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Abstract

Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on
different neuronal populations in prefrontal cortex (PFC), a major area controlling emotion and cognition. Using whole-cell
recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking)
interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated
by 5-HT2 receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT1 receptors. Fluoxetine, the
selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS
interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS
interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely
occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal
neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-
HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for
understanding the action of 5-HT and antidepressants in altering PFC network activity.
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Introduction

The prefrontal cortex (PFC) is a central brain region controlling

high-level executive functions and goal-directed behaviors [1].

Clinical, neuropsychological, and imaging studies have indicated

that several neuropsychiatric disorders, including depression, anxiety

and schizophrenia, are related to the deficits in cognitive and

emotional processes subserved by PFC [2–5]. PFC receives a dense

serotonergic innervation from the dorsal and median raphe nuclei

[6]. Growing evidence suggests that the serotonergic system plays an

important role in regulating prefrontal functions [7–11]. The

serotonin system is also heavily involved in depressive disorders

[12–14], and fluoxetine, which enhances serotonin levels by blocking

its reuptake, has been the most successful antidepressant drug [15].

The cellular mechanism underlying the actions of 5-HT and

fluoxetine in PFC has been largely unknown. PFC activity is

control by the excitability of two major neuronal populations:

glutamatergic excitatory pyramidal neurons and GABAergic

inhibitory interneurons [16]. The parvalbumin-expressing fast-

spiking (FS) interneuron network generates gamma oscillations

[17,18], which is critical for cognitive tasks such as attention and

sensory processing [19,20]. Specific deficits in PFC FS interneu-

rons have been found in schizophrenia patients [21]. Moreover,

alterations of prefrontal cortical activity are considered as an

important causal factor for major depression [22], which provides

a basis for the treatment of depression with brain stimulation [23].

Both PFC principal neurons and interneurons contain multiple 5-

HT receptors, with a particular abundance of the 5-HT1A and 5-

HT2A subtypes [24–26]. Blockade of PFC 5-HT2A receptors has

been found to impair working memory, which involves actions at

both excitatory and inhibitory elements within PFC circuitry [27].

Despite the findings on the effect of 5-HT on glutamatergic and

GABAergic synaptic responses in PFC pyramidal neurons [28–32],

it remains unclear about the impact of 5-HT or fluoxetine on the

intrinsic excitability of PFC interneurons and pyramid neurons.

In this study, we have found that 5-HT produces opposing

effects on the action potential firing of PFC FS interneurons and

pyramidal neurons. Fluoxetine treatment in vitro (acute) or in vivo

(chronic) mainly alters the intrinsic excitability of FS interneurons,

but not pyramidal neurons. These results provide a framework for

understanding the action of 5-HT and antidepressants in altering

PFC network activity.

Results

The effect of serotonin on the excitability of FS
interneurons and pyramidal neurons in PFC

To understand the effect of serotonin on the excitability of

cortical neuronal populations, we conducted whole-cell current-

clamp recordings to examine the action potential (AP) firing in FS

interneurons and pyramidal neurons located at layer 3–5 of PFC
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from young adult rats. Pyramidal neurons were identified by their

triangular soma and a clear apical dendrite, whereas interneurons

were characterized by a round or oval cell body and the lack of a

visible apical dendrite under infrared video microscopy. Action

potentials were elicited by injecting a depolarizing current pulse.

FS interneurons generated trains of spikes of short durations (base

duration: ,2 ms) followed by a strong fast afterhyperpolarization

(fAHP) and were characterized by their fast spikes discharged at

high frequencies with little frequency adaptation (Fig. 1A) [33,34].

In contrast, pyramidal neurons fired long-duration (base duration:

,4.5 ms) and low frequency spikes that showed adaptation

followed by a weak fAHP (Fig. 1A).

Bath application of 5-HT (20 mM) significantly increased the firing

rate in FS interneurons, while decreased the firing rate in pyramidal

neurons (Fig. 1A). Both the enhancing and the reducing effects were

concentration-dependent (Fig. 1B, interneurons: 1 mM, 16.263.9%,

2 mM, 37.467.6%, 5 mM, 50.8611.3%, 20 mM, 87.6611.7%,

40 mM, 94.5610.6%, n = 5–10 for each dose; pyramidal neurons:

1 mM, 25.762.1%, 2 mM, 235.263.6%, 5 mM, 248.664.8%,

20 mM, 256.867.9%, 40 mM, 259.968.7%, n = 5–7 for each dose).

To check whether synaptic activity influences the effect of 5-HT on

APs, we used the AMPAR antagonist CNQX (20 mM), NMDAR

antagonist APV (50 mM) and GABAAR antagonist bicuculline

(10 mM) to block excitatory and inhibitory neurotransmission. 5-

HT (20 mM) caused a similar enhancement of the firing rate in FS

interneurons in the presence of these antagonists (84.7613.3%,

n = 4), suggesting that 5-HT may change the neuronal excitability by

altering their intrinsic properties.

Different 5-HT receptors mediate the distinct effects of 5-
HT in FS interneurons and pyramidal neurons

Serotonin can have both inhibitory and excitatory functions in

neuronal networks through the activation of different 5-HT receptors

[35]. We next examined which 5-HT receptors mediate the effects of

5-HT on APs in FS interneurons or pyramidal neurons. As shown in

Fig. 2A and 2B, in FS interneurons, the specific 5-HT2 antagonist

Ketanserin (10 mM) turned the enhancing effect of 5-HT to a small

reduction (213.365.7%, n = 5), and Ketanserin itself had little effect

on APs. On the other hand, in pyramidal neurons (Fig. 2C and 2D),

the specific 5-HT1 antagonist NAN190 (10 mM) turned the reducing

effect of 5-HT to a small enhancement (32.867.6%, n = 7), and

NAN190 itself did not alter APs. Blocking both 5-HT1 and 5-HT2

receptors with Ketanserin and NAN190 largely eliminated

5-HT effects (interneuron: 7.662.3%, n = 4; pyramidal neuron:

211.263.6%, n = 4). These data suggested that the enhancing effect

of 5-HT in FS interneurons is predominantly mediated by 5-HT2

receptors, while the reducing effect of 5-HT in pyramidal neurons is

mainly mediated by 5-HT1 receptors.

The effect of in vitro or in vivo fluoxetine administration
on the excitability of FS interneurons and pyramidal
neurons in PFC

Fluoxetine, a selective serotonin reuptake inhibitor, is the most

widely used antidepressant drug [36]. Next, we examined whether

endogenous activation of 5-HT receptors by fluoxetine could also

alter the excitability of PFC neurons. As shown in Fig. 3A, bath

application of fluoxetine (10 mM) significantly increased the firing

rate of FS interneurons, but had little effect on pyramidal neurons.

A higher dose of fluoxetine (100 mM) gave similar enhancement

in FS interneurons (Fig. 3B, 10 mM: 32.762.3%, 100 mM:

39.264.8%, n = 5), and only slightly decreased the firing rate of

pyramidal neurons (Fig. 3B, 10 mM: 23.361.4%, 100 mM:

216.562.2%, n = 5–6). These data suggest that FS interneurons

are more sensitive to the in vitro application of fluoxetine.

Since the therapeutic effects of fluoxetine are not attained in

patients until 2–3 weeks after the beginning of treatment [37], the

Figure 1. The effect of 5-HT on AP firing in FS interneurons and pyramidal neurons of PFC. A, Representative AP recordings showing the
effect of 5-HT (20 mM) in a FS interneuron and a pyramidal neuron. Scale bars: 20 mV, 50 ms. B, Cumulative data (mean 6 SEM) showing the
percentage change of the firing rate by different doses of 5-HT in FS interneurons and pyramidal neurons.
doi:10.1371/journal.pone.0016970.g001

Effects of 5-HT in Different PFC Neurons
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Figure 2. Different 5-HT receptors mediate the effect of 5-HT on AP firing in PFC FS interneurons and pyramidal neurons. A, C,
Representative AP recordings showing the effect of 5-HT (20 mM) in the presence of the 5-HT2 antagonist Ketanserin (10 mM) or the 5-HT1 antagonist
NAN190 (10 mM) in a FS interneuron and a pyramidal neuron. Scale bars: 20 mV, 50 ms. B, D, Cumulative data (mean 6 SEM) showing the percentage
changes of the firing rate by 5-HT (20 mM) in the presence of different antagonists in FS interneurons and pyramidal neurons.
doi:10.1371/journal.pone.0016970.g002

Figure 3. The effect of in vitro fluoxetine application on AP firing in FS interneurons and pyramidal neurons of PFC. A, Representative
AP recordings showing that effect of bath application of fluoxetine (10 mM) in a FS interneuron and a pyramidal neuron. Scale bars: 20 mV, 50 ms. B,
Cumulative data (mean 6 SEM) showing the percentage change of the firing rate by different doses of fluoxetine in FS interneurons and pyramidal
neurons.
doi:10.1371/journal.pone.0016970.g003

Effects of 5-HT in Different PFC Neurons
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21-day fluoxetine administration regimen has been widely used as

an effective way for chronic antidepressant testing [38,39]. This

regimen can cause behavioral, biochemical and physiological

changes that are associated with anti-depression efficacy of

fluoxetine [40,41]. So we injected rats with fluoxetine (10 mg/

kg/day) for 21 days to examine the impact of long-term fluoxetine

treatment on the excitability of PFC neurons. Saline injections

were used a control. As shown in Fig. 4, the intrinsic excitability, as

measured by the number of spikes elicited by injected depolarizing

current pulses (120–240 pA, 500 ms), was significantly increased

in PFC FS interneurons from fluoxetine-injected rats (160 pA:

Saline: 7.563, Fluox: 2464.5; 180 pA: Saline: 1764, Fluox:

32.566; 200 pA: Saline: 23.564.5, Fluox: 37.564.5, n = 5 for

each group), while the excitability of PFC pyramidal neurons was

unchanged by fluoxetine injection (120 pA: Saline: 5.660.9,

Fluox: 5.160.7; 160 pA: Saline: 7.160.52, Fluox: 7.560.7;

200 pA: Saline: 9.260.7, Fluox: 9.360.4, n = 6 for each group).

These results suggest that long-term fluoxetine treatment mainly

increased the excitability of FS interneurons, which could lead to

the enhanced inhibitory circuit in PFC.

The effect of serotonin on the excitability of PFC neurons
in animals with long-term fluoxetine treatment

Next, we examined whether exogenous application of 5-HT had

any effect on PFC in the rats with 20-day fluoxetine injection. As

shown in Fig. 5, the enhancing effect of 5-HT (2 mM) on FS

interneuron APs was significantly attenuated in fluoxetine-injected

rats, compared to saline-injected rats (saline: 36.865.3%, n = 6,

fluox: 14.364.2%, n = 5, p,0.01, t test). In contrast, the reducing

effect of 5-HT (2 mM) on pyramidal neuron APs was not altered

Figure 4. The effect of long-term in vivo fluoxetine treatment on the excitability of FS interneurons and pyramidal neurons. A, B, Plot
of spike numbers (mean 6 SEM) in response to different current (500 ms) injections in PFC FS interneurons and pyramidal neurons from rats i.p.
injected with saline or fluoxetine for 21 days. *: p,0.01, t test. C, D, Representative AP recordings in response to injected currents in FS interneurons
and pyramidal neurons from saline- or fluoxetine-injected rats. Scale bars: 20 mV, 50 ms.
doi:10.1371/journal.pone.0016970.g004

Effects of 5-HT in Different PFC Neurons
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(saline: 235.263.6%, n = 6, fluox: 236.763.3%, n = 6). It

suggests that chronic fluoxetine treatment significantly occluded

the effect of 5-HT in FS interneurons, while the excitability of

pyramidal neurons is regulated by 5-HT via a fluoxetine-

independent mechanism.

Discussion

In this study, we have revealed the effect of serotonin and

fluoxetine on the intrinsic excitability of PFC FS interneurons and

pyramidal neurons. Since action potential firing is the final output

of neurons, our results provide a framework for understanding the

role of serotonin and fluoxetine in regulating PFC network

activity, which is crucial for PFC-mediated cognitive processes

such as working memory [42]. It is known that FS interneurons

play a central role in determining the timing and spatial selectivity

of pyramidal firing [43], thus shaping the physiological outcome of

the PFC network. By increasing the excitability of PFC FS

interneurons, the feedforward inhibition could be enhanced by

serotonin and fluoxetine. The decreased excitability of PFC

pyramidal neurons in response to serotonin could further dampen

the circuit activity.

5-HT exerts complex effects on central neurons, depending on

the cell type, the channel target, the expression of 5-HT receptor

subtypes and the developmental stage [35,44,45]. 5-HT1A and 5-

HT2A receptors have been found in PFC pyramidal neurons and

interneurons [25], while it is unclear which receptor plays the

dominant role in these different types of neurons. Bath

administration of 5-HT produces two distinct responses in PFC

pyramidal neurons, the 5-HT1A-mediated membrane hyperpolar-

ization and the 5-HT2-mediated membrane depolarization [46].

Interestingly, the 5-HT-induced depolarization gradually shifts to

a hyperpolarization commencing during the third postnatal week

[45]. Electrical stimulation of the raphe nuclei elicits 5-HT1A-

mediated inhibition and 5-HT2A-mediated excitation in PFC

pyramidal neurons [47]. Moreover, 5-HT exerts a potent control

on slow and gamma oscillations in PFC through 5-HT1A and 5-

HT2A receptors, and induces distinct effects on the spiking of FS

interneurons in vivo [26]. In this study, we found that the 5-HT1A-

mediated decrease of intrinsic excitability is the predominant effect

of 5-HT in PFC pyramidal neurons from young adult rats

(,4 wk), while the 5-HT2-mediated increase of intrinsic excitabil-

ity is the predominant effect of 5-HT in PFC FS interneurons.

Since blocking synaptic transmission did not alter the 5-HT

regulation of AP firing, the opposing effects of 5-HT1A and 5-HT2

on neuronal excitability could be attributable to their coupling to

distinct ion channels including various K+, Ca2+, or cation

channels [48–51].

Fluoxetine is an antidepressant drug whose therapeutic effect is

considered to be through the inhibition of serotonin reuptake and

the enhancement of serotonergic neurotransmission [36,15].

Fluoxetine also has several other modulatory effects, such as

inhibition of G protein-coupled receptors, blockade of monoamine

oxidases and modulation of Ca2+ channels [52–54]. The effect of

fluoxetine on PFC neuronal excitability has been largely unknown.

In this study, we found that acute in vitro application of fluoxetine

Figure 5. The effect of 5-HT on AP firing in PFC neurons from fluoxetine-treated rats. A, Representative AP recordings showing the effect
of 5-HT (2 mM) in a FS interneurons and a pyramidal neuron from saline- or fluoxetine-injected rats. Scale bars: 20 mV, 50 ms. B, Cumulative data
(mean 6 SEM) showing the percentage change of the firing rate by 5-HT (2 mM) in FS interneurons and pyramidal neurons from saline- or fluoxetine-
injected rats. *: p,0.01, t test.
doi:10.1371/journal.pone.0016970.g005

Effects of 5-HT in Different PFC Neurons
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exerts a cell type-specific action in PFC, with a major impact on

FS interneurons rather than pyramidal neurons. The smaller effect

of fluoxetine on APs, compared to the effect of exogenously

applied 5-HT, could be due to the limited level of endogenous 5-

HT in PFC slices. However, chronic in vivo administration of

fluoxetine also selectively alters the excitability of FS interneurons,

confirming that FS interneurons are more sensitive to elevated

endogenous 5-HT levels. It awaits to be investigated what

determines the selective sensitivity to fluoxetine. Since the effect

of exogenous application of 5-HT is largely occluded in FS

interneurons from fluoxetine-treated animals, it suggests that 5-

HT and fluoxetine converge onto a common set of membrane

mechanisms to increase interneuron excitability.

Materials and Methods

Electrophysiology recording in slices
All experiments were carried out with the approval of State

University of New York at Buffalo Animal Care Committee. Brain

slices containing PFC from young adult male rats (,4 weeks old)

were prepared as described previously [55]. In brief, animals were

anesthetized by inhaling 2-bromo-2-chloro-1,1,1-trifluoroethane

(1 ml/100 g, Sigma St. Louis, MO) and decapitated; brains were

quickly removed, iced, and then blocked for slicing. The blocked

tissue was cut in 300–400 mm slices with a vibrating slicer (VT

1000 s, Leica, Nussloch, Germany) while bathed in a HEPES-

buffered salt solution (in mM: 140 sodium isethionate, 2 KCl, 4

MgCl2, 0.1 CaCl2, 23 glucose, 15 HEPES, 1 kynurenic acid,

pH 7.4, 300–305 mosM/liter). Slices were then incubated for 1–

5 hr at room temperature (20–22uC) in a NaHCO3-buffered saline

bubbled with 95% O2, 5% CO2 (in mM): 126 NaCl, 2.5 KCl, 2

CaCl2, 2 MgCl2, 26 NaHCO3, 1.25 NaH2PO4, 10 glucose, 1

pyruvic acid, 0.05 glutathione, 0.1 NG-nitro-L-arginine, 1

kynurenic acid, pH = 7.4, 300–305 mosM. The slice was trans-

ferred to a perfusion chamber attached to the fixed-stage of an

upright microscope (Olympus) and submerged in continuously

flowing oxygenated artificial cerebrospinal fluid (ACSF). Neurons

were visualized with a 406water-immersion lens and illuminated

with near infrared (IR) light, and the image was detected with an

IR-sensitive CCD camera.

Whole-cell current-clamp recordings were performed using the

similar approach as we described before [56]. Patch electrodes

were filled with the internal solution (in mM): 60 K2SO4, 60 N-

methyl-D-glucamine, 40 HEPES, 4 MgCl2, 0.5 EGTA, 12

phosphocreatine, 3 Na2ATP, 0.5 Na3GTP, 20 leupeptin,

pH = 7.2–7.3, 265–270 mosM. Recordings were obtained with a

DIGIDATA 1322A acquisition system and a Multiclamp 700A

amplifier controlled by a computer running pClamp (Axon

instruments, Foster City, CA). Action potentials were evoked by

somatic injections of current pulses. The resting membrane

potential was usually lower than 260 mV before being triggered

to fire APs by the depolarizing pulses. Quantitative measurements

were taken at 3–5 min after drug application. Numerical values

were expressed as mean 6 SEM. Statistical comparisons of drug

effects were made using the student t test or ANOVA.

Antidepressant treatment
Young male rats were administered intraperitoneally either with

the antidepressant fluoxetine (10 mg/kg) or saline for 21 days

(once daily) as we described before [31]. Experimental groups

were matched such as a fluoxetine-treated rat and saline-treated

control rat were sacrificed on the same day and tissues were

processed in parallel.
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