positive power of r, so in particular r 6∈ P . �

2Notice we are not defining S to be a set of prime ideals, but only a set of ideals with a disjointness
property. That any maximal element in S is a prime ideal is going to be proved using maximality.

3If we had defined S to be the ideals in R that don’t include r, rather than no positive power of r, then
at this point we’d be stuck: we’d have r = ax + p1 and r = bx + p2, so then multiplying gives r2 ∈ P , but
that would not be a contradiction since we didn’t require ideals of S to avoid containing r2. Seeing this
difficulty is a motivation for the definition of S in the proof.
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Remark 2.4. Although P in the proof is maximal with respect to inclusion among all
the ideals disjoint from {r, r2, r3, . . . }, there is no reason to expect the ideal P is actually a
maximal ideal in R: the name “maximal ideal” means an ideal that is maximal with respect
to inclusion among all proper ideals, while the proof we just gave used Zorn’s lemma on
a set of ideals that might not include all proper ideals. Quite generally, if S is a partially
ordered set and S′ is a subset of S, a maximal element of S′ need not be a maximal element
of S. Make sure you understand that!

In the proof of Theorem 2.3, we showed that if r ∈ R is not nilpotent then an ideal that is
maximal for the property of not containing {rn : n ≥ 1} is prime. The important algebraic
property of {rn : n ≥ 1} is that it is closed under multiplication and does not include 0.
As a check on your understanding, use Zorn’s lemma to show that for any subset of a ring
R that is closed under multiplication and does not include 0, there is an ideal in R that is
maximal for the property of being disjoint from the subset and it is a prime ideal.

Corollary 2.5. For any ideal I in a commutative ring R,⋂
P⊃I

P = {x ∈ R : xn ∈ I for some n ≥ 1},

where the intersection runs over the prime ideals of R that contain I.

Proof. If xn ∈ I for some n ≥ 1, then for any prime ideal P ⊃ I we have xn ∈ P , so x ∈ P .
Conversely, suppose x is in every prime ideal of R containing I. The natural map R→ R/I
identifies the prime ideals in R that contain I with the prime ideals of R/I, so x is in every
prime ideal of R/I. Therefore by Theorem 2.3, x is nilpotent in R/I. This means xn = 0
for some n ≥ 1, so xn ∈ I. �

We used Zorn’s lemma to prove Theorem 2.3 since the point of this handout is to hit
you over the head with enough applications of Zorn’s lemma that the basic principle behind
its use becomes transparent, but it turns out that Theorem 2.3 can also be proved using
Corollary 2.2 about proper ideals lying in a maximal ideal. The trick is to use a maximal
ideal not in R itself but in R[X], as follows.

Proof. We will only address one direction: a non-nilpotent element r in a ring R lies outside
some prime ideal. (The other direction is easy; see the first paragraph in the first proof of
Theorem 2.3.) We will create such a prime ideal as the kernel of a homomorphism out of
R and r won’t be in the kernel.

In the polynomial ring R[X], rX − 1 does not have a multiplicative inverse. Indeed, if
we did have (rX − 1)(cnXn + · · ·+ c1X + c0) = 1 then equating coefficients of like powers
of X on both sides shows

−c0 = 1, c0r − c1 = 0, c1r − c2 = 0, . . . , cn−1r − cn = 0, rcn = 0.

Therefore c0 = −1, ci = ci−1r for 1 ≤ i ≤ n, and rcn = 0. So ci = −ri for 1 ≤ i ≤ n.
Therefore 0 = rcn = −rn+1, but r is not nilpotent. So rX − 1 is not a unit in R[X]. (If r
were nilpotent, say rn = 0, then rX − 1 is a unit in R[X] with inverse −(1 + rX + r2X2 +
· · ·+ rn−1Xn−1).)

The ideal (rX − 1) in R[X] is proper, since rX − 1 is not a unit, so this ideal lies inside
a maximal ideal M of R[X] by Corollary 2.2. Now consider the composite homomorphism
R→ R[X]→ R[X]/M , where the first map is inclusion and the second is reduction. Since
the target is a field, the kernel back in R is a prime ideal (because the quotient of R by the
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kernel embeds into a field and thus must be an integral domain, as subrings of fields are
integral domains). Call the kernel P . Since rX ≡ 1 mod M , r is not in the kernel. Thus P
is a prime ideal in R not containing r. We’re done. �

We now leave maximal ideals and nilpotent elements, turning our attention to an inter-
esting theorem of I. S. Cohen about finitely generated ideals.

Theorem 2.6 (I.S. Cohen). If every prime ideal in a commutative ring is finitely generated
then every ideal in the ring is finitely generated.

Proof. We will prove the contrapositive: if there is some ideal in the ring that is not finitely
generated then there is a prime ideal in the ring that is not finitely generated. We will find
this prime ideal as an ideal maximal with respect to inclusion for the property of not being
finitely generated. (Here again we should stress, as in Remark 2.4, that such prime ideals
need not be actual maximal ideals in the ring. They are only created as being maximal
among non-finitely generated ideals.)

Let S be the collection of all non-finitely generated ideals, so S 6= ∅ by assumption. We
partially order S by inclusion. For any totally ordered subset of ideals {Iα}α∈A in S, their
union I is an ideal containing each Iα. (That I is an ideal follows by the same argument as
in the proof of Theorem 2.1.) To know I is an upper bound on the Iα’s in S we have to show
I is not finitely generated. Well, if I were finitely generated, say I = (r1, . . . , rk), then each
of the generators is in some Iα and by total ordering on the ideals, these hypothetical finitely
many generators of I are all in a common Iα (Lemma 1.9). But then I lies inside that Iα,
so I equals that Iα, which shows that Iα is finitely generated. This is a contradiction, so I
is not finitely generated.

Now we can apply Zorn’s lemma: there exists a non-finitely generated ideal that is
maximal with respect to inclusion among the non-finitely generated ideals. Call such an
ideal P . We are going to prove P is a prime ideal. It is certainly a proper ideal. Suppose
xy ∈ P with x 6∈ P and y 6∈ P . Then (x) + P is an ideal properly containing P , so
(x) + P 6∈ S. Therefore this ideal is finitely generated:

(x) + P = (r1, . . . , rk).

Write ri = cix+pi for i = 1, 2, . . . , k, where ci ∈ R and pi ∈ P . (We have no right to expect
the pi’s generate P . They only occur in the expressions for the ri’s.) Then every ri is in
the ideal (x, p1, . . . , pk), and conversely each pi is in the ideal P ⊂ (x) +P = (r1, . . . , rk), so

(x) + P = (x, p1, . . . , pk).

If we are given any p ∈ P , then since P ⊂ (x) + P we can write

(2.1) p = cx+ a1p1 + · · ·+ akpk

with c and the ai’s all in R. Then cx = p−
∑
aipi ∈ P , so c lies in the ideal J = {r ∈ R :

rx ∈ P}. Obviously P ⊂ J . Since xy ∈ P and y 6∈ P , J contains y and therefore J strictly
contains P . Thus by maximality of P among all the non-finitely generated ideals in R, J
is finitely generated. By (2.1), p ∈ xJ +

∑k
i=1Rpi, so P ⊂ xJ +

∑k
i=1Rpi. The reverse

inclusion is easy (by the definition of J), so

P = xJ +
k∑
i=1

Rpi.
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Since J is finitely generated, this shows P is finitely generated, a contradiction. Hence
x ∈ P or y ∈ P , so P is a prime ideal. �

Exercise. Use Zorn’s lemma to prove an analogue of Cohen’s theorem for principal ideals:
if every prime ideal in a commutative ring is principal than all ideals are principal. (It is false
that if every prime ideal has at most 2 generators then all ideals have at most 2 generators,
e.g., in C[X,Y ] the prime ideals have 1 or 2 generators but the ideal (X2, XY, Y 2) can’t be
generated by 2 elements.)

We now generalize Cohen’s theorem to modules in place of rings. When M is an R-
module and a is an ideal of R, let aM denote the submodule of M that is spanned by all
finite products am for a ∈ a and m ∈M . That is, aM is the set of all finite sums

∑n
i=1 aimi

with n ≥ 1, ai ∈ a and mi ∈ M . Check this is a submodule of M . (We need to use finite
sums since the set of products am with a ∈ a and m ∈M is usually not a submodule since
it’s not additively closed.)

Theorem 2.7. Let M be a finitely generated R-module. If every submodule of the form
pM with prime p is finitely generated then every submodule of M is finitely generated.

When M = R, this is Cohen’s theorem. However, the proof of Theorem 2.7 has some
additional aspects at the end that don’t occur in Cohen’s theorem, so it seems best to prove
Theorem 2.7 separately from Theorem 2.6.

Proof. We will prove the contrapositive: if M has a submodule that is not finitely generated
then it has a submodule of the form pM with prime p that is not finitely generated.

Let S be the set of submodules of M that are not finitely generated, so S 6= ∅ by
assumption. Note M 6∈ S. Partially order S by inclusion. By the same kind of argument
as in the proof of Theorem 2.6, every totally ordered subset of S has an upper bound in S.
(Check the details!) Therefore we can apply Zorn’s lemma: S contains a maximal element.
Call one of them N . That is, N is a submodule of M that is not finitely generated and
(this is the key point) any submodule of M that properly contains N is finitely generated.
Note N 6= M .

Will we show N = pM for some prime ideal p of R? No! There is so little control over
the maximal elements coming from Zorn’s lemma that we can’t expect this. Instead we will
show, following [14], that

(1) p := AnnR(M/N) = {r ∈ R : rM ⊂ N} is a prime ideal of R,
(2) pM is not finitely generated.

To show p is prime, first we note p 6= R since N $ M . If p is not prime then there are x
and y in R with xy ∈ p but x and y are not in p. From the definition of p, these conditions
on x and y mean

xyM ⊂ N, xM 6⊂ N, yM 6⊂ N.
Thus xM +N properly contains N , so xM +N is finitely generated. Let a finite spanning
set of xM +N be xmi + ni (i = 1, . . . , k). (warning: n1, . . . , nk do not span N , as N is not
finitely generated.) Then

xM +N =
k∑
i=1

Rxmi +
k∑
i=1

Rni.
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(Just check a spanning set of the module on each side is in the other side.) For any
n ∈ N ⊂ xM +N ,

n = r1xm1 + · · ·+ rkxmk + r′1n1 + · · ·+ r′knk

= x(r1m1 + · · ·+ rkmk) + r′1n1 + · · ·+ r′knk(2.2)

where ri, r′i ∈ R. Thus x(r1m1 + · · ·+ rkmk) ∈ N , so r1m1 + · · ·+ rkmk lies in

L := {m ∈M : xM ⊂ N},

which is a submodule of M . Note

N ⊂ L, yM ⊂ L, yM 6⊂ N.

Therefore N is a proper subset of L, so L is finitely generated. By (2.2),

n ∈ xL+
k∑
i=1

Rni,

so

N ⊂ xL+
k∑
i=1

Rni.

The reverse inclusion is straightforward (use the definition of L), so

N = xL+
k∑
i=1

Rni.

The right side is finitely generated, which is a contradiction since N is not finitely generated.
Thus p is a prime ideal in R.

(At this point, if we had been taking M = R as in Cohen’s theorem, then N would be
an ideal and AnnR(M/N) = AnnR(R/N) is equal to N , so N = p is prime and we would
have finished proving Cohen’s theorem.)

It remains to show pM is not finitely generated. What we will do is show N = pM +Q
for some finitely generated R-module Q. Then, since N is not finitely generated, pM can’t
be finitely generated either.

Since, by hypothesis, M is finitely generated, write M = Re1 + · · · + Re`. (We are not
assuming the ei’s are linearly independent in any sense, just a spanning set.) Then M/N
is spanned over R by the reductions e1, . . . , ek, so

p = AnnR(M/N) =
⋂̀
i=1

AnnR(Rei).

The ideal p is inside each AnnR(Rei), but in fact it must equal one of these: if not then each
AnnR(Rei) contains an element ri outside p, but then the product of those ri’s (over all i) is
an element outside of p (because p is prime) while at the same time the product of the ri’s
kills each ei, so this product is in each annihilator and hence is in p. This is absurd, so p is the
annihilator of some Rei. Without loss of generality, p = AnnR(Re1) = {r ∈ R : re1 ⊂ N}.

Since p 6= R, also e1 6= 0 in M/N , and thus e1 6∈ N , so Re1 6⊂ N . Therefore Re1 + N
properly contains N so it is finitely generated, say by rje1 +nj (j = 1, . . . , d). For n ∈ N ⊂
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Re1 +N , write

n =
d∑
j=1

aj(rje1 + nj) =

 d∑
j=1

ajrj

 e1 +
d∑
j=1

ajnj ,

with aj ∈ R. The coefficient of e1 scales e1 into N by this equation, so the coefficient of e1
is in p. Thus

N ⊂ pe1 +
d∑
j=1

Rnj .

The reverse inclusion is easy, so

N = pe1 +
d∑
j=1

Rnj ⊂ pM +
d∑
j=1

Rnj ⊂ N +N = N.

Thus N = pM+
∑d

j=1Rnj , so N not being finitely generated forces pM not to be finitely
generated, which is what we wanted to show. �

3. Application to divisible groups

An abelian group D is called divisible if the function x 7→ nx is surjective for every n ≥ 1.
(We write the group operation additively.) That is, every element of D is an “nth power”
for any n ≥ 1. For example, R/Z and Q/Z are divisible groups. Working multiplicatively,
the group C× and its subgroups S1 and µ∞ (the complex roots of unity) are all divisible
groups. The function x 7→ e2πix sets up isomorphisms R/Z ∼= S1 and Q/Z ∼= µ∞.

Using Zorn’s lemma, we will show homomorphisms into a divisible group have an ex-
tension property. In this section the label “homomorphism” always means “group homo-
morphism.” Our argument will be a prototype for the way we use Zorn’s lemma in the
next section to extend homomorphisms between fields, and the same method is how Zorn’s
lemma is used to prove the Hahn-Banach theorem in functional analysis.

Theorem 3.1. Let D be a divisible group. If A is any abelian group and B ⊂ A is a
subgroup, any homomorphism f : B → D can be extended to a homomorphism f̃ : A→ D.

Proof. Pick any a ∈ A with a 6∈ B. Then the subgroup 〈B, a〉 = B + Za spanned by B and
a contains B. As a warm-up we will show how to extend f to this larger subgroup of A.
(See the diagram below.) Then we will bring in Zorn’s lemma.

A

〈B, a〉

""
B

6=

f
// D.

Consider how 〈a〉 can meet B. The set {k ∈ Z : ka ∈ B} is a subgroup of Z, so it is 0
or nZ for some n ≥ 1. If it is 0 then each element of 〈B, a〉 is b+ kx for unique b ∈ B and
k ∈ Z. Define f ′ : 〈B, a〉 → D by f ′(b + kx) = f(b). This is well-defined (why?) and it is
a homomorphism with f ′|B = f . If instead {k ∈ Z : ka ∈ B} = nZ for some n ≥ 1 then
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some positive multiple of a lies in B, and na is that multiple with n minimal. The function
f makes sense at na, but not at a. If we can extend f to a homomorphism f ′ : 〈B, a〉 → D
then f ′(a) would have to satisfy the relation nf ′(a) = f ′(na) = f(na). Here f(na) is already
defined. To pick a choice for f ′(a) we need to find d ∈ D such that nd = f(na). This can be
done because D is divisible. Having chosen such a d, define f ′(a) = d and more generally

f ′(b+ ka) = f(b) + kd.

Is this well-defined? If b+ ka = b′ + k′a then (k − k′)a = b′ − b ∈ B, so k − k′ ∈ nZ by the
definition of n. Write k = k′ + n` for some ` ∈ Z, so

f(b) + kd = f(b) + (k′ + n`)d
= f(b) + k′d+ `(nd)
= f(b) + k′d+ `f(na)
= f(b+ `na) + k′d.

Since b+ `na = b+ (k − k′)a = b+ ka− k′a = b′ + k′a− k′a = b′ we have

f(b) + kd = f(b′) + k′d.

Thus f ′ : 〈B, a〉 → D is well-defined. It is left to the reader to show it is a homomorphism.
Now we show Zorn’s lemma can be applied. Example 1.7 is the paradigm.
Let S be the set of pairs (C, g) where C is a subgroup between B and A and g : C → D

is a homomorphism that extends f (that is, g|B = f). The picture is as follows.

A

C

g   A
AA

AA
AA

A

B
f
// D.

The set S is nonempty since (B, f) ∈ S. Partially order S by declaring (C, g) ≤ (C ′, g′)
if C ⊂ C ′ and g′|C = g. That is, g′ extends g to the larger intermediate subgroup C ′.

A

C ′

g′

��1
11

11
11

11
11

11
11

C

g !!B
BB

BB
BB

B

B
f
// D.

If {(Ci, gi)}i∈I is a totally ordered subset of S, then it has an upper bound in S: use
C =

⋃
i∈I Ci as the subgroup (it really is a subgroup, using an argument by now quite

familiar from past setups for Zorn’s lemma) and let g : C → D by g(x) = gi(x) if x ∈ Ci.
Is this well-defined? Well, supposing x is in Ci and Cj , we need to know gi(x) = gj(x).
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Either (Ci, gi) ≤ (Cj , gj) or (Cj , gj) ≤ (Ci, gi) since the (Ci, gi)’s are totally ordered in S.
If (Ci, gi) ≤ (Cj , gj) then Ci ⊂ Cj and gj |Ci = gi, so gj(x) = gi(x). That gi(x) = gj(x) if
(Cj , gj) ≤ (Ci, gi) is proved the same way. Because any two elements in C lie in a common
Ci by Lemma 1.9, g is a homomorphism because each gi is a homomorphism. Since gi|B = f
for all i, g|B = f . Thus (C, g) ∈ S and (C, g) is an upper bound on {(Ci, gi)}i∈I .

We have verified the hypotheses of Zorn’s lemma, so S has a maximal element (M,h).
That is, M is a group between B and A, h : M → D is a homomorphism and there is no
extension of h to a homomorphism out of a larger subgroup of A than M . We will show
M = A by contradiction. If M 6= A then there is some a ∈ A with a 6∈M . By the argument
used at the start of this proof, with B and f there replaced by M and h here, h can be
extended to a homomorphism 〈M,a〉 → D.

A

〈M,a〉

##
M

6=

h
// D.

This contradicts the maximality of (M,h), so M = A. �

This application of Zorn’s lemma generalizes from abelian groups (Z-modules) to modules
over any commutative ring R, and is called Baer’s characterization of injective R-modules.
(An R-module is injective when it is a direct summand of any module it can be embedded
in.) See [7, p. 396] or [16, p. 483]. Divisible abelian groups are injective Z-modules.

Let’s use Zorn’s lemma to do something crazy: show there is a “maximal” group. On the
set of all groups, define the partial ordering by inclusion. This is a partial ordering. If {Gα}
is a totally ordered set of groups, let G be the union of the Gα’s. Any two elements in G are
in a common Gα, so it is easy to define the group law in G (use the group law in Gα), check
it is well-defined (independent of the Gα containing the two elements), and G contains all
Gα’s. So now it seems, by Zorn’s lemma, that we should have a maximal group: a group
that is not contained in any larger group. This is absurd, since for any group G we can
create G× Z and literally (if you wish) replace the elements of G× {0} with the elements
of G to make G a geniune subset of G×Z. Then G is properly contained in another group
and we have contradicted maximality. What is the error?

The problem here is right at the start when we defined our partially ordered set as the
“set of all groups.” This is the kind of set-theoretic looseness that leads to paradoxes (set
of all sets, etc.). In fact, the group-theoretic aspect of the construction was irrelevant for
the contradiction: if we just worked with sets and containment, the same argument goes
through to show there is a set contained in no other sets, which is false and contains the
same error as above: there is no “set of all sets” that one can partially order to make Zorn’s
lemma apply. Looking back now, perhaps with some suspicion, at the proofs where we
created an upper bound on a totally ordered subset of a partially ordered set relative to
some kind of inclusion relation, the objects that we formed the union of were always subsets
of some larger fixed set (ideals in a ring, subgroups of a group). In that context the union
really makes sense. It doesn’t make sense to take arbitrary unions of arbitrary sets that a
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priori don’t live in some common set. As an extreme case, we can’t take the union of “all
sets” to find one set containing all others.

The following exercise applies Zorn’s lemma as in Theorem 3.1 to another setting.

Exercise. Let K and F be fields. There need not be a homomorphism K → F (e.g.,
K = Q and F = F2). But assume some subring of K admits a ring homomorphism to F
(e.g., if K has characteristic 0 then Z ⊂ K and there is certainly a ring homomorphism
Z→ F , while if K and F both have characteristic p > 0 then Z/(p) is a subfield of K and
F so there is an inclusion homomorphism Z/(p) ↪→ F ).

a) Let S be the set of pairs (A, f) where A is a subring of K and f : A → F is a ring
homomorphism, so S 6= ∅ by hypothesis. Partially order S by (A, f) ≤ (B, g) if A ⊂ B and
g|A = f . Show with Zorn’s lemma that S contains a maximal pair, which amounts to a
subring A ⊂ K that admits a ring homomorphism f : A → F that can’t be extended to a
ring homomorphism out of any larger subring of K.

b) When K = Q and F = Z/(2), show the ring of fractions {m/n : m ∈ Z, n ∈
Z−{0}, n is odd} admits a homomorphism to Z/(2) and is the ring part of a maximal pair
(A, f) in S. (Note Q itself is not part of a maximal pair since there is no ring homomorphism
from Q to Z/(2).) What is the kernel of this homomorphism?

c) If (A, f) is a maximal pair in S, show every element of A not in ker f is a unit in A, and
therefore ker f is the only maximal ideal in A. (A ring with only one maximal ideal is called
a local ring. Trying to find a maximal subring of one field that admits a homomorphism to
another field gives rise, using Zorn’s lemma, to local rings.)

4. Applications to bases

We want to use Zorn’s lemma to prove an arbitrary nonzero vector space has a basis.
Let’s first make sure we know what the label “basis” means when we are dealing with vector
spaces that may turn out to be infinite-dimensional. For a nonzero vector space V over a
field F , a basis of V is a subset B of V that is linearly independent (i.e., no finite subset of
B has a nontrivial F -linear relation) and spans V (i.e., every element of V is an F -linear
combination of finitely many elements of B).

Notice the finiteness assumptions built into linear independence and spanning sets, even
if the basis itself is infinite: linear independence involves a finite linear combination equal
to 0, and spanning sets involve finitely many vectors at a time. In analysis one deals with
infinite linear combinations once a suitable topology has been introduced on the vector
space. Such a topological basis is not covered by our use of the label “basis” here. Our
more algebraically-oriented concept involving only finite linear combinations is sometimes
called a Hamel basis. For us, bases are used only through finite linear combinations.

Theorem 4.1. Every nonzero vector space contains a basis.

Proof. The idea is that a basis can be constructed as a maximal linearly independent set,
and this maximal set will be found with Zorn’s lemma.

Let V be a nonzero vector space and let S be the set of linearly independent sets in V .
For instance, a single nonzero v ∈ V is a linearly independent set, so {v} ∈ S. Thus S 6= ∅.

For two linearly independent sets L and L′ in V , declare L ≤ L′ if L ⊂ L′. This is the
partial ordering on S by inclusion. It is easy to see that any subset of a linearly independent
set is also a linearly independent set, so if L ∈ S then any subset of L is also in S.

Assume {Lα}α∈A is a totally ordered subset of S. That is, every Lα is a linearly inde-
pendent set in V and for any Lα and Lβ in our subset we have Lα ⊂ Lβ or Lβ ⊂ Lα. An
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upper bound for the Lα’s in S is the union L =
⋃
α∈A Lα. Well, we need to check L is really

a linearly independent set (so L ∈ S); once that is settled then L is an upper bound in S
since Lα ⊂ L for all α ∈ A.

Pick any finite set of vectors v1, . . . , vn in L. We must show they are linearly independent.
Each vk is in some Lα, say v1 ∈ Lα1 , . . . , vn ∈ Lαn . Since the Lα’s are totally ordered, one
of the sets Lα1 , . . . , Lαn contains the others (Lemma 1.9). That means v1, . . . , vn are all in
a common Lα, so they are linearly independent.

Zorn’s lemma now tells us that S contains a maximal element: there is a linearly inde-
pendent set B in V that is not contained in any larger linearly independent set in V . We
will show B spans V , so it is a basis.

Let W be the span of B. That means W is the set of all finite F -linear combinations∑k
i=1 civi with k ≥ 1, ci ∈ F , and vi ∈ B. If B does not span V then W 6= V , so we can

pick v ∈ V with v 6∈ W . Then B is a proper subset of B ∪ {v}. We will show B ∪ {v} is
linearly independent, which contradicts the maximality of B and thus proves W = V .

To prove B ∪ {v} is linearly independent, assume otherwise: there is an expression

k∑
i=1

civi = 0

where the coefficients are not all 0 and the vi’s are taken from B ∪ {v}. Since the elements
of B are linearly independent, one of the vi’s with a nonzero coefficient must be v. We can
re-index and suppose vk = v, so ck 6= 0. We must have k ≥ 2, since otherwise c1v = 0,
which is impossible since v 6= 0 and the coefficient of v is nonzero. Then

ckv = −
k−1∑
i=1

civi.

Multiplying both sides by 1/ck,

v =
k−1∑
i=1

(
− ci
ck

)
vi,

which shows v ∈W . But v 6∈W , so B ∪ {v} is a linearly independent set. �

Corollary 4.2. Every linearly independent subset of a nonzero vector space V can be
extended to a basis of V . In particular, every subspace W of V is a direct summand:
V = W ⊕ U for some subspace U of V .

Proof. Let L be a linearly independent subset of V . A basis of V containing L will be found
as a maximal linearly independent subset containing L.

Take S to be the set of linearly independent sets in V that contain L. For instance,
L ∈ S, so S 6= ∅. The same argument as in the proof of Theorem 4.1 shows every totally
ordered subset of S has an upper bound. (If the Lα’s are linearly independent sets in V
that each contain L then their union L also contains L, and L ∈ S because the Lα’s are
totally ordered, by a kind of argument we’ve made before.)

By Zorn’s lemma there is a maximal element of S. This is a linearly independent set in
V that contains L and is maximal with respect to inclusion among all linearly independent
sets in S containing L. The proof that a maximal element of S is a basis of V follows just
as in the proof of Theorem 4.1.
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To prove any subspace W ⊂ V is a direct summand, let L be a basis of W . There is a
basis B of V containing L. Let U be the span of the complement B − L. It is left to the
reader to show V = W + U and W ∩ U = {0}, so V = W ⊕ U . �

Corollary 4.3. Every spanning set of a nonzero vector space V contains a basis of V .

Proof. Let S be a spanning set of V . Consider the set of linearly independent subsets of S.
This is a nonempty set, as {v} is linearly independent for any v ∈ S. Partially order the set
of linearly independent subsets of S by inclusion. If {Li} is a totally ordered subset then⋃
i Li is a linearly independent subset of S and an upper bound on the Li’s. So by Zorn’s

lemma there is a maximal element B: a linearly independent subset of S that is maximal
with respect to inclusion. We will show B is a spanning set for V so it is a basis. Because S

spans V , it is enough to show every element of S is in the span of B to know V is spanned
by B. If some v ∈ S is not in the span of B then B ∪ {v} is a linearly independent set and
it is a subset of S that strictly contains B. This contradicts the maximality of B in S. �

Remark 4.4. To find a basis of V inside a spanning set S, a natural first idea might be to
find a minimal spanning set of V inside of S rather than a maximal linearly independent
subset. The minimality of a spanning set would force its linear independence and thus give
us a basis. It is obvious how to use Zorn’s lemma here: consider the set of all spanning sets
of V inside S, and partially order it by reverse inclusion. If {Si} is a totally ordered subset
then the intersection

⋂
i Si should be an upper bound on all the Si’s (we’re using reverse

inclusion, so an upper bound would be a spanning set contained in every Si), and then
Zorn’s lemma gives us maximal elements, which will be minimal spanning sets. But there’s
a problem: how do you prove

⋂
i Si is a spanning set? You can’t; it’s not generally true.

For example, let V = Q as a Q-vector space, enumerate the rationals as {r1, r2, r3, . . . }
and let Si equal Q with the first i rationals removed. Each Si is a spanning set of Q as a
Q-vector space, and the Si’s are totally ordered by reverse inclusion, but their intersection
is empty. This is an instructive case where it seems clear how Zorn’s lemma should work,
but it doesn’t work!

Corollary 4.5. Every nonzero module over a division ring has a basis, any linearly in-
dependent subset of the module can be extended to a basis, and every spanning set of the
module contains a basis.

Proof. We never used commutativity of the coefficient field in the proofs of Theorem 4.1 or
its previous corollaries, except at the end of the proof of Theorem 4.1 where we wrote ci/ck.
If we write this more carefully as c−1

k ci then the proof goes through when the coefficient ring
is a division ring: multiply through on the left by c−1

k to solve for v as a linear combination
of v1, . . . , vk−1. The proofs of Corollaries 4.2 and 4.3 also go through with a division ring
as the coefficient ring. �

Over commutative rings that are not fields, modules need not be free. And even in a free
module, a linearly independent subset need not extend to a basis and a submodule need
not be a direct summand. For instance, the one-element linearly independent set {(4, 6)}
in Z2 can’t be extended to a basis of Z2 and the submodule (2Z)2 is not a direct summand
of Z2. The reason our proofs for vector spaces over fields don’t carry over to Z-modules is
that nonzero integers generally don’t have inverses in Z.

Here’s an amusing corollary of the existence of bases in an arbitrary (especially infinite-
dimensional) vector space.
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Corollary 4.6. If G is a group with more than two elements then G has a nontrivial
automorphism.

Proof. If G is nonabelian then some element of G is not in the center, so conjugation by
that element is a nontrivial automorphism of G. If G is abelian then inversion (sending
each element to its inverse) is an automorphism, and it is nontrivial unless every element
is its own inverse. If G is abelian and every element is its own inverse then every element
is killed by 2 (x = −x ⇒ 2x = 0), so G is a vector space over Z/(2). Let {ei}i∈I be a
basis of G over Z/(2). If there is more than one basis element, then exchanging two basis
elements while fixing the rest extends to an automorphism of G. The only case remaining
is a Z/(2)-vector space with a basis of size at most 1. Such groups are trivial or cyclic of
order 2, and their only automorphism is the identity. �

5. Equivalences with Zorn’s lemma

We have used Zorn’s lemma to prove existence theorems in algebra, but some of these
results can be reversed: Zorn’s lemma is equivalent to the existence of bases in arbitrary
vector spaces [5, 12] and also to the existence of a maximal ideal in any nonzero commutative
ring [1, 10]; actually, the existence of a maximal ideal in any unique factorization domain
is enough to derive Zorn’s lemma. Zorn’s lemma is also equivalent to Theorem 3.1 [4].

In topology, Tychonoff’s theorem in its general form (allowing compact non-Hausdorff
spaces) is equivalent to Zorn’s lemma [11], but Tychonoff’s theorem for products of compact
Hausdorff spaces [18] is strictly weaker than Zorn’s lemma since it is consistent with Zermelo-
Fraenkel set theory plus a strong negation of Zorn’s lemma [8]. Tychonoff’s theorem for
Hausdorff spaces is equivalent to the existence of maximal ideals in all nonzero Boolean rings,
which (by definition) are the rings satisfying x2 = x for all x. In functional analysis, the
Hahn-Banach theorem is weaker than Zorn’s lemma [15] while the Krein-Milman theorem
is equivalent to it [3].

Surveys on equivalents to, and consequences of, Zorn’s lemma are [9, 17].

Appendix A. Application to metric spaces

In a real vector space V , the line between vectors v and w is defined to be the set
{tv+(1− t)w : 0 ≤ t ≤ 1}. A subset of V is called convex if it contains the line between any
two points in the set. This notion of convexity, while very important in analysis, depends
heavily on the real vector space structure: we used real scalars between 0 and 1 and also
vector addition. There is a notion of convexity in arbitrary metric spaces, whose definition
is based on the idea that the “line” between two points should contain only points in which
the triangle inequality is an equality.

In a metric space (M,ρ), a subset S will be called convex if for any x 6= y in S there is
a z 6= x, y in S such that ρ(x, y) = ρ(x, z) + ρ(z, y). We circumvented the lack of a real
vector space structure by not defining the line between x and y, but rather the points that
ought to lie on any such “lines.” (This definition of convex does not quite match the notion
in Euclidean space: an open star-shaped region of Rn is not convex in the usual sense but
is convex in the abstract sense above. However, for closed subsets of Rn with the metric
induced from Rn, the above notion of convex does match the usual meaning of the term.)

It may appear that our definition is quite weak: we only assume there is one such z.
But by repeating the construction with x, y replaced by x, z, we can get more such points,
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although we don’t have much control over the actual distances we can achieve for points
“between” x and y. Zorn’s lemma will offer that control when we are in a complete space.

Theorem A.1. Let (M,ρ) be a complete convex metric space. For distinct points x and y in
M and t ∈ [0, ρ(x, y)], there is a z ∈M such that ρ(x, z) = t (and ρ(x, y) = ρ(x, z)+ρ(z, y)).

Proof. We will use Zorn’s lemma twice. Also, we will need to use the formulation of com-
pleteness in terms of nets, not sequences: any Cauchy net in a complete metric space
converges.

First we define some notation. For a, b ∈M , let

[a, b] := {c ∈M : ρ(a, b) = ρ(a, c) + ρ(c, b)}.

For instance, this set contains a and b, and by hypothesis it contains a point besides a and b
when a 6= b. Intuitively, [a, b] is the set of points lying on geodesics from a to b. It is helpful
when reading the following discussion to draw many pictures of line segments with points
marked on them. Given t between 0 and ρ(x, y), we will find a z ∈ [x, y] with ρ(x, z) = t.

Some simple properties of these “intervals” are:
(1) [a, b] = [b, a].
(2) If c ∈ [a, b] and b ∈ [a, c], then ρ(b, c) = −ρ(b, c), so b = c.

Less simple properties are
(3) If b ∈ [a, c] then [a, b] ⊂ [a, c] and [b, c] ⊂ [a, c].
(4) If b ∈ [a, d] and c ∈ [b, d] then [a, c] ⊂ [a, d], [b, d] ⊂ [a, d], and [b, c] = [a, c] ∩ [b, d] ⊂

[a, d]. (We will only need that [b, c] lies in the intersection, not equality.)
Proof of (3): Without loss of generality, we show [a, b] ⊂ [a, c]. For p in [a, b],

ρ(a, c) ≤ ρ(a, p) + ρ(p, c)
≤ ρ(a, p) + ρ(p, b) + ρ(b, c)
= ρ(a, b) + ρ(b, c)
= ρ(a, c).

Therefore p ∈ [a, c].
Proof of (4): By (3), [b, d] ⊂ [a, d] and [b, c] ⊂ [b, d]. Therefore c ∈ [a, d], so [a, c] ⊂ [a, d],

so

ρ(a, d) = ρ(a, c) + ρ(c, d)
≤ ρ(a, b) + ρ(b, c) + ρ(c, d)
= ρ(a, b) + ρ(b, d)
= ρ(a, d).

Therefore the inequality is an equality, so b ∈ [a, c], so [b, c] ⊂ [a, c]. Thus [b, c] ⊂ [a, c]∩[b, d].
For the reverse inclusion, let p ∈ [a, c] ∩ [b, d]. Then

ρ(a, d) = ρ(a, b) + ρ(b, d)
= ρ(a, b) + ρ(b, c) + ρ(c, d)
≤ ρ(a, b) + ρ(b, p) + ρ(p, c) + ρ(c, d)
= ρ(a, b) + ρ(b, d)− ρ(p, d) + ρ(a, c)− ρ(a, p) + ρ(c, d)
= 2ρ(a, d)− ρ(p, d)− ρ(a, p).
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Rearranging terms, ρ(a, p) + ρ(p, d) ≤ ρ(a, d), so there is equality throughout, so ρ(b, c) =
ρ(b, p) + ρ(p, c). Thus p ∈ [b, c].

Now we are ready to investigate “geodesics” on M coming out of x. Define a partial
ordering on M that might be called “closer to x on geodesics” by

z1 ≤ z2 if and only if z1 ∈ [x, z2].

In particular, z1 ≤ z2 implies ρ(x, z1) ≤ ρ(x, z2).
Let’s check this is a partial ordering.
If z1 ≤ z2 and z2 ≤ z1, then z1 ∈ [x, z2] and z2 ∈ [x, z1], so z1 = z2 by (2).
If z1 ≤ z2 and z2 ≤ z3 then z1 ∈ [x, z2] and z2 ∈ [x, z3]. By (1), z2 ∈ [z3, x] and z1 ∈ [z2, x].

Therefore by (4),
z1 ∈ [z1, z2] ⊂ [x, z3],

hence z1 ≤ z3.
Define

A = {z ∈ [x, y] : ρ(x, z) ≤ t}.
This set is nonempty, since it contains x. We will apply Zorn’s Lemma to A with its induced
partial ordering and show a maximal element of A has distance t from x.

Let {zi}i∈I be a totally ordered subset of A. We want an upper bound. Let

s = sup
i∈I

ρ(x, zi) ≤ t.

for any ε > 0, there is some i0 such that

s− ε ≤ ρ(x, zi0) ≤ s,
so

s− ε ≤ ρ(x, zi) ≤ s
for all i ≥ i0. For i0 ≤ i ≤ j, s− ε ≤ ρ(x, zi) ≤ s and

s− ε ≤ ρ(x, zj) = ρ(x, zi) + ρ(zi, zj) ≤ s
so ρ(zi, zj) ≤ ε. Thus {zi} is a Cauchy net, so has a limit ` by completeness of M . We
show this limit is an upper bound in A.

Taking limits,

ρ(x, y) = ρ(x, zi) + ρ(zi, y)⇒ ρ(x, y) = ρ(x, `) + ρ(`, y)

ρ(x, zi) ≤ t⇒ ρ(x, `) ≤ t.
Thus ` ∈ A.

For i ≤ j,
ρ(x, zj) = ρ(x, zi) + ρ(zi, zj).

Taking limits over j,
ρ(x, `) = ρ(x, zi) + ρ(zi, `),

so zi ∈ [x, `], so zi ≤ ` for all i.
We have justified an application of Zorn’s Lemma to A. Let m be a maximal element.

That is, m ∈ A, and if z ∈ A with m ∈ [x, z] then z = m.
Let B = {z ∈ [y,m] : ρ(y, z) ≤ ρ(x, y)− t}. Since y ∈ B, B is nonempty. Our goal is to

show m ∈ B, which is not obvious. Note that the definition of B depends on the existence
of a maximal element of A.

In B, introduce a partial ordering by z1 ≤ z2 when z1 ∈ [y, z2].
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As above, every totally ordered subset of B has an upper bound in B, so by Zorn’s lemma
B contains a maximal element, m′. Since m ∈ [x, y] and m′ ∈ [m, y], we get by (4) that

[m,m′] ⊂ [x,m′] ∩ [m, y] ⊂ [x, y].

For z ∈ [m,m′],

z ∈ [x, y] ⇒ ρ(x, y) = ρ(x, z) + ρ(y, z)
⇒ ρ(x, z) ≤ t or ρ(y, z) ≤ ρ(x, y)− t
⇒ z ∈ A or z ∈ B.

Also,

ρ(x, y) = ρ(x, z) + ρ(z, y)
≤ ρ(x,m) + ρ(m, z) + ρ(z, y)
= ρ(x,m) + ρ(m, y) since z ∈ [m, y]
= ρ(x, y) since m ∈ [x, y].

Therefore ρ(x, z) = ρ(x,m) + ρ(m, z), so m ∈ [x, z].
We now have

ρ(x, y) = ρ(x, z) + ρ(z, y) since z ∈ [x, y]
≤ ρ(x, z) + ρ(z,m′) + ρ(m′, y)
= ρ(x,m′) + ρ(m′, y) since z ∈ [x,m′]
= ρ(x, y) since m′ ∈ [x, y].

Therefore ρ(y, z) = ρ(z,m′) + ρ(m′, y), so m′ ∈ [y, z].
Thus if z ∈ A then m ∈ [x, z]⇒ z = m. If z ∈ B, then m′ ∈ [y, z]⇒ z = m′. Therefore

[m,m′] = {m,m′}, so by convexity of M , m = m′, hence m ∈ A∩B. Therefore ρ(x,m) ≤ t
and ρ(y,m) ≤ ρ(x, y)− t, so

ρ(x, y) = ρ(x,m) + ρ(m, y) ≤ ρ(x, y),

so ρ(x,m) = t. �

The z we constructed in the proof need not be unique. Consider M to be the sphere
in R3 with its surface metric, x and y to be the north and south poles and take z to be
any of the points on some chosen line of latitude. It is natural to expect that if ρ(x, y) is
small enough, the z in Theorem A.1 is unique, and this would let us construct paths in M .
For a proof (without Zorn’s lemma!) that any complete convex metric space is in fact path
connected, see [6, Theorem 14.1, p. 41].
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