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SUMMARY

Chronic stress could trigger maladaptive changes
associated with stress-related mental disorders;
however, the underlyingmechanisms remain elusive.
In this study, we found that exposing juvenile male
rats to repeated stress significantly impaired the
temporal order recognition memory, a cognitive
process controlled by the prefrontal cortex (PFC).
Concomitantly, significantly reduced AMPAR- and
NMDAR-mediated synaptic transmission and gluta-
mate receptor expression were found in PFC pyra-
midal neurons from repeatedly stressed animals.
All these effects relied on activation of glucocorti-
coid receptors and the subsequent enhancement
of ubiquitin/proteasome-mediated degradation of
GluR1 and NR1 subunits, which was controlled by
the E3 ubiquitin ligase Nedd4-1 and Fbx2, respec-
tively. Inhibition of proteasomes or knockdown of
Nedd4-1 and Fbx2 in PFC prevented the loss of glu-
tamatergic responses and recognition memory in
stressed animals. Our results suggest that repeated
stress dampens PFC glutamatergic transmission
by facilitating glutamate receptor turnover, which
causes the detrimental effect on PFC-dependent
cognitive processes.

INTRODUCTION

Adrenal corticosterone, the major stress hormone, through the

activation of glucocorticoid receptor (GR) and mineralocorticoid

receptor (MR), can induce long-lasting influences on cognitive

and emotional processes (McEwen, 2007). Mounting evidence

suggests that inappropriate stress responses act as a trigger

for many mental illnesses (de Kloet et al., 2005). For example,

depression is associated with hypercortisolaemia (excessive

cortisol; Holsboer, 2000; van Praag, 2004), whereas posttrau-

matic stress disorder (PTSD) has been linked to hypocortisolae-

mia (insufficient cortisol), resulting from an enhanced negative

feedback by cortisol (Yehuda, 2002). Thus, corticosteroid
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hormones are thought to serve as a key controller for adaptation

and maintenance of homeostasis in situations of acute stress,

as well as maladaptive changes in response to chronic and

repeated stress that lead to cognitive and emotional distur-

bances symptomatic of stress-related neuropsychiatric disor-

ders (Newport and Nemeroff, 2000; Caspi et al., 2003; de Kloet

et al., 2005; Joëls, 2006; McEwen, 2007).

One of the primary targets of stress hormones is the prefrontal

cortex (McEwen, 2007), a region controlling high-level ‘‘ex-

ecutive’’ functions, including working memory, inhibition of

distraction, novelty seeking, and decision making (Miller, 1999;

Stuss and Knight, 2002). Chronic stress or glucocorticoid

treatment has been found to cause structural remodeling and

behavioral alterations in the prefrontal cortex (PFC) from adult

animals, such as dendritic shortening, spine loss, and neuronal

atrophy (Cook and Wellman, 2004; Radley et al., 2004, 2006),

as well as impairment in cognitive flexibility and perceptual

attention (Cerqueira et al., 2005, 2007; Liston et al., 2006).

However, little is known about the physiological consequences

and molecular targets of long-term stress in PFC, especially

during the adolescent period when the brain is more sensitive

to stressors (Lupien et al., 2009).

It has been proposed that glutamate receptor-mediated

synaptic transmission that controlsPFCneuronal activity is crucial

for working memory (Goldman-Rakic, 1995; Lisman et al., 1998).

Our recent studies have found that acute stress induces a sus-

tained potentiation of glutamate receptor membrane trafficking

and glutamatergic transmission in rat PFC (Yuen et al., 2009,

2011), providing a molecular and cellular mechanism for the

beneficial effects of acute stress on working memory. Since

dysfunction of glutamatergic transmission is considered the core

feature and fundamental pathology of mental disorders (Tsai and

Coyle, 2002;Moghaddam,2003;Frankleet al., 2003), in this study,

we sought to determine whether repeated (subchronic) stress

might negatively influence PFC-mediated cognitive processes

by disturbing glutamatergic signaling in juvenile animals.

RESULTS

Exposure to Repeated Stress Impairs Object
Recognition Memory
To test the impact of stress on cognitive functions, we mea-

sured the recognition memory task, a fundamental explicit
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Figure 1. Rats Exposed to Repeated Stress or

Infused with Glutamate Receptor Antagonists to

PFC Exhibit Worse Performance on the Temporal

Order Recognition Memory Task

(A) Bar graphs (mean ± SEM) showing the discrimination

ratio (DR) of TOR tasks in control groups versus animals

exposed to 7 day restraint stress without or with RU486

injection (10 mg/kg, intraperitoneal daily at 30 min before

stress). **p < 0.001, ANOVA.

(B) Bar graphs (mean ± SEM) showing the DR of TOR tasks

in control groups versus stressed animals (restraint, 7 day)

with PFC infusion of vehicle or RU486 (1.4 nmol/g, daily at

40 min before stress). Another group of animals was given

repeated injections of CORT to the PFC (0.87 nmol/g,

7 day). *p < 0.01; #p < 0.05, ANOVA.

(C) Bar graphs (mean ± SEM) showing the DR of TOR tasks

in control groups versus animals exposed to 7 day

unpredictable stress. **p < 0.001, t test.

(D) Bar graphs (mean ± SEM) showing the DR of object

location tasks in control groups versus animals exposed to

7 day restraint stress.

(E) Bar graphs (mean ± SEM) showing the time spent at the

center in open-field tests and the number of midline

crossing in control versus stressed (restraint, 5 day) rats.

(F) Bar graphs (mean ± SEM) showing the DR of TOR tasks

in control groups, stressed animals (restraint for 1, 3, 5,

and 7 days), and animals withdrawn (WD; for 3 or 5 days)

from 7 day restraint stress. **p < 0.001; *p < 0.01, t test.

(G) Bar graphs (mean ± SEM) showing the DRof TOR tasks

in animals with PFC infusion of saline versus glutamate

receptor antagonists (APV: 1 mM, CNQX: 0.2 mM, 1 ml

each side). The infusion was performed via an implanted

cannula at 20 min before behavioral experiments. **p <

0.001, t test.
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memory process requiring judgments of the prior occurrence

of stimuli based on the relative familiarity of individual objects,

the association of objects and places, or the recency in-

formation (Ennaceur and Delacour, 1988; Dix and Aggleton,

1999; Mitchell and Laiacona, 1998). Lesion studies have

shown that the medial prefrontal cortex plays an obligatory

role in the temporal order recognition (TOR) memory (Barker

et al., 2007) so this behavioral task was used. Young

(4-week-old) male rats, who had been exposed to 7 day re-

peated behavioral stressors, were examined at 24 hr after

stressor cessation.

The control groups spent much more time exploring the

novel (less recent) object in the test trial (familiar recent object:

9.9 s ± 2.4 s, novel object: 19.9 s ± 2.4 s, n = 7, p < 0.01), whereas

the stressed rats (restraint, 2 hr/day, 7 day) lost the preference

to the novel object (familiar recent object: 15.2 s ± 2.4 s; novel
Neuron 73,
object: 11.0 s ± 2.8 s, n = 5, p > 0.05). The

discrimination ratio (DR), an index of the object

recognition memory, showed a significant

main effect (Figure 1A, F3,24 = 9.8, p < 0.001,

analysis of variance [ANOVA]). Post hoc anal-

ysis indicated a profound impairment of TOR

memory by repeated stress (DR in control:

36.7% ± 6.6%, n = 7; DR in stressed:

�19.6% ± 3.8%, n = 5, p < 0.001), which was
blocked by systemic injection of the GR antagonist RU486

(DR in RU486: 41.6% ± 9.0%, n = 6; DR in RU486+stress:

38.8% ± 11.2%, n = 7, p > 0.05).

To test whether GR in the PFC mediates the detrimental

effect of repeated stress on cognition, we performed stereotaxic

injections of RU486, vehicle control, or corticosterone to PFC

prelimbic regions bilaterally via an implanted guide cannula

(Yuen et al., 2011). A significantmain effect was found (Figure 1B,

F4,30 = 5.1, p < 0.005, ANOVA), and post hoc analysis indicated

that repeated restraint stress impaired TOR memory in rats

injected with vehicle (DR in veh: 38.7% ± 12.0%, n = 7; DR in

veh+stress:�17.5% ± 9.1%, n = 6, p < 0.01), an effect mimicked

by repeated CORT injections (0.87 nmol/g, 7 day, �10.5% ±

12.7%, n = 6, p < 0.05), whereas such impairment was prevented

by RU486 delivered to PFC (1.4 nmol/g, 7 day, DR in RU486:

34.2% ± 17.8%, n = 6; DR in RU486+stress: 36.1% ± 6.1%,
962–977, March 8, 2012 ª2012 Elsevier Inc. 963



Figure 2. Repeated Stress Impairs Glutamatergic Transmission in PFC Pyramidal Neurons via a Postsynaptic Mechanism

(A and B) Summarized input-output curves of AMPAR-EPSC (A) or NMDAR-EPSC (B) in response to a series of stimulation intensity in control versus animals

exposed to 7 day repeated restraint stress (RS) or unpredictable stress (US). *p < 0.01, #p < 0.05, ANOVA. Inset: representative EPSC traces. Scale bars: 50 pA,

20 ms (A) or 100 ms (B).

(C) Plot of PPR of AMPAR-EPSC and NMDAR-EPSC evoked by double pulses with various intervals in control or stressed rats.

(D and E) Cumulative distribution and bar graphs (mean ± SEM) showing the effect of repeated stress on mEPSC amplitude and frequency. *p < 0.01, ANOVA.

Inset (D): representative mEPSC traces. Scale bars: 10 pA, 1 s.

(F) Dot plots summarizing the AMPAR, NMDAR, and VDCC current density in PFC neurons acutely dissociated from control versus stressed animals. Inset:

representative current traces. Scale bars: 100 pA, 1 s (AMPA, NMDA) or 2 ms (VDCC).

(G) Dot plots showing the amplitude of AMPAR-EPSC and NMDAR-EPSC in PFC pyramidal neurons taken from control or stressed animals (restraint, 7 day) with

systemic injections of RU486 (10 mg/kg). Inset: representative EPSC traces. Scale bars: 50 pA, 20 ms (AMPA) or 100 ms (NMDA).

(H) Dot plots showing the amplitude of AMPAR-EPSC in control or stressed animals (restraint, 7 day) with local injections of RU486 (1.4 nmol/g, 7 day) to the PFC.

(I) Dot plots showing the amplitude of AMPAR-EPSC in animals with local injections of CORT (0.87 nmol/g, 7 day) or vehicle control to the PFC. Inset (H and I):

representative AMPAR-EPSC traces. Scale bars: 50 pA, 20 ms.
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n = 6, p > 0.05). It suggests that repeated stress influences cogni-

tive processes via GR activation in the PFC.

Next, we examined whether other stressors could produce

a similar effect. As shown in Figure 1C, rats exposed to repeated

unpredictable stress (7 day) also lost the preference to the novel

object in TORmemory tasks (DR in control: 40.3% ± 8.2%, n = 9;

DR in stressed: �11.0% ± 8.3%, n = 9, p < 0.001). To test the

specificity of this stress-induced memory deficit, we also sub-

jected animals to the object location task, a paradigm for the

PFC-independent memory (Barker et al., 2007). As shown in Fig-

ure 1D, both control groups and stressed animals (restraint,

7 day) showed similar discrimination between the object that

had changed position than the object that had remained in

a constant position (DR in control: 58.1% ± 5.4%, n = 6; DR in

stressed: 47.7% ± 15.7%, n = 6, p > 0.05).

In contrast to the impaired temporal order recognition

memory, rats exposed to repeated restraint stress showed no

changes in anxiety-related behavior or locomotive activity (Fig-

ure 1E), as indicated by the amount of time spent in the open-

field center (control: 7.3 s ± 0.9 s; stressed: 7.3 s ± 1.5 s, n = 8

pairs, p > 0.05) and the number of midline crossing in a cage

(control: 10.2 ± 1.2, stressed: 11.5 ± 1.8, n = 6 pairs, p > 0.05).

To find out the onset of the detrimental effects of stress on

cognition, we exposed young male rats to various days (1, 3, 5

and 7) of restraint stress. As shown in Figure 1F, TOR memory

was largely unchanged by 1 or 3 day stress but was significantly

impaired in animals exposed to 5 or 7 day stress (p < 0.001, n = 6

pairs per group). After 3 daywithdrawal from the repeated stress,

TOR memory still showed deficiency (p < 0.01, n = 6 pairs) but

recovered after 5 day withdrawal (n = 6 pairs).

To test whether glutamatergic transmission in PFC is critical

for the object recognitionmemory, we gave animals a stereotaxic

injection of the NMDAR antagonist APV and AMPAR antagonist

CNQX to PFC prelimbic regions bilaterally. As shown in Fig-

ure 1G, APV+CNQX-injected animals lost the normal preference

to the novel (less recent) object (DR in saline: 36.8% ± 10.3%,

n = 7; DR in APV+CNQX: �20.4% ± 8.7%, n = 11, p < 0.001),

similar to the animals exposed to repeated stress. The total ex-

ploration time in the two sample phases and the subsequent

test trial was unchanged by any of these treatments (Figure S1

available online). Taken together, it suggests that repeated

stress has a detrimental effect on recognition memory, which

may be due to the loss of glutamatergic transmission in PFC.

Animals Exposed to Repeated Stress Show the
Depression of Glutamatergic Transmission in PFC
To find out the impact of repeated stress on glutamatergic

transmission, we examined the input/output curves of AMPAR-

and NMDAR-mediated synaptic currents (EPSC) in PFC pyra-

midal neurons from stressed, young (4-week-old) male rats. As

shown in Figures 2A and 2B, AMPAR-EPSC and NMDAR-

EPSC induced by a series of stimulus intensities were markedly

reduced in neurons from animals exposed to repeated (7 day)
(J) Bar graphs (mean ± SEM) demonstrating the bi-phasic effect of stress on AM

ANOVA. Inset: representative AMPAR-EPSC traces. Scale bars: 25 pA, 20 ms.

(K) Dot plots showing the AMPAR-EPSC amplitude in PFC pyramidal neurons, s

control or stressed rats (restraint, 7 day).
restraint stress or unpredictable stress (AMPA: 40%–60%

decrease, p < 0.01, ANOVA, n = 16–29 per group; NMDA:

38%–57% decrease, p < 0.01, ANOVA, n = 19–28 per group).

To test whether the reduced synaptic transmission by re-

peated stress may result from a presynaptic mechanism, we

measured the paired pulse ratio (PPR) of AMPAR- and

NMDAR-EPSC, a readout sensitive to presynaptic glutamate

release. As shown in Figure 2C, PPR was not different in control

versus stressed animals, suggesting a lack of gross change in

presynaptic function.

To further confirm the involvement of postsynaptic glutamate

receptors, we measured miniature EPSC (mEPSC), a synaptic

response resulting from quantal release of single glutamate

vesicles, in PFC slices. As shown in Figures 2D and 2E, repeat-

edly stressed animals had markedly reduced mEPSC amplitude

(control: 15.1 pA ± 2.1 pA, n = 8; restraint stress: 9.4 pA ± 0.3 pA,

n = 7, unpredictable stress: 9.6 pA ± 0.4 pA, n = 9, F2,26 = 8.8,

p < 0.01, ANOVA) and frequency (control: 3.2 Hz ± 0.3 Hz,

n = 8; restraint stress: 1.4 Hz ± 0.2 Hz, n = 7, unpredictable

stress: 1.9 Hz ± 0.2 Hz, n = 9, F2,23 = 15.5, p < 0.01, ANOVA).

Moreover, we measured whole-cell ionic current elicited by

AMPA (100 mM) or NMDA (100 mM) application in acutely disso-

ciated PFC neurons (a pure postsynaptic preparation). As shown

in Figure 2F, animals exposed to repeated restraint stress had

significantly smaller AMPAR current density (pA/pF; control:

81.9 ± 6.8, n = 14; stressed: 42.9 ± 5.1, n = 14, p < 0.01) and

NMDAR current density (control: 93.3 ± 4.6; stressed: 40.4 ±

4.0, n = 13; p < 0.01). In contrast, the voltage-dependent calcium

channel (VDCC) current density was not altered (control: 59.4 ±

4.9, n = 14; stressed: 63.1 ± 4.9, n = 14; p > 0.05).

Systemic injections of the GR antagonist RU486 blocked the

decreasing effect of repeated restraint stress on AMPAR-EPSC

(Figure 2G, control: 141.3 pA ± 11.7 pA, n = 9; stressed:

147.4 pA ± 9.5 pA, n = 12, p > 0.05) and NMDAR-EPSC (Fig-

ure 2G, control: 180.2 pA ± 9.8pA, n = 10; stressed: 181.3 pA ±

8.5 pA, n = 12, p > 0.05). Local injections of RU486 to the PFC

(1.4 nmol/g, 7 day) also prevented the reduction of AMPAR-

EPSC by repeated stress (Figure 2H, control: 135.4 pA ±

16.9 pA, n = 8; stressed: 130.4 pA ± 9.4 pA, n = 8, p > 0.05).

Repeated injections of CORT to the PFC (0.87 nmol/g, 7 day)

produced a significant reduction of AMPAR-EPSC (Figure 2I,

control: 141.4 pA ± 7.5 pA, n = 7; CORT: 59.4 pA ± 6.2 pA,

n = 7, p < 0.01), similar to the effect of behavioral stressors. It sug-

gests that repeated stress downregulates glutamatergic trans-

mission via GR activation in the PFC.

Our previous studies show that acute stress (e.g., a single

2 hr restraint) enhances PFC glutamatergic transmission and

working memory (Yuen et al., 2009, 2011). To understand the

complex actions of stress hormones, we exposed animals to

various days of restraint stress. As shown in Figure 2J, a bidirec-

tional effect on AMPAR-EPSC was detected in stressed animals

(F4,63 = 11.4, p < 0.01, ANOVA, n = 12–14 per group). Post hoc

analysis indicated that AMPAR synaptic transmission was
PAR-EPSC in rats exposed to various durations of restraint stress.*p < 0.01,

triatal medium spiny neurons, and hippocampal CA1 pyramidal neurons from

Neuron 73, 962–977, March 8, 2012 ª2012 Elsevier Inc. 965



Figure 3. Repeated Stress Decreases the

Total and Surface Levels of AMPAR and

NMDARSubunits in PFC throughGRActiva-

tion

(A and C) Immunoblots (A) and quantification

analysis (C) of the total and surface AMPAR and

NMDAR subunits in PFC from control (con) versus

rats exposed to 1–7 days of restraint stress (RS).

Some animals were withdrawn (WD) for different

durations (3 or 5 days) after being exposed to

7 day restraint stress. #p < 0.05; *p < 0.01, t test.

(B) Immunoblots of the total proteins in PFC

from control versus repeatedly stressed (7 day

restraint) rats.

(D and E) Immunoblots (D) and quantification

analysis (E) of the total and surface AMPAR and

NMDAR subunits in PFC from control versus

repeatedly stressed animals without or with

RU486 injection (10 mg/kg). *p < 0.01, t test.

(F) Immunoblots of total GluR1 and NR1 in PFC,

striatum and hippocampus from control versus

repeatedly stressed (7 day restraint) rats.
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significantly increased by 1 day (2 hr) stress (79.6% ± 19.8%

increase, p < 0.01), largely unchanged by 3 day stress

(10.1% ± 9.4% increase, p > 0.05), and significantly decreased

by 5 day stress (45.2% ± 3.7% decrease, p < 0.01) or 7 day

stress (51.3% ± 3.1% decrease, p < 0.01). These results suggest

that stress exerts a biphasic effect on PFC glutamatergic trans-

mission depending on the duration of stressor. The onset of the

impairing effect of repeated stress on glutamatergic transmis-

sion parallels that of recognition memory (Figure 1F), further sug-

gesting the causal link between them.

To test the regional specificity of the effect of repeated stress,

we also examined glutamatergic transmission in striatum and

hippocampus from young male rats (Figure 2K). In contrast

to the significant effect in PFC (control: 168.3 pA ± 11.2 pA,

n = 12; stressed: 81.8 pA ± 5.9 pA, n = 12, p < 0.01), repeated
966 Neuron 73, 962–977, March 8, 2012 ª2012 Elsevier Inc.
stress did not significantly alter AMPAR-

EPSC in striatal medium spiny neurons

(control: 142.9 pA ± 10.6 pA, n = 11;

stressed: 149.9 pA ± 10.1 pA, n = 11,

p > 0.05) or CA1 pyramidal neurons

(control: 142.4 pA ± 10.3 pA, n = 10;

stressed: 150.2 pA ± 9.4 pA, n = 10, p >

0.05).

Repeated Stress Decreases the
Total and Surface Levels of AMPAR
and NMDAR Subunits in PFC
The suppression of glutamatergic trans-

mission by repeated stress could result

from the reduced number of glutamate

receptors. To test this, we performed

western blotting and surface biotinylation

experiments to detect the total and

surface levels of AMPAR and NMDAR

subunits in PFC slices from stressed,

young (4-week-old) male rats. As shown
in Figure 3A, animals exposed to acute restraint stress (single

time, 2 hr) showed a significant increase in surface AMPAR

and NMDAR subunits (35%–86% increase; n = 4 pairs, p <

0.01), whereas the total proteins remained unchanged, consis-

tent with our previous findings (Yuen et al., 2009, 2011). Animals

exposed to 3 day restraint stress showed no difference (n = 4

pairs). Animals exposed to 5 or 7 day restraint stress showed

a significant decrease in the amount of GluR1 and NR1 subunits

(Figure 3C, GluR1: 45%–51% decrease, NR1: 55%–63%

decrease, n = 21 pairs, p < 0.01). Moreover, repeated stress

did not affect the total level of other glutamate receptor subunits

(Figure 3B), such asGluR2, NR2A, andNR2B (n = 16 pairs), or the

expression of MAP2 (a dendritic marker), synapsin, synaptophy-

sin (presynaptic markers), or PSD-95 (a postsynaptic marker, n =

10 pairs), suggesting that no general dendritic or synaptic loss
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has occurred under such conditions. The amount of AMPAR and

NMDAR subunits in the surface pool was all significantly

decreased by repeated stress (Figure 3C, surface GluR1/2:

62%–70% decrease, surface NR1/2A/2B: 55%–70% decrease,

n = 6 pairs, p < 0.01), indicating the loss of glutamate receptors at

the plasma membrane.

To find out how long the effect of repeated stress can last, we

exposed young animals to 7 day restraint stress and examined

them at 3–5 days after stressor cessation. As shown in Figures

3A and 3C, after 3 day withdrawal of stress, the expression of

total and surface AMPARs and NMDARs was still at a partially

reduced level (total GluR1: �39% decrease, total NR1: �27%

decrease, surface GluR1/2: 60%–62% decrease, surface NR1/

2A/2B: 40%–55% decrease, n = 3 pairs, p < 0.01) but returned

to the control level after 5 day withdrawal (n = 3 pairs).

Injecting the GR antagonist RU486 abolished the decreasing

effects of repeated restraint stress on total GluR1, total NR1,

surface GluR1/2 and surface NR1/2A/2B (Figures 3D and 3E,

n = 3 pairs). It suggests that repeated stress downregulates

glutamate receptor expression via GR activation.

In contrast to the significant reduction of total GluR1 and NR1

expression in PFC by repeated restraint stress (Figure 3F, GluR1:

�52% of control; NR1:�51% of control, p < 0.01), no significant

changes were found in other brain areas, including striatum and

hippocampus (Figure 3F, striatum: GluR1: �108% of control;

NR1: �110% of control; hippocampus: GluR1: �103% of con-

trol; NR1: 93% of control, n = 3–5 pairs, p > 0.05), confirming

the region specificity of stress effects.

Similar to restraint stress, young male rats exposed to

repeated unpredictable stress (7-day) also had significantly

reduced levels of total GluR1 and NR1, as well as surface

AMPAR and NMDAR subunits in PFC (Figure S2).

Since stress hormones elicit distinct effects throughout

the lifespan (Lupien et al., 2009), we also examined older

animals. As shown in Figure S3, adult (7-week-old) male rats,

who had been exposed to 7 day repeated restraint or unpredict-

able stress, had normal levels of total and surface AMPAR and

NMDAR subunits in the PFC. It suggests that the loss of PFC

glutamate receptors induced by one-week repeated stress is

a phenomenon specifically occurring in the adolescent period.

In Vitro Long-term Corticosterone Treatment Reduces
Synaptic AMPARs through GR Activation
We next examined whether the effect of repeated stress

in vivo may be mimicked by corticosterone (CORT) application

in vitro. To do so, we treated PFC cultures with different dura-

tions and doses of CORT and examined mEPSC. As shown in

Figure 4A, mEPSC amplitude was bidirectionally changed in re-

sponse to short- or long-term CORT (100 nM) treatment (F9,99 =

21.0, p < 0.001, ANOVA, n = 5–14 per group). Post hoc analysis

indicated that acute CORT treatment significantly increased

mEPSC amplitude (DIV21 control: 25.0 pA ± 1.3 pA; 1 hr

CORT: 38.5 pA ± 3.9 pA; 4 hr CORT: 42.4 pA ± 2.5 pA; 1 day

CORT: 44.2 pA ± 3.3 pA, p < 0.01), similar to previous findings

(Yuen et al., 2011; Liu et al., 2010), whereas a significant

decrease was found with prolonged CORT treatment (DIV26

control: 32.6 pA ± 2.7 pA; 5 day CORT: 16.3 pA ± 0.9 pA;

7 day CORT: 15.4 pA ± 0.5 pA; p < 0.01). Dose response studies
(Figure 4B) indicated that different doses of CORT treatment

(7 day) had different effects on mEPSC (amplitude: F4,42 =

15.3, p < 0.01, frequency: F4,36 = 13.0, p < 0.05, ANOVA,

n = 7–10 per group), with a small reducing effect at 10 nM and

a saturated reducing effect at 100–200 nM. The effect of CORT

(100 nM, 7 day) on mEPSC was lost in neurons incubated with

RU486 (10 mM, Figures 4C and 4D, RU486: 31 pA ±3.1 pA,

12.1 Hz ± 0.8 Hz, n = 7; RU486+CORT: 32.4 ± 4.9 pA, 11.3 ±

0.98 Hz, n = 9, p > 0.05) but not the MR antagonist RU28318

(10 mM, RU28318: 33.3 pA ± 4.7 pA, 11.8 Hz ± 1.3 Hz, n = 7;

RU28318+CORT: 22.9 pA ± 1.4 pA, 7.4 Hz ± 1.4 Hz, n = 9,

p < 0.05), suggesting that GR mediates the effect of chronic

CORT treatment.

To test whether the CORT-induced reduction of mEPSC was

due to the decreased number of AMPARs at synapses, we

performed immunocytochemical experiments to measure the

cluster density (# clusters/50 mm dendrite) of total GluR1 and

synaptic GluR1 (colocalized with the synaptic marker PSD-95)

in PFC cultures. As shown in Figures 4E and 4F, CORT treatment

(100 nM, 7 day) significantly reduced total GluR1 cluster density

(control: 26.6 ± 3.1, n = 14; CORT: 15.6 ± 1.3, n = 12, p < 0.01)

and synaptic GluR1 cluster density (control: 14.0 ± 1.0, n = 11;

CORT: 7.8 ± 0.7, n = 12, p < 0.01). Taken together, these results

suggest that, similar to in vivo repeated stress, prolonged in vitro

CORT treatment also reduces AMPAR expression and function

through GR activation.

Ubiquitin/Proteasome-dependent Degradation
of Glutamate Receptors Underlies the Effect
of Repeated Stress
Since the total level of NR1 andGluR1was reduced in repeatedly

stressed animals, we examined whether it could be due to the

decreased synthesis or increased degradation of glutamate

receptors. As shown in Figure S4, repeated stress did not signif-

icantly alter the mRNA level of AMPAR and NMDAR subunits,

suggesting that protein synthesis is intact. Thus, the reducing

effect of repeated stress on NR1 and GluR1 expression may

be due to the increased ubiquitin/proteasome-dependent pro-

tein degradation. Consistent with this, the level of ubiquitinated

GluR1 and NR1 was significantly increased in animals exposed

to repeated restraint stress (Figures 5A and 5B, Ub-GluR1:

121.6% ± 28.3% increase, Ub-NR1: 135.9% ± 35.6% increase,

n = 6 pairs, p < 0.01), which was abolished by RU486 injection

(n = 3). The level of ubiquitinated GluR2, NR2A, or NR2B subunits

remained unchanged (n = 4 pairs, Figure 5C). Repeated stress

also failed to alter the ubiquitination of SAP97 (a GluR1 binding

protein) and PSD-95 (an NR1 binding protein, n = 3 pairs, Fig-

ure 5C). These results provide direct evidence showing that

prolonged GR activation selectively increases ubiquitin con-

jugation of GluR1 and NR1 subunits in PFC and thus enhances

the susceptibility of these proteins to proteasome-mediated

degradation.

To further test the role of glutamate receptor degradation in

chronic stress-induced reduction of synaptic transmission, we

injected the proteasome inhibitor MG132 into PFC via an im-

planted cannula (0.5 mg each side; 21 pmol/g body weight, daily

at 1 hr before stress). As shown in Figures 6A and 6B, the effects

of repeated restraint stress on glutamatergic transmission were
Neuron 73, 962–977, March 8, 2012 ª2012 Elsevier Inc. 967



Figure 4. In Vitro Chronic CORT Treatment

Reduces AMPAR Synaptic Currents and

Synaptic GluR1 Clusters via GR Activation

(A and B) Bar graphs (mean ± SEM) showing the

effect of different durations (A) and concentrations

(B) of CORT on mEPSC. *p < 0.01, #p < 0.05,

ANOVA.

(C and D) Representative mEPSC traces (C) and

statistical summary (D) showing the effect of

CORT (100 nM, 7 day) on mEPSC amplitude and

frequency in the presence of GR or MR antago-

nists in cultured PFC neurons (DIV28-30). Scale

bars: 50 pA, 1 s. *p < 0.01, #p < 0.05, t test.

(E) Immunostaining of total GluR1 and PSD-95

in PFC cultures treated with or without CORT

(100 nM, 7 day).

(F) Bar graphs (mean ± SEM) showing the cluster

density of synaptic GluR1 (colocalized, yellow

puncta), total GluR1 (red puncta) and PSD-95

(green puncta) in response to CORT treatment.

*p < 0.01, t test.
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significantly different in saline- versus MG132-injected animals

(AMPA: p < 0.01, ANOVA, n = 9–12 per group; NMDA: p <

0.01, ANOVA, n = 11–14 per group). Post hoc analysis showed

that repeated stress caused a substantial downregulation of

eEPSC amplitude in saline-injected animals (AMPA: 50%–59%

decrease; NMDA: 44%–52% decrease, p < 0.01) but had little

effect on MG132-injected animals (AMPA: 3%–7% decrease;

NMDA: 2%–5% decrease, p > 0.05). Injection of MG132, but

not saline, also blocked the reducing effect of repeated stress

on mEPSC amplitude and frequency in PFC slices (Figures 6C

and 6D, MG132: 14.0 pA ± 0.5 pA, 3.2 Hz ± 0.4 Hz, n = 8;

MG132+stress: 15.0 pA ± 0.5 pA, 3.6 Hz ± 0.5 Hz, n = 10,

p > 0.05).

In vitro studies further confirmed that the proteasome-

mediated degradation of glutamate receptors may underlie the

reduction of mEPSC by long-term CORT treatment. As shown
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in Figure 6E, CORT (100 nM, 7 day) signif-

icantly decreased mEPSC in vehicle-

treated neurons (control: 37.1 pA ±

2.9 pA, 12.1 Hz ± 1.8 Hz, n = 9; CORT:

23.3 pA ± 2.9 pA, 7.1 Hz ± 1.2 Hz, n = 7,

p < 0.05) but failed to do so in MG132-

treated (1 mM) neurons (MG132:

36.8 pA ± 3.2 pA, 11.5 Hz ± 2.3 Hz,

n = 11; MG132+CORT: 35.4 pA ±

2.8 pA, 10.4 Hz ± 1.9 Hz, n = 7, p >

0.05). Another proteasome inhibitor lac-

tacystin (1 mM) gave similar blockade

(lact: 34.5 pA ± 3.0 pA, 10.5 Hz ±

2.0 Hz, n = 8; lact+CORT: 33.9 pA ±

1.8 pA, 9.2 Hz ± 1.1 Hz, n = 8, p > 0.05).

However, the reducing effect of CORT

was insensitive to the general lysosomal

enzyme inhibitor chloroquine (200 mM,

Chlq: 36.2 pA ± 3.9 pA, 9.4 Hz ± 1.4 Hz,

n = 6; Chlq+CORT: 22.4 pA ± 1.2 pA,

5.0 Hz ± 0.8 Hz, n = 6, p < 0.05), the
lysosomal protease inhibitor leupeptin (200 mM, leu: 35.9 pA ±

2.4 pA, 12.2 Hz ± 0.9 Hz, n = 8; leu+CORT: 22.3 pA ± 1.3 pA,

5.6 Hz ± 1.4 Hz, n = 8, p < 0.05), or the membrane-permeable

calpain protease inhibitory peptide 11R-CS (2 mM, Wu et al.,

2005; 11R-CS: 34.9 pA ± 3.9 pA, 9.8 Hz ± 1.2 Hz, n = 7; 11R-

CS+CORT: 21.0 pA ± 1.9 pA, 5.2 Hz ± 0.3 Hz, n = 5, p < 0.05).

Biochemical measurement of glutamate receptor subunits in

PFC slices (Figures 6F and 6G) indicated that MG132-injected

rats exhibited the normal level of GluR1 and NR1 after being

exposed to 7 day restraint stress (GluR1: 6.6% ± 10.7%

decrease; NR1: 10.5% ± 12.8% decrease, n = 4 pairs, p >

0.05), which was in sharp contrast to the reduced expression

of GluR1 and NR1 in saline-injected rats after repeated stress

(GluR1: 48.3% ± 10.1% decrease; NR1: 59.7% ± 11.9%

decrease, n = 4 pairs, p < 0.01). In addition, the CORT-induced

(100 nM, 7 day) decrease of GluR1 expression (49.0% ± 1.4%



Figure 5. Repeated Stress Increases the Ubiquitination Level of GluR1 and NR1 Subunits

(A and B) Representative blots (A) and quantification (B) showing the ubiquitination of GluR1 and NR1 subunits in control versus stressed (7 day restraint) animals

without or with RU486 injection (10 mg/kg). *p < 0.01, t test. Lysates of PFC slices were immunoprecipitated with an antibody against GluR1 or NR1, and then

blotted with a ubiquitin antibody. Also shown are the input control, immunoprecipitation control, and immunoblots of total proteins in control versus stressed

animals. Note, in stressed rats, the immunoprecipitated GluR1 or NR1 showed ubiquitin staining at a molecular mass heavier than the unmodified protein itself.

The ladder of ubiquitinated GluR1 or NR1 is typical of proteins that are polyubiquitinated to signal their degradation.

(C) Ubiquitination of GluR2, NR2A, NR2B, SAP97, and PSD-95 in control versus stressed (7 day restraint) animals.
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decrease, n = 6, p < 0.01) was abolished by proteasome inhibi-

tors (Figure 6H, MG132: 8.2% ± 11.7% decrease; lactacystin:

7.9% ± 11.2% decrease, n = 4, p > 0.05). Taken together, these

results suggest that repeated behavioral stress or long-term

CORT treatment induces the ubiquitin/proteasome-dependent

degradation of GluR1 and NR1, leading to the depression of glu-

tamatergic transmission in PFC.

To determine whether the proteasome-dependent degrada-

tion of glutamate receptors induced by repeated stress may

underlie its detrimental effect on cognitive processes, we exam-

ined the temporal order recognition memory in animals with
stereotaxic injections of MG132 into PFC prelimbic regions bilat-

erally. A significant main effect was observed (Figure 6I, F3,28 =

7.9, p < 0.001, ANOVA), and post hoc analysis indicated that

repeated stress caused a significant deficit in the recognition

of novel (less recent) object in saline-injected animals (DR in

control: 37.1% ± 8.9%, n = 7; DR in stressed: �22.3% ± 7.4%,

n = 7, p < 0.001), whereas the deficit was blocked in MG132-

injected animals (DR in control: 36.4% ± 6.7%, n = 6; DR in

stressed: 42.2% ± 12.3%, n = 9, p > 0.05). The total exploration

time was unchanged in the sample phases and test trial

(Figure 6J). These behavioral data, in combination with
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Figure 6. Infusion of a Proteasome Inhibitor into PFC Prevents the Loss of Glutamate Receptors and Recognition Memory by Repeated

Stress

(A and B) Summarized input-output curves of AMPAR-EPSC (A) or NMDAR-EPSC (B) in control versus repeatedly stressed (7 day restraint) animals with local

injection of the proteasome inhibitor MG132 or saline control. *p < 0.01, #p < 0.05, ANOVA. Inset: representative EPSC traces. Scale bars: 50 pA, 20ms (A); 50 pA,

100 ms (B).

(C and D) Representative mEPSC traces and bar graph summary of mEPSC amplitude and frequency in control versus repeatedly stressed animals with PFC

infusion of MG132 or saline. *p < 0.01, t test. Scale bars (C): 25 pA, 1 s.

(E) Bar graphs (mean ± SEM) showing the effect of CORT (100 nM, 7 day) onmEPSC amplitude and frequency in cultured PFC neurons (DIV28–30) pretreated with

the specific inhibitors of proteasome, lysosome, or calpain. *p < 0.01, #p < 0.05, t test.

(F and G) Immunoblots and quantification analysis of GluR1 and NR1 expression in control versus repeatedly stressed animals with PFC infusion of MG132 or

saline. *p < 0.01, t test.
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Figure 7. The E3 Ubiquitin Ligases Nedd4-1

and Fbx2 Are Involved in the Downregu-

lation of AMPAR- and NMDAR-mediated

Synaptic Responses by Long-term CORT

Treatment or Repeated Stress

(A) Representative western blots in HEK293 cells

transfected with HA-tagged rat Nedd4-1 or Fbx2

in the absence or presence of Nedd4-1 shRNA or

Fbx2 shRNA.

(B and C) Summary data (mean ± SEM) showing

the mEPSC amplitude and frequency in control

versusCORT-treated (100 nM, 7 day) PFC neurons

(DIV21–23) transfectedwithNedd4-1 shRNA, Fbx2

shRNA or GFP control. *p < 0.01, #p < 0.05, t test.

(D) Representative mEPSC traces in control

versus CORT-treated PFC neurons with different

transfections. Scale bar: 20 pA, 1 s.

(E) Summary data (mean ± SEM) showing the

NMDAR current density in control versus CORT-

treated (100 nM, 7 day) PFC neurons transfected

with Fbx2 shRNA, Nedd4-1 shRNA or GFP

control. *p < 0.01, t test.

(F) Representative NMDAR currents in control

versus CORT-treated PFC neurons with different

transfections. Scale bar: 200 pA, 1 s.

(G and H) Summarized input-output curves of

AMPAR-EPSC (G) or NMDAR-EPSC (H) in control

versus repeatedly stressed (7 day restraint) rats

with the PFC injection of Nedd4-1 shRNA lenti-

virus (G), Fbx2 shRNA lentivirus (H), or GFP lenti-

virus control. *p < 0.01, ANOVA.
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electrophysiological and biochemical data, suggest that the

cognitive impairment by repeated stress may be due to the pro-

teasome-dependent degradation of glutamate receptors in PFC.

The Specific Regulation of AMPAR andNMDARSubunits
in PFC by Repeated Stress Involves Different
E3 Ubiquitin Ligases
Given the role of proteasome-dependent degradation of gluta-

mate receptors in the detrimental effects of repeated stress,

we would like to know which E3 ubiquitin ligases are potentially

involved in the stress-induced ubiquitination of GluR1 and NR1

subunits in PFC. The possible candidates are Nedd4-1 (neural-

precursor cell-expressed developmentally downregulated gene

4-1), an E3 ligase necessary for GluR1 ubiquitination in response

to the agonist AMPA (Schwarz et al., 2010; Lin et al., 2011), and
(H) Quantification analysis of GluR1 expression in control versus CORT-treated (100 nM, 7 day) PFC cultures p

*p < 0.01, t test.

(I and J) Bar graphs (mean ± SEM) showing the discrimination ratio (I) and total exploration time (J) of TOR t

animals (7 day restraint) with stereotaxic injections of saline or MG132 into PFC via an implanted cannula. *

Neuron 73, 962–9
Fbx2, an E3 ligase in the ER that ubiquiti-

nates NR1 subunits (Kato et al., 2005).

Thus, we performed RNA interference-

mediated knockdown of Nedd4-1 or

Fbx2 in vitro or in vivo and examined the

impact of long-term CORT treatment or

repeated stress on glutamatergic trans-

mission in PFC neurons. As illustrated in
Figure 7A, Nedd4-1 or Fbx2 shRNA caused a specific and effec-

tive suppression of the expression of these E3 ligases.

In PFC cultures transfected with Nedd4-1 shRNA, CORT treat-

ment (100 nM, 7 day) lost the capability to reduce mEPSC

(Figures 7B–7D, control: 21.8 pA ± 0.7 pA, 3.0 Hz ± 0.5 Hz,

n = 20; CORT: 22.6 pA ± 1.2 pA, 2.7 Hz ± 0.3 Hz, n = 15, p >

0.05), whereas the reducing effect of CORT onmEPSCwas unal-

tered in Fbx2 shRNA-transfected neurons (control: 21.1 pA ±

0.8 pA, 3.3 Hz ± 0.7 Hz, n = 10; CORT: 16.1 pA ± 0.6 pA,

1.3 Hz ± 0.3 Hz, n = 12, p < 0.05) or GFP-transfected neurons

(control: 23.9 pA ± 1.4 pA, 3.1 Hz ± 0.6 Hz, n = 9; CORT:

16.6 pA ± 0.6 pA, 1.7 Hz ± 0.3 Hz, n = 14, p < 0.05). On the other

hand, in PFC cultures transfected with Fbx2 shRNA, long-term

CORT failed to decrease NMDARcurrent density (pA/pF; Figures

7E and 7F, control: 24.2 ± 2.0, n = 13; CORT: 21.5 ± 0.8, n = 13,
re-incubated without or with proteasome inhibitors.

asks in control groups versus repeatedly stressed

*p < 0.001, ANOVA.
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Figure 8. Nedd4-1 and Fbx2 Are Involved in

the Stress-induced Ubiquitination/Degra-

dation of GluR1 and NR1 Subunits and

Impairment of Recognition Memory, and

They Show Differential Expression in

Various Brain Regions of Rats with or

without Stress Exposure

(A and B) Representative blots (A) and quantifica-

tion (B) showing the ubiquitination and expression

of GluR1 and NR1 subunits in control versus

stressed (7 day restraint) animals with PFC injec-

tion of GFP lentivirus, Nedd4-1 shRNA lentivirus,

or Fbx2 shRNA lentivirus *p < 0.01, t test.

(C and D) Bar graphs (mean ± SEM) showing the

discrimination ratio (C) and total exploration time

(D) of TOR tasks in control groups versus repeat-

edly stressed animals (7 day restraint) with PFC

injection of GFP lentivirus or Nedd4-1 shRNA+

Fbx2 shRNA lentiviruses. **p < 0.001, *p < 0.01,

ANOVA.

(E and F) Representative western blots and quan-

tification showing the expression of Nedd4-1 and

Fbx2 inPFC, striatum, and hippocampusof control

versus repeatedly stressed (RS) rats. Actin was

used as the loading control. *p < 0.01, ANOVA.
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p > 0.05), whereas the suppressing effect of CORT on NMDAR

current density was intact in Nedd4 shRNA-transfected neurons

(control: 25.6 ± 2.5, n = 9; CORT: 17.5 ± 0.8, n = 9, p < 0.01) or

GFP-transfected neurons (control: 25.7 ± 1.9, n = 13; CORT:

16.4 ± 0.8, n = 8, p < 0.01).

Next, we delivered Nedd4-1 or Fbx2 shRNA lentivirus to rat

frontal cortex via a stereotaxic injection (Liu et al., 2011) and

tested the involvement of these E3 ligases in the action of

repeated stress. As shown in Figures 7G and 7H, the effects of

repeated restraint stress on AMPAR-EPSC or NMDAR-EPSC

were significantly different in animals with different viral infec-

tions (AMPA: p < 0.01, ANOVA, n = 13–15 per group; NMDA:

p < 0.01, ANOVA, n = 13–19 per group). Post hoc analysis

showed that repeated stress caused a substantial downregula-

tion of the eEPSC amplitude in GFP lentivirus-injected animals

(AMPA: 48%–58% decrease; NMDA: 38%–52% decrease,

p < 0.01) but had little effect on AMPAR-EPSC in Nedd4 shRNA
972 Neuron 73, 962–977, March 8, 2012 ª2012 Elsevier Inc.
lentivirus-injected animals (7%–10%

decrease, p > 0.05) or on NMDAR-EPSC

in Fbx2 shRNA lentivirus-injected animals

(5%–7% decrease, p > 0.05). These elec-

trophysiological results suggest that

Nedd4-1 and Fbx2 mediate the long-

term CORT or repeated stress-induced

downregulation of AMPAR and NMDAR

responses in PFC, respectively.

We further examined the involvement of

Nedd4-1 and Fbx2 in the stress-induced

glutamate receptor ubiquitination by

in vivo delivery of the shRNA lentivirus

against these E3 ligases to PFC. As

shown in Figures 8A and 8B, Nedd4-1
shRNA or Fbx2 shRNA lentivirus-injected rats failed to show the

increased level of ubiquitinated GluR1 or NR1 after being

exposed to 7 day restraint stress (Ub-GluR1: 5.0% ± 4.5%

increase; Ub-NR1: 6.4% ± 9.3% increase, n = 4 pairs for each,

p > 0.05), which was significantly different from the effects seen

in GFP lentivirus-injected rats after repeated stress (Ub-GluR1:

115.0% ± 24.6% increase; NR1: 136.4% ± 31.3% increase, n =

6 pairs, p < 0.01). Moreover, in contrast to the significantly lower

level of GluR1 and NR1 expression in GFP lentivirus-injected rats

following stress (GluR1: 46.8% ± 8.3% decrease; NR1: 57.2% ±

8.8% decrease, n = 6 pairs, p < 0.01), Nedd4-1 shRNA or Fbx2

shRNA lentivirus-injected rats exhibited the normal level of

GluR1 or NR1 after repeated stress (GluR1: 7.3% ± 8.7%

decrease; NR1: 5.5% ± 8.8% decrease, n = 4 pairs for each,

p > 0.05). These biochemical results suggest that Nedd4-1 and

Fbx2 mediate the repeated stress-induced ubiquitination and

degradation of GluR1 and NR1 subunits in PFC, respectively.
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To find out the role of Nedd4-1 and Fbx2 in the stress-induced

detrimental effect on cognitive processes, we examined the

temporal order recognition memory in animals with in vivo

knockdown of both E3 ligases in PFC. As shown in Figure 8C,

repeated stress caused a significant deficit in the recognition

of novel (less recent) object in GFP lentivirus-injected animals

(DR in control: 43.6% ± 7.3%, n = 7; DR in stressed: �5.2% ±

4.1%, n = 8, p < 0.001), whereas the deficit was blocked in

animals injectedwith both Nedd4-1 and Fbx2 shRNA lentiviruses

into PFC (DR in control: 29.7% ± 10.7%, n = 7; DR in stressed:

33.7% ± 7.1%, n = 8, p > 0.05). The total exploration time was

unchanged in the sample phases and test trial (Figure 8D).

These behavioral data suggest that the cognitive impairment

by repeated stressmay be due to the Nedd4-1 and Fbx2-depen-

dent loss of glutamate receptors in PFC.

To understand the potential mechanism underlying the re-

gion specificity of the effects of repeated stress on glutamate

receptor expression and function, we examined the level of

Nedd4-1 and Fbx2 in PFC, striatum, and hippocampus from

control versus stressed young male rats. As shown in Figure 8E,

the level of Nedd4-1 was significantly higher in PFC or striatum

than in hippocampus from control animals (p < 0.01, n = 8). After

repeated stress, Nedd4-1 was significantly elevated in PFC

(�70% increase, p < 0.01, n = 6 pairs) but was significantly

reduced in striatum (�35% decrease, p < 0.01, n = 7 pairs)

and unchanged in hippocampus (p > 0.05, n = 8 pairs). Moreover,

the level of Fbx2 was significantly higher in PFC than in striatum

or hippocampus from control or stressed animals (Figure 8F,

p < 0.01, n = 7 pairs). These results provide a potential reason

for the higher sensitivity of PFC to repeated stress than other

brain regions, like the striatum and hippocampus.

DISCUSSION

In the present study, we have identified glutamate receptors

as an important molecular substrate of repeated stress. Given

the significance of glutamatergic signaling in PFC-mediated

cognitive processes (Goldman-Rakic, 1995; Lisman et al.,

1998), it is not surprising that repeated stress impairs the object

recognition memory, which is reminiscent of the memory deficits

following bilateral infusion of glutamate receptor antagonists

directly into PFC. The loss of PFC glutamatergic responses

could also underlie the stress-induced other behavioral impair-

ments found earlier (Liston et al., 2006; Cerqueira et al., 2005,

2007).

Mounting evidence has suggested that stress induces diver-

gent changes in different brain regions (de Kloet et al., 2005;

McEwen, 2007). Chronic stress causes atrophy of dendrites in

the CA3 region, suppresses neurogenesis of dentate gyrus

granule neurons, and impairs hippocampal-dependent cognitive

functions (McEwen, 1999; Joëls et al., 2007). High levels of corti-

costerone or chronic stress also impair long-term potentiation

(LTP) and facilitate long-term depression (LTD) induced by elec-

trical stimulation in hippocampus (Kim and Diamond, 2002; Al-

farez et al., 2003). On the other hand, chronic stress has been

shown to enhance amygdala-dependent fear conditioning (Con-

rad et al., 1999) and anxiety-like behavior (Mitra et al., 2005),

which may be correlated to the stress-induced dendritic growth
and spinogenesis in this region (Vyas et al., 2002; Mitra et al.,

2005). In this study, we have demonstrated that glutamatergic

transmission in PFC pyramidal neurons is significantly sup-

pressed in young male rats exposed to repeated stress, without

the apparent loss of synapses. In contrast, no such effect is

observed in striatal medium spiny neurons or CA1 pyramidal

neurons, consistent with the lack of effect of chronic stress on

synaptic currents in hippocampal dentate gyrus neurons (Karst

and Joëls, 2003). It suggests that PFC is a more sensitive area

in response to repeated stress, especially during the adolescent

period when this region is still undergoing significant develop-

ment (Lupien et al., 2009). The GR-induced suppression of gluta-

matergic transmission in PFC might serve as a form of LTD that

precedes structural plasticity.

In addition to the region specificity, the outcome of stress is

also determined by the duration and severity of the stressor

(de Kloet et al., 2005; Joëls, 2008). Whereas acute stressful

experience has been found to enhance associative learning

(Shors et al., 1992; Joëls et al., 2006) in a glucocorticoid-depen-

dent manner (Beylin and Shors, 2003), severe or chronic stress

has been shown to impair working memory and prefrontal func-

tion (Liston et al., 2006; Cerqueira et al., 2007; Arnsten, 2009).

We have found that acute stressors induce a long-lasting poten-

tiation of glutamatergic transmission in PFC and facilitate

working memory (Yuen et al., 2009, 2011), which is in contrast

to the strong suppression of PFC glutamatergic transmission

and impairment of object recognition memory by repeated

stress. Thus, glutamate receptors seem to be the neural sub-

strate that underlies the biphasic effects of stress and glucocor-

ticoids on synaptic plasticity and memory (Diamond et al., 1992;

Groc et al., 2008; Krugers et al., 2010).

Different downstream mechanisms have been identified in the

dual effects of stress on PFC glutamatergic signaling. Acute

stress enhances the surface delivery of NMDARs and AMPARs

via a mechanism depending on the induction of serum- and

glucocorticoid-inducible kinase (SGK) and the activation of

Rab4 (Yuen et al., 2009, 2011; Liu et al., 2010). In contrast,

repeated stress reduces the expression of GluR1 and NR1 sub-

units, as well as functional AMPAR and NMDAR channels at cell

surface.

Our data suggest that the loss of glutamate receptors after

repeated stress may involve the increased ubiquitin/protea-

some-mediated degradation of GluR1 and NR1 subunits. Post-

translational modification through the ubiquitin pathway at the

postsynaptic membrane has emerged as a key mechanism for

remodeling synaptic networks and altering synaptic transmis-

sion (Mabb and Ehlers, 2010). Following chronic changes in

synaptic activity of hippocampal cultures, many PSD scaffold

proteins, such as Shank, GKAP and AKAP, are up- or downregu-

lated through the ubiquitin-proteasome system (UPS; Ehlers,

2003). Abnormalities in the brain UPS have been implied in

a variety of neurodegenerative and mental disorders (Ciechan-

over and Brundin, 2003; Middleton et al., 2002), however little

is known about the circumstances under which AMPAR and

NMDAR ubiquitination occurs under normal and disease condi-

tions. In the present study, we demonstrate that the ubiq-

uitination of GluR1 and NR1 subunits, but not their anchoring

proteins, is specifically increased in PFC slices upon GR
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activation following repeated stress. The effect of repeated

stress or prolongedCORT treatment on glutamatergic responses

and GluR1/NR1 expression is blocked by the specific inhibitors

of proteasomes, but not lysosomes. It suggests that GR-induced

ubiquitination of GluR1 andNR1 subunits tags them for degrada-

tion by proteasomes in the cytoplasm, therefore fewer hetero-

meric AMPARs and NMDARs channels are assembled and

delivered to the synaptic membrane. Interestingly, infusion of

a proteasome inhibitor into PFC prevents the loss of recognition

memory in stressed animals, providing a potential approach to

block the detrimental effects of repeated stress.

To further understand the mechanisms underlying the specific

ubiquitination of GluR1 and NR1 in PFC by repeated stress, we

have explored the potentially participating E3 ubiquitin ligase,

which determines selectivity for ubiquitination by bridging target

proteins to E2 ubiquitin-conjugating enzyme and ubiquitin. NR1

subunits are found to be ubiquitinated by the E3 ligase Fbx2 in

the ER (Kato et al., 2005), a process affecting the assembly and

surface expression of NMDARs. Studies in C. elegans also indi-

cate that GLR-1 is ubiquitinated in vivo, which regulates the

GLR-1abundanceat synapses (Burbeaet al., 2002; Juo&Kaplan,

2004; Park et al., 2009). Moreover, the E3 ligase Nedd4-1 has

been recently shown tomediate the agonist-inducedGluR1 ubiq-

uitination in neuronal cultures, which affects AMPAR endocytosis

and lysosomal trafficking (Schwarz et al., 2010; Lin et al., 2011).

UsingRNA interference-mediated knockdown in vitro and in vivo,

we demonstrate that the suppression of AMPAR and NMDAR

responses induced by long-term CORT treatment or repeated

stress requires Nedd4-1 and Fbx2, respectively. Moreover,

Nedd4-1 is required for the increased GluR1 ubiquitination and

Fbx2 is required for the increased NR1 ubiquitination in repeat-

edly stressed animals. Both E3 ligases are also required for the

stress-induced impairment of cognitive processes. The higher

expression level of these E3 ubiquitin ligases in PFC than other

brain regions, alongwith the upregulation of Nedd4-1 in PFC from

stressed animals, potentially underlies the selective increase of

GluR1 and NR1 ubiquitination and degradation in PFC neurons

after repeated stress. Future studies will further examine the

biochemical signaling cascades underlying the GR-induced

changes in the activity and/or expression of Nedd4-1 and Fbx2.

Taken together, this study indicates that in response to

repeated stress, the key AMPAR and NMDAR subunits, GluR1

and NR1, are degraded by the ubiquitin-proteasome pathway

in PFC neurons, causing the loss of glutamate receptor expres-

sion and function, which leads to the deficit of PFC-mediated

cognitive processes. Since PFC dysfunction has been impli-

cated in various stress-related mental disorders (Andreasen

et al., 1997; Brody et al., 2001; Davidson et al., 2000; Shin

et al., 2001), delineating molecular mechanisms by which stress

affects PFC functions should be critical for understanding the

role of stress in influencing the disease process (Moghaddam

and Jackson, 2004; Cerqueira et al., 2007).
EXPERIMENTAL PROCEDURES

Repeated Stress Paradigm

All experimentswereperformedwith theapproval of the InstitutionalAnimalCare

and Use Committee (IACUC) of the State University of New York at Buffalo.
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Juvenile (3- to 4-week-old) Sprague Dawley male rats were used in this study.

For repeated restraint stress, rats were placed in air-accessible cylinders for

2 hr daily (10:00 a.m. to 12:00 p.m.) for 5–7 days. The container size was similar

to the animal size, which made the animal almost immobile in the container. For

repeated unpredictable stress (7 day), rats were subjected each day to two

stressors that were randomly chosen from six different stressors, including

forced swim (RT, 30 min), elevated platform (30 min), cage movement (30 min),

lights on overnight, immobilization (RT, 1 hr), and food and water deprivation

overnight. Experiments were performed 24 hr after the last stressor exposure.

Animal Surgery

For drug delivery to PFC, rats (�3 weeks) were implanted with double guide

cannulas (Plastics One Inc., Roanoke, VA, USA) using a stereotaxic apparatus

(David Kopf Instruments, Tujunga, CA, USA) as we described before

(Yuen et al., 2011). The PFC coordinates were 2.5 mm anterior to bregma;

0.75 mm lateral; and 2.5 mm dorsal to ventral. The injection cannula extended

1.5 mm beyond the guide. After the implantation surgery, animals were

allowed to recover for 2–3 days. Drugs were injected via the cannula bilaterally

into PFC using a Hamilton syringe (22-gauge needle).

Behavioral Testing

The temporal order recognition (TOR) task was conducted as previously

described (Barker et al., 2007). All objects were affixed to a round platform

(diameter: 61.4 cm). Each rat was habituated twice on the platform for 5 min

on the day of behavioral experiments. This TOR task comprised two sample

phases and one test trial. In each sample phase, the animals were allowed

to explore two identical objects for a total of 3 min. Different objects were

used for sample phases I and II, with a 1 hr delay between the sample phases.

The test trial (3 min duration) was given 3 hr after sample phase II. During the

test trial, an object from sample phase I and an object from sample phase II

were used. The positions of the objects in the test and sample phases were

counterbalanced between the animals. All behavioral experiments were per-

formed at late afternoon and early evening in dim light. If temporal order

memory is intact, the animals will spend more time exploring the object from

sample I (i.e., the novel object presented less recently), compared with the

object from sample II (i.e., the familiar object presented more recently). We

calculated a discrimination ratio, the proportion of time spent exploring the

novel (less recent) object (i.e., the difference in time spent exploring the novel

and familiar objects divided by the total time spent exploring both objects)

during the test trial. This measure takes into account individual differences in

the total amount of exploration time.

Details regarding the object location task, open-field, and locomotion tests

are included in the Supplemental Experimental Procedures.

Electrophysiological Recordings

PFC-containing slices were positioned in a perfusion chamber attached to the

fixed stage of an upright microscope (Olympus, Center Valley, PA, USA) and

submerged in continuously flowing oxygenated artificial cerebrospinal fluid

(ACSF: [in mM] 130 NaCl, 26 NaHCO3, 3 KCl, 5 MgCl2, 1.25 NaH2PO4,

1 CaCl2, 10 Glucose [pH 7.4], and 300 mOsm). Bicuculline (10 mM) and

CNQX (25 mM) were added in NMDAR-EPSC recordings. Bicuculline and

D-APV (25 mM) were added in AMPAR-EPSC recordings. Patch electrodes

contained internal solution (in mM): 130 Cs-methanesulfonate, 10 CsCl,

4 NaCl, 10 HEPES, 1 MgCl2, 5 EGTA, 2.2 QX-314, 12 phosphocreatine,

5 MgATP, 0.2 Na3GTP, 0.1 leupeptin [pH 7.2–7.3], and 265–270 mOsm. Layer

V mPFC pyramidal neurons were visualized with a 403 water-immersion lens

and recorded with the Multiclamp 700A amplifier (Molecular Devices, Sunny-

vale, CA, USA). Evoked EPSC were generated with a pulse from a stimulation

isolation unit controlled by a S48 pulse generator (Grass Technologies, West

Warwick, RI, USA). A bipolar stimulating electrode (FHC, Bowdoinham, ME,

USA)wasplaced�100mmfrom the neuron under recording.Membranepoten-

tial was maintained at �70 mV for AMPAR-EPSC recordings. For NMDAR-

EPSC, the cell (clamped at �70 mV) was depolarized to +60 mV for 3 s before

stimulation to fully relieve the voltage-dependent Mg2+ block. ACSF was

modified to contain 1 mM MgCl2 to record miniature EPSC in PFC slices.

To obtain the input-output responses, EPSC was elicited by a series of stim-

ulation intensities with the same duration of pulses (0.6 ms for NMDAR-EPSC;
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0.06ms for AMPAR-EPSC). In other experiments, synaptic currents evoked by

the same stimulation intensity were recorded in individual neurons across

groups with different manipulations. To control recording variability between

cells, a few criteria were used as we previously described (Yuen et al., 2009,

2011). Recordings from control versus stressed animals were interleaved

throughout the course of all experiments. Data analyses were performed

with Clampfit (Molecular Devices) and Kaleidagraph (Synergy Software,

Reading, PA, USA).

Details regarding whole-cell recordings in isolated neurons and miniature

EPSC recordings in cultured PFC neurons are included in the Supplemental

Experimental Procedures.

Biochemical Measurement of Surface and Total Proteins

The surface AMPA and NMDA receptors were detected as previously

described (Yuen et al., 2009). In brief, PFC slices were incubated with ACSF

containing 1 mg/ml sulfo-N-hydroxysuccinimide- LC-Biotin (Pierce Chemical

Co., Rockford, IL, USA) for 20 min on ice. The slices were then rinsed three

times in Tris-buffered saline to quench the biotin reaction, followed by homog-

enization in modified radioimmunoprecipitation assay buffer. The homoge-

nates were centrifuged at 14,000 3 g for 15 min at 4�C, incubated with 50%

Neutravidin Agarose (Pierce Chemical Co.) for 2 hr at 4�C, and bound proteins

were resuspended in SDS sample buffer and boiled. Quantitative western

blots were performed on both total and biotinylated (surface) proteins (see

Supplemental Experimental Procedures for details).

Immunoprecipitation

PFC slices were collected and homogenized in lysis buffer (in mM: 50 NaCl,

30 sodium pyrophosphate, 50 NaF, 10 Tris, 5 EDTA, 0.1 Na3VO4, and

1 PMSF, with 1% Triton X-100 and protease inhibitor tablet). Lysates were

ultracentrifuged (200,000 3 g) at 4�C for 1 hr. Supernatant fractions were

incubated with primary antibodies (see Supplemental Experimental Proce-

dures for antibody details) for overnight at 4�C, followed by incubation with

50 ml of protein A/G plus agarose (Santa Cruz Biotechnology, Santa Cruz,

CA, USA) for 1 hr at 4�C. Immunoprecipitates were washed three times with

lysis buffer, then boiled in 2 3 SDS loading buffer for 5 min, and separated

on 7.5% SDS-polyacrylamide gels. Western blotting experiments were per-

formed with anti-ubiquitin (1:1000, Santa Cruz Biotechnology, sc-8017).

ShRNA Lentiviral Knockdown

The full-length open reading frame of Nedd4-1 or Fbx2 was amplified

from rat brain cDNA by PCR, and an HA tag was added to the N-terminal

in frame. The PCR product was cloned to T/A vector and then subcloned to

pcDNA3.1 expression vector. The construct was verified by DNA sequencing.

The shRNA oligonucleotide targeting rat Nedd4 sequence (GGAGAATTAT

GGGTGTGAAGA; Open Biosystems, Lafayette, CO, USA) or rat Fbx2

sequence (CCACTGGCAACAGTTCTACTT; Open Biosystem) was inserted

to the lentiviral vector pLKO.3G (Addgene, Cambridge, MA, USA), which

contains an eGFP marker. To test the knockdown effect, the plasmid HA

Nedd4-1 or HAFbx2 was transfected to HEK293 cells with Nedd4 shRNA or

Fbx2 shRNA plasmid. Two days after transfection, the cells were harvested

and subjected to western blotting with Anti-HA (1:1000; Roche, Indianapolis,

IN, USA). Actin was used as a loading control.

For the production of lentiviral particles, a mixture containing the

pLKO.3G shRNA plasmid (against Nedd4-1 or Fbx2), psPAX2 packaging

plasmid, and pMD2.G envelope plasmid (Addgene) was transfected to

HEK293FT cells using Lipofectmine 2000. The transfection reagent was

removed 12–15 hr later, and cells were incubated in fresh Dulbecco’s

modified eagle medium (containing 10% fetal bovine serum + penicillin/

streptomycin) for 24 hr. The medium harvested from the cells, which con-

tained lentiviral particles, was concentrated by centrifugation (2,000 3 g,

20 min) with Amicon Ultra Centrifugal Filter (Ultracel-100K; Millipore,

Billerica, MA, USA). The concentrated virus was stored at �80�C. In vivo

delivery of the viral suspension (2 ml) was achieved by stereotaxic injection

into the PFC prelimbic regions bilaterally with a Hamilton syringe (needle

gauge 31) as we previously described (Liu et al., 2011). Electrophysiological,

biochemical, or behavioral experiments were performed at �10 days after

the viral injection.
Immunocytochemical Staining

Synaptic glutamate receptors in PFC cultures were detected as we previously

described (Yuen et al., 2011, see Supplemental Experimental Procedures for

details).

Quantitative RT-PCR

A similar protocol was used as described before (Gu et al., 2007, see

Supplemental Experimental Procedures for details).

Statistics

All data are expressed as the mean ± SEM. Experiments with two groups were

analyzed statistically using unpaired Student’s t tests. Experiments with more

than two groups were subjected to one-way ANOVA, followed by post hoc

Tukey tests.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.neuron.2011.12.033.
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