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Cellular and molecular basis for stress-induced depression
J-S Seo1, J Wei2, L Qin2, Y Kim1, Z Yan2 and P Greengard1

Chronic stress has a crucial role in the development of psychiatric diseases, such as anxiety and depression. Dysfunction of the
medial prefrontal cortex (mPFC) has been linked to the cognitive and emotional deficits induced by stress. However, little is known
about the molecular and cellular determinants in mPFC for stress-associated mental disorders. Here we show that chronic restraint
stress induces the selective loss of p11 (also known as annexin II light chain, S100A10), a multifunctional protein binding to 5-HT
receptors, in layer II/III neurons of the prelimbic cortex (PrL), as well as depression-like behaviors, both of which are reversed by
selective serotonin reuptake inhibitors (SSRIs) and the tricyclic class of antidepressant (TCA) agents. In layer II/III of the PrL, p11 is
highly concentrated in dopamine D2 receptor-expressing (D2+) glutamatergic neurons. Viral expression of p11 in D2+ PrL neurons
alleviates the depression-like behaviors exhibited by genetically manipulated mice with D2+ neuron-specific or global deletion of
p11. In stressed animals, overexpression of p11 in D2+ PrL neurons rescues depression-like behaviors by restoring glutamatergic
transmission. Our results have identified p11 as a key molecule in a specific cell type that regulates stress-induced depression,
which provides a framework for the development of new strategies to treat stress-associated mental illnesses.
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INTRODUCTION
Corticosteroid stress hormones serve as important regulators of
cognitive and emotional processes by exerting complex effects in
the central nervous system.1–6 Exposure to prolonged stress
induces heightened vulnerability to anxiety, depression and other
mood disorders.7–9

Among the multiple brain areas involved in cognition and
emotion, the medial prefrontal cortex (mPFC), a region control-
ling higher-level ‘executive’ functions, is a primary target of
stress hormones.5,10–12 Structural and functional changes induced
by stress in the mPFC have been correlated with emotional
disturbances in humans13–15 and rodents.3,11,12 Glutamate
receptor-mediated synaptic transmission, which controls mPFC
network activity, is crucial for mood and working memory.16,17

Repeated stress negatively influences mPFC-mediated cognitive
processes by disturbing glutamatergic signaling in rats.18,19

A key question waiting to be answered is the molecular
and cellular basis of stress-induced depression. In the brain,
the multifunctional protein p11, which interacts with 5-HT
receptors, ion channels, enzymes and chromatin-remodeling
factors, has been found to be critically involved in depression-
like behaviors and/or antidepressant actions.20–23 p11 is enriched
in distinct neuronal types, such as cholinergic neurons in nucleus
accumbens,24 mossy cells and basket cells in dentate gyrus,20 and
layer 5 corticostriatal projection neurons.25 However, it is largely
unknown whether p11 in specific subtypes of neurons controls
depressive phenotypes in response to chronic stress. In this
study, we sought to investigate the anatomical distribution and
identify the neuronal cell types of p11 in mPFC and to analyze
its potential role in stress-induced depression. The synaptic
mechanisms underlying the behavioral effects of p11 were also
explored by examining glutamatergic signaling in mPFC of
stressed animals.

MATERIALS AND METHODS
Animals
Eight transgenic mouse lines were generated and used for this study:
p11-EGFPmice,21,22,26 D2-Cre mice,24,26 D2-tdT mice (D2-Cre line crossed
with tdTomato line),20 p11 cKO mice (D2-Cre line crossed with p11f/f line27),
p11 cKO-tdT mice (D2-Cre crossed with tdTomato line and p11 cKO line),
p11 gKO mice (D2-Cre line crossed with p11 KO line21), p11 gKO-tdT mice
(D2-Cre crossed with tdTomato line and p11 KO line) and D1-tdT-D2-eGFP
mice (D1-Cre26 crossed with tdTomato line and D2-eGFP mice). The C57BL/6J
mice and tdTomato reporter mice (Rosa26-CAG-tdTomatoloxp/+, 007908)
were purchased from the Jackson Laboratory. We produced the progeny for
each line by in vitro fertilization and embryo transfer techniques (Transgenic
Facility, The Rockefeller University, New York, NY, USA).
All experiments were approved by The Rockefeller University Institu-

tional Animal Care and Use Committee and were performed in accordance
with the guidelines described in the National Institutes of Health Guide for
the Care and Use of Laboratory Animals. Mice were housed in groups of up
to five animals on a 12 h dark/light cycle at 22 °C and maintained with
rodent diet (Picolab, St. Louis, MO, USA) and water available ad libitum.
Male mice were used for all experiments.

Restraint stress and antidepressant treatments
The restraint stress treatment was performed as previously described.20,28

Briefly, mice were housed two per cage and individually placed head-first
into well-ventilated 50 ml polypropylene conical tubes, which were then
plugged with a 4.5-cm-long middle tube, and finally tied with a cap of the
50 ml tube. After each session of restraint stress, the mice were returned to
their home environment, in which they were housed in pairs in normal
plastic cages with free access to food and water. From the next day after
the last restraint session, imipramine, fluoxetine and escitalopram were
administered by a daily I.P. injection (20 mg kg− 1 day− 1) for up to 4 weeks.
Imipramine, fluoxetine and escitalopram were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Fluoxetine and escitalopram were dissolved
in dimethylsulfoxide and then diluted in saline. Imipramine was dissolved
in saline. Each drug was finally diluted in 100 μl of 0.9% saline and
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administered at the dose indicated. Control groups were administered
saline.

Viruses
For gene silencing, Lenti-GFP-shRNAmir (GFP-shRNA, RHS4348) and Lenti-
p11-GFP-shRNAmir (p11-shRNA, VGM5524-99213741) viruses were pur-
chased from Thermo Scientific (Waltham, MA, USA). For Cre-mediated
recombination/inversion of the flanked p11 as double-floxed inverse
(DIO; open reading frame) viruses, AAV vector production of the AAV2
serotype was performed by the University of Pennsylvania vector core.
AAV2-EF1a-DIO-eYFP-WPRE-hGH was used as the control vector. AAV2-
EF1a-DIO-p11-WPRE-hGH vector construction for overexpression of p11
was made by Dr Jung-Hyuck Ahn (Ewha Womans University, Seoul, South
Korea). Double-floxed AAV constructs were generated by insertion of the
inverted p11 expression cassettes between double lox 2722 and lox P
incompatible sites (DIO). In the absence of Cre expression, the p11 or eYFP
were not produced. In the presence of Cre expression, the transgene will
be FLEXed, leading to the expression of the p11 or eYFP. The titers
(genome copies per milliliter) of the AAVs were as follows: 4.04e12 for
AAV2-EF1a-DIO-eYFP-WPRE-hGH (AAV_eYFP) and 3.64e12 for AAV2-EF1a-
DIO-p11-WPRE-hGH (AAV_p11).

Stereotaxic surgery
All stereotaxic injections were carried out on an Angle Two stereotaxic
frame for mouse with motorized nanoinjector (Leica, Buffalo Grove, IL,
USA). Ten-week-old male mice were anesthetized with ketamine and
xylazine and stereotaxically injected with Lenti-GFP-shRNA, Lenti-p11-GFP-
shRNA, AAV2-EF1a-DIO-eYFP-WPRE-hGH and AAV2-EF1a-DIO-p11-WPRE-
hGH into the layer II/III PrL (AP: 1.98 mm; ML: ± 0.12 mm; and DV:
− 2.21 mm from bregma). The total injection volume was 0.5 μl. All
injections were performed at a rate of 0.15 μl min− 1 using Hamilton
syringes (33 gauge; Reno, NV, USA) and the needle was kept in place for an
additional five minutes. After 14 days of injection, depression-like
behavioral tests and electrophysiological recording were performed.

Behavioral assessments
As previously described,20,28 all behavioral tests were performed during the
light cycle in a dedicated sound-proof behavioral facility by experimenters
blind to treatment- and genotype information. Mice were brought to the
testing room 30 min before the start of each behavioral test and remained
in the same room through the test. At all times, sound was masked with
60–65 dB white noise.

Tail suspension test. Mice were suspended individually by their tails. The
rod was fixed 50 cm above the surface of a table covered with a safety mat
in a sound-isolated room. The tip of the tail was fixed using adhesive
Scotch tape; the duration of the test was 5 min. The test session was
videotaped and immobility scored by using automated tail suspension
test/forced swin test (TST/FST) analysis software from Clever Systems
(Reston, VA, USA).

Forced swim test. In brief, mice were placed in a glass cylinder (height:
30 cm, diameter: 16 cm) containing water at 24 °C and a depth of 14 cm, so
that they could neither escape nor touch the bottom. Mice were forced to
swim for 6 min. The animals were habituated for the first 1 min and
behavior was monitored over the next 5 min. A 6 min test session was
videotaped and immobility scored by using automated TST/FST analysis
software from Clever Systems.

Sucrose preference test. Mice were presented with two water bottles. After
habituation for 1 day, mice were given a free choice between two bottles,
containing tap water or 2% sucrose solution. To prevent a possible effect of
drinking behavior, the left/right location of the bottles was switched every
day. The consumption of water and sucrose solution was measured daily
for 3 days by weighing the bottles. The sucrose preference was calculated
as the ratio of consumed sucrose solution to consumed water.

Novelty-suppressed feeding test. After 24- h food deprivation (water was
provided ad libitum), mice were assayed by novelty-supressed feeding
(NSF) test, At the end of this time, a single 2 × 2 cm oval food pellet was
placed on a circular piece of white filter paper (150 mm diameter)
positioned in the center of the open field (40 × 40 × 40 cm). Each mouse

was placed in a corner of the open field. The latency to first bite the
laboratory chow pellet and consumption over 15 min were recorded.
Immediately after the mouse began to eat the chow, the tested animal was
placed in its home cage alone with a weighed piece of chow for 30 min. At
the end of this period, the amount of food consumed was determined by
weighing the piece of chow.

Locomotion test. Locomotor activity was measured in the open field of a
Plexiglas chamber (40 × 40× 40 cm). Each mouse was placed in the corner
of the open field, and locomotion was recorded for the indicated period
for 30 min. An automated Superflex software (Accuscan Instruments,
Columbus, OH, USA) was used to measure the total distance traveled
across a session. The measures were automatized using two rows of
infrared photocells placed 20 and 50 mm above the floor, spaced 31 mm
apart. Photocell beam interruptions were recorded on a computer using
the Superflex software (Accuscan Instruments).

Immunohistochemistry
Brains were perfused transcardially with cold phosphate-buffered saline
(PBS), followed by 4% paraformaldehyde and postfixed in the same
solution overnight at 4 °C. The brains were coronally cut into 40-μm-thick
sections with a vibratome (VT 1000 S, Leica). Free-floating sections were
washed three times with 0.1 M PBS containing 0.1% Triton X-100 in
phosphate buffered saline-Tween 20 (PBS-T), pH 7.4, for 15 min each time
and permeabilized with PBST in 2% normal goat serum, 2% normal horse
serum and 2% bovine serum albumin for 1 h. After blocking, sections were
incubated with the primary antibodies diluted in the blocking buffer. The
immunohistochemistry was done using the following antibodies: anti-p11
(goat polyclonal, 1:200, R&D Systems, Minneapolis, MN, USA), anti-eGFP
(chicken polyclonal, 1:500, Abcam, Cambridge, MA, USA), anti-CaMKII
(rabbit polyclonal, 1:500, Santa Cruz, Dallas, TX, USA) and anti-GAD67
(mouse monoclonal 1:1000, Millipore, Billerica, MA, USA). After 24 h
incubation, sections were washed, and incubated with Alexa-fluor-
conjugated secondary antibodies (1:500, Invitrogen, Carlsbad, CA, USA).
Slices were washed three more times in PBS-T for 15 min each and
mounted with Vectashield mounting medium with DAPI (Vector Labora-
tories, Burlingame, CA, USA) onto microscope slides. All the sections were
examined under a Zeiss LSM710 confocal microscope or wide-field
fluorescence microscope (Zeiss, Jena, Germany). All histology findings
were confirmed in at least five different animals.

Cell counting
The number of eGFP, tdTomato, p11, CaMKII or GAD67-immunolabeled
neurons was quantified with ImageJ software (NIH). Three to five coronal
sections per animal were quantified and averaged for each animal.
Fluorescence images for obtaining layer II/III PrL were acquired using a
Zeiss LSM710 confocal microscope with a × 40/0.50 NA objective
(45176.65 um2; 262144 pixels). Background autofluorescence was
accounted for by applying an equal cutoff threshold to all images. All
imaging and analyses were performed blind to the experimental
conditions. A one-way analysis of variance followed by Newman–Keuls
post hoc test multiple comparisons or one-sample t-tests were used to
analyze data and later graphed using Microsoft Excel or Prism Software
(GraphPad, La Jolla, CA, USA).

Western blot analysis
Tissue samples were obtained from the PrL of the mice. Tissue samples
were homogenized in RIPA buffer (Sigma-Aldrich) supplemented with a
protease inhibitor cocktail (Complete-EDTAfree; Roche) and a phosphatase
inhibitor cocktail (PhosStop, Roche). Protein concentrations were deter-
mined using a BCA assay (Thermo Scientific). A total of 30 μg of protein
were denatured in Laemmli sample buffer at 95 °C for 5 min and separated
by SDS–polyacrylamide gel electrophoresis using 4–20% tris-glycine gel
(Life Technologies, Gaithersburg, MD, USA). After transfer of proteins to
nitrocellulose membranes, blots were blocked in 5% non-fat milk for 1 h at
room temperature and incubated with the respective primary antibody at
4 °C overnight. Primary antibodies were as follows: anti-p11 (goat
polyclonal, 1:500, R&D Systems); and anti-β actin (mouse monoclonal,
1:5000, Abcam). Primary antibodies were detected using either HRP-linked
donkey anti–goat IgG (1:2000, Santa Cruz) or HRP-linked sheep anti–mouse
IgG (1:10000, GE Healthcare, Madison, WI, USA) together with Western
Lightning Plus-ECL (Perkin Elmer, Norwalk, CT, USA). Signals were
quantified with ImageJ software (NIH).
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Quantitative RT-PCR
Reverse transcription was performed with 1 μg of total RNA using ImProm-II
Reverse Transcription System (Promega, Madison, WI, USA) with Oligo dT
primer according to the manufacturer’s protocol. A total of 10 ng of cDNA
was used for each quantitative PCR reaction and all samples were run in
triplicate. Quantitative PCR was carried out using an Applied Biosystems
7900HT system (Foster City, CA, USA). Taqman Universal PCR Master Mix
(Life Technologies, Foster City, CA, USA) was used for all analyses. Taqman
gene expression assays (FAM) from Life Technologies were as follows: p11
(Mm00501457_m1) and Gapdh (Mm99999915_g1). All data were normalized
to TaqMan Rodent GAPDH Control, and relative expression levels between
conditions were calculated by the comparative CT (2-ΔΔCT) method.

Electrophysiological recordings
As previously described,19,29 whole-cell voltage-clamp recording technique
was used to measure synaptic currents in layer II/III PrL D2+ neurons. After
chronic restraint stress treatment with or without viral (AAV2-EF1a-DIO-
eYFP-WPRE-hGH or AAV2-EF1a-DIO-p11-WPRE-hGH) injection into the
layer II/III PrL, D2-tdT mice (D2-Cre line crossed with tdTomato line) or
p11 cKO-tdT mice (D2-Cre crossed with tdTomato line and p11 cKO line)

were used for electrophysiological experiments. Red fluorescent D2+

neurons were selected for recordings. Mouse slices (300 μm) were
positioned in a perfusion chamber attached to the fixed stage of an
upright microscope (Olympus, Tokyo, Japan) and submerged in con-
tinuously flowing oxygenated artificial cerebrospinal fluid (in mM: 130 NaCl,
26 NaHCO3, 1 CaCl2, 5 MgCl2, 3 KCl, 1.25 NaH2PO4, 10 glucose, pH 7.4,
300 mOsm). Bicuculline (10 μM) and CNQX (20 μM) were added for N-
methyl-D-aspartate receptor-mediated excitatory postsynaptic current
(NMDAR-EPSC) recordings. Bicuculline and D-APV (50 μM) were added in
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated
excitatory postsynaptic current (AMPAR-EPSC) recordings. Patch electrodes
contained an internal solution (in mM): 130 Cs-methanesulfonate, 10 CsCl, 4
NaCl, 10 HEPES, 1 MgCl2, 5 EGTA, 2 QX-314, 12 phosphocreatine, 5 MgATP,
0.2 Na3GTP, 0.1 leupeptin, pH 7.2–7.3, 265–270 mOsm. Layer II/III PrL D2+

neurons were visualized with a x40 water-immersion lens and recorded
with the Multiclamp 700A amplifier (Molecular Devices, Sunnyvale,
CA, USA). Evoked EPSC were generated with a pulse from a stimulation
isolation unit controlled by an S48 pulse generator (Grass Technologies,
West Warwick, RI, USA). A bipolar stimulating electrode (FHC, Bowdoin, ME,
USA) was placed ~ 100 μm from the neuron under recording. For NMDAR-
EPSC, the cell (clamped at − 70 mV) was depolarized to +40 mV for 3 s

Figure 1. Chronic stress induces loss of p11 in PrL, as well as depression-like behavior. (a) Immunofluorescence image illustrating p11-positive
cells (EGFP+) in mPFC. Scale bar, 500 μm. (b) High-magnification image of p11 expression in different layers of PrL and IL. Scale bar, 100 μm.
(c) p11-expressing cells in the PrL and IL from control (CON) and chronic restraint stressed (RST) mice. Scale bar, 40 μm. (d) High-magnification
images of p11 expression in PrL layer II/III and IL layer V from control and stressed mice. Scale bar, 25 μm. (e) Quantification of p11-expressing
cells in PrL (layer II/III) and IL (layer V) from control and stressed mice (n= 5 per group). (f–i) Chronic stress-induced depression-like behaviors
measured by immobility time in TST (f), FST (g), the ratio of sucrose to water consumption in (h) and the latency to feed in NSF test (i) (n= 24
per group). *Po0.05, **Po0.01, two-tailed t-test. ACC, anterior cingulate cortex; FST, forced swin test; fmi, forceps minor of the corpus
callosum; IL, infralimbic cortex; M2, motor cortex 2; NSF, novelty-supressed feeding; PrL, prelimbic cortex; SPT, sucrose preference test. Data
are means± s.e.m.
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before stimulation to fully relieve the voltage-dependent Mg2+ block.
Membrane potential was maintained at − 70 mV for AMPAR-EPSC
recordings. For input–output responses, EPSC was elicited by a series of
pulses with different stimulation intensities (50–90 μA) delivered at
0.033 Hz. For paired-pulse ratios, AMPAR-EPSC was evoked by double
pulses with various intervals (0.02–0.4 s). Data analyses were performed
with Clampfit (Axon instruments, Molecular Devices), Kaleidagraph soft-
ware (Albeck, Synergy Software, Reading, PA, USA) and Prism software
(GraphPad).

Statistics
Two-sample comparisons were performed using the Student's t-test, while
multiple comparisons were made using one-way analysis of variance
followed by a Newman–Keuls post hoc test and two-way analysis of
variance by a Bonferroni post hoc test to compare selected pairs of data.
PRISM software (GraphPad Software) was used to perform statistical
analyses. All data are presented as the mean± s.e.m.

RESULTS
Chronic stress induces the loss of p11 expression in PrL and
depression-like behaviors
To identify the neuronal types of p11 in mPFC that may be
involved in stress-induced depression, we first examined the
anatomical and cellular distribution of p11 using p11 promoter-
driven EGFP (p11-EGFP) mice. GFP immunofluorescence showed
that p11 was present in all three subregions of mPFC, anterior
cingulate cortex, prelimbic cortex (PrL) and infralimbic cortex (IL),
but that it was most abundant in layer II/III pyramidal neurons of
PrL (Figures 1a and b).
Next, we investigated whether p11 expression in mPFC,

especially PrL and IL (rodent homolog of human orbitofrontal
cortex30), was altered by stress. Mice exposed to chronic restraint
stress (RST, 2 h/day, 14 days)20,28 exhibited significantly reduced
p11 expression in layer II/III PrL neurons, but not in IL neurons,
compared with the control group (Figures 1c-e).
In parallel, we also examined behavioral outcomes of chronic

stress. Compared with the control group, mice exposed to RST
exhibited significantly increased immobility in TST (Figure 1f) and
FST (Figure 1g), two measurements of helplessness and hope-
lessness. Stressed mice also showed anhedonia in sucrose
preference test (SPT) (Figure 1h) and anxiety in NSF (Figure 1i),
while food consumption and locomotor activity were not altered
(data not shown). These data indicate that the chronic stress
paradigm induces depression-like behaviors.

To determine whether the stress-induced loss of PrL p11 is
responsible for depression-like behaviors, we knocked down p11
expression by injecting p11 shRNA lentivirus into PrL (Supple-
mentary Figure S1a). The p11 shRNA induced a potent suppres-
sion of p11 expression in PrL (Supplementary Figure S1b). The p11
shRNA-injected mice exhibited significantly increased immobility
in both TST and FST (Supplementary Figures S1c and d), indicating
that the loss of p11 from PrL contributes to the manifestation of
depression-like behaviors.

Antidepressants restore p11 levels in PrL and alleviate stress-
induced depression
To further determine the role of PrL p11, we investigated the
impact of antidepressant treatment on stress-induced changes
in p11 expression and depression-like behaviors. Western blotting
and quantitative PCR results revealed that the levels of p11
protein and mRNA in PrL were reduced in chronically stressed
mice, which were reversed by 2-week treatment with three
distinct antidepressants, imipramine (TCA), fluoxetine (selective
serotonin reuptake inhibitors (SSRIs)) and escitalopram (SSRI)
(Figures 2a and b). These antidepressants also rescued the
depression-like behaviors in TST, FST, SPT and NSF (Figures 2c-f).
Chronic stress-induced depression-like behaviors are long

lasting, but can be reversed over time.28,31 Therefore, we also
examined the natural recovery of stress-induced changes in p11
expression and behavior. At 14 days post stress, the level of p11 in
PrL was significantly lower than control animals, but at 90 days
post stress, the level of p11 in PrL was restored to the control level
(Supplementary Figures S2a and b). In parallel, the depression-like
behaviors measured by TST and FST disappeared 90 days, but not
14 days, post stress (Supplementary Figures S2c and d). More
detailed time courses showed that the recovery of p11 expression
and behaviors were well correlated (Supplementary Figure S2).

The expression of p11 in D2R-containing glutamatergic PrL
neurons determines depression-like behavior
Given the heterogeneity of PrL neurons, we sought to dete-
rmine which neuronal subtypes were involved in stress-induced
depression. Immunofluorescence staining revealed that, in layer
II/III PrL, p11 was present in most (~88%) D2 dopamine receptor-
expressing (D2+) neurons (Figure 3a; Supplementary Figures S3a-c;
and Supplementary Table S1-3), but only in a few (~8%) D1
dopamine receptor-expressing (D1+) neurons (Supplementary

Figure 2. Antidepressants restore p11 levels in PrL and alleviate stress-induced depression. (a,b) Western blot measurement of p11 protein (a)
and qPCR measurement of p11 mRNA (b) in PrL from control and stressed mice with or without antidepressant treatments (a, n= 10 CON,
n= 12 for each group of RST, RST+Imi, RST+Flu, RST+Esci; b, n= 6 per group). (c–f) Depression-like behaviors in control and stressed mice with
or without antidepressant treatments, as measured by TST (c), FST (d), SPT (e) and NSF (f) (n= 10 CON, n= 12 for each group of RST, RST+Imi,
RST+Flu, RST+Esci). #Po0.05, ##Po0.01, compared with CON; *Po0.05 and **Po0.01, compared with RST, one-way analysis of variance. Imi,
imipramine; Flu, fluoxetine; FST, forced swin test; Esci, escitalopram; NSF, novelty-supressed feeding; PrL, prelimbic cortex; qPCR, quantitative
PCR; SPT, sucrose preference test; TST, tail suspension test. Data are means± s.e.m.
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Figure S3a; Supplementary Table S1). Most (~88%) of the p11+/
D2+ neurons in layer II/III PrL also expressed Ca2+/calmodulin-
dependent kinase II (CaMKII, Supplementary Figure S3b; and
Supplementary Table S2), but not glutamic acid decarboxylase 67
(GAD67, Supplementary Figure S3c; and Supplementary Table S3),
indicating that they are glutamatergic neurons.
To determine the role of p11 in layer II/III PrL D2+ (D2+ PrL)

neurons, we generated conditional knockout mice with p11
deletion selectively in D2+ neurons (p11 cKO; D2-Cre x p11f/f). The
p11 cKO mice displayed depression-like behaviors as demon-
strated by increased immobility in TST and FST (Figures 3b and c),
and anxiety-like behavior as indicated by increased latency to feed
in NSF (Figure 3e). To specifically manipulate p11 expression in
D2+ PrL neurons, we injected the Cre-dependent p11 over-
expression virus (AAV_p11; AAV2-EF1a-DIO-p11-WPRE-hGH) to
layer II/III PrL of p11 cKO mice, followed by behavioral measure-
ments. As shown in Figures 3b-e, the depressive phenotypes of
p11 cKO mice in TST, FST, SPT and NSF were all rescued by viral
expression of p11 in D2+ PrL neurons.
Global p11 knockout (p11 gKO; D2-Cre x p11 KO) mice

also manifested depressive behaviors in TST, FST, SPT and NSF
(Figures 3g-j), consistent with previous reports on p11 KO
mice.21,24 Viral expression of p11 (AAV_p11) in D2+ PrL neurons

of p11 gKO mice (Figure 3f) rescued all the depression-like
phenotypes (Figures 3g-j). Collectively, these data indicate that
restoration of p11 expression in D2+ PrL neurons is sufficient for
the reversal of depressive behaviors induced by global deletion
of p11.

p11 overexpression in D2R-containing PrL neurons ameliorates
stress-induced behavioral and synaptic deficits
Given the loss of PrL p11 in stressed animals (Figures 1 and 2), we
examined whether restoring p11 in D2+ PrL neurons could reverse
stress-induced depression. TST, FST, SPT and NSF indicated that,
compared with control D2-Cre mice [CON(D2)], chronically
stressed D2-Cre mice [RST(D2)] exhibited depression-like beha-
viors, which were reversed by injecting AAV_p11, but not
AAV_eYFP, to layer II/III PrL after stress (Figures 4a-d). Interestingly,
overexpressing AAV_p11 in layer II/III PrL of control mice [CON
(D2)] induced anti-depression-like behaviors (Figures 4a and b).
These data further confirm that p11 in D2+ PrL neurons
contributes to stress-induced depression.
To address the potential mechanisms underlying the role of p11

in stress-induced depression, we investigated the impact of p11
on PrL glutamatergic transmission, which plays a key role in
regulating stress responses and emotional processes.5,6,12 We first

Figure 3. p11 in D2R-containing PrL neurons determines depression-like behavior. (a) Co-localization of dopamine D2 receptor (D2, red) and
p11 (green) in layer II/III PrL neurons from D2-tdT (D2-Cre x tdTomato) mice. Scale bar, 10 μm. (b–e) Depression-like behaviors in wild-type (WT,
p11f/f) and D2+ neuron-specific conditional p11 knockout (p11 cKO, D2-Cre x p11f/f) mice with the expression of AAV-DIO-p11 (AAV_p11) or
AAV-DIO-eYFP (AAV_eYFP) in D2R-containing PrL neurons, as measured by TST (b), FST (c), SPT (d) and NSF (e) (n= 6, WT+AAV_eYFP; n= 6, WT
+AAV_p11; n= 12, p11 cKO+AAV_eYFP; n= 12, p11 cKO+AAV_p11). (f) Immunofluorescence images of p11 (blue) and eYFP (green) in global
p11 knockout (p11 gKO-tdT, D2-Cre x tdTomato x p11 KO) mice with the injection of AAV_p11 or AAV_eYFP into layer II/III PrL. Scale bar,
20 μm. (g–j) Depression-like behaviors in WT and p11 gKO (D2-Cre x p11 KO) mice with the injection of AAV_ p11 or AAV_eYFP into layer II/III
PrL, as measured by TST (g), FST (h), SPT (i) and NSF (j) (n= 15, WT; n= 16, p11 gKO; n= 7, p11 gKO+AAV_eYFP; n= 6, p11 gKO+AAV_p11).
*Po0.05, **Po0.01, one-way analysis of variance. Data are means± s.e.m. FST, forced swin test; NSF, novelty-supressed feeding; PrL, prelimbic
cortex; SPT, sucrose preference test; TST, tail suspension test.
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Figure 4. p11 overexpression in D2R-containing PrL neurons ameliorates stress-induced behavioral and glutamatergic synaptic deficits. (a–d)
Depression-like behaviors in control and stressed D2-Cre mice with the expression of AAV_p11 or AAV_eYFP in D2R-containing PrL neurons, as
measured by TST (a), FST (b), SPT (c) and NSF (d) (n= 10 CON(D2)+AAV_eYFP, CON(D2)+AAV_p11; n= 12 RST(D2)+AAV_eYFP; n= 14 RST(D2)
+AAV_p11). *Po0.05, **Po0.01, one-way analysis of variance. (e and g) Summarized input–output curves of AMPAR-EPSC (e) and NMDA-
EPSC (g) in D2+ layer II/III PrL neurons from control mice (D2-tdT) and RST mice with PrL injection of AAV_eYFP or AAV_p11 (e, n= 21 CON(D2),
n= 26 RST(D2), n= 14 RST(D2)+AAV_eYFP, n= 22 RST(D2)+AAV_p11; g, n= 13 CON(D2), n= 13 RST(D2), n= 15 RST(D2)+AAV_eYFP, n= 12 RST
(D2)+AAV_p11]. (f and h) Representative AMPAR-EPSC (f) and NMDAR-EPSC (h) traces in different groups. **Po0.01, ***Po0.001, RST(D2) vs
CON(D2); #Po0.05, ##Po0.01, ###Po0.001, RST(D2)+AAV_p11 vs RST(D2)+AAV_eYFP, two-way analysis of variance (e and g). CON(D2), control
D2-Cre mice; RST(D2), D2-Cre mice exposed to chronic restraint stress. Data are means± s.e.m. FST, forced swin test; NSF, novelty-supressed
feeding; PrL, prelimbic cortex; SPT, sucrose preference test; TST, tail suspension test.
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examined the alteration of synaptic strength mediated by
AMPARs and NMDARs in PrL neurons from stressed animals.
The input–output curves of AMPAR-EPSC and NMDAR-EPSC were
significantly decreased in layer II/III PrL D2+ neurons of stressed
mice [RST(D2), Figures 4e-h], in parallel with the loss of p11
expression in these cells (Figures 1c and d and 2a and b). More
importantly, overexpression of p11 (AAV_p11) in D2+ PrL neurons
of stressed mice restored both AMPAR-EPSC and NMDAR-EPSC
(Figures 4e-h). Manipulation of p11 in D2+ PrL neurons did not
significantly alter the coefficient of variation of AMPAR-EPSC and
NMDAR-EPSC, or paired-pulse ratio of AMPAR-EPSC (Supplemen-
tary Figures S4a-c), pointing to a postsynaptic locus for p11 effects
on glutamatergic signaling. Collectively, these results show that
p11 in D2+ PrL neurons may control stress-induced depression by
regulating glutamatergic synaptic transmission.

DISCUSSION
Chronic stress causes the development of mood disorders
including anxiety and depression.1–3,5,6 Our previous studies have
implicated p11 as an important molecule involved in the etiology
of depression and the mechanism of action of antidepressants. 22

p11 was initially identified as a binding protein for serotonin
receptors using a yeast two-hybrid screen.21,23 The level of p11
mRNA and protein is downregulated in the brain of depressed
humans, suicide subjects and a mouse model of depression.21,32 In
contrast, the level of p11 is increased by electro-convulsive
therapy or chronic administration of monoaminergic antidepres-
sants including SSRIs.20–22 p11 knockout mice exhibit depression-
like behaviors and reduced responses to SSRIs.21,22,25 Conversely,
mice overexpressing p11 show antidepressant-like behaviors.21,24

SMARCA3, a chromatin-remodeling factor, is a binding partner of
p11 and plays a central role in p11-dependent neurogenic and
behavioral responses to SSRIs. Moreover, we have found that p11
binds to mGluR5 and increases the surface availability of the
receptor, which provides a molecular mechanism underlying the
antidepressant-like activity of mGluR5 antagonism.33 Two classes
of antidepressant agents, including SSRIs, TCA as well as electro-
convulsive therapy have each been shown to require p11 to
achieve their therapeutic effects.21,22 It would be interesting to
determine whether other classes of antidepressants, such as
monoamine oxidase inhibitors also require p11 to achieve their
therapeutic effects.
In the present study, by using a combination of genetic, mole-

cular, cellular, electrophysiological and behavioral approaches, we
have demonstrated that the depressive symptoms in stressed
animals are closely associated with the reduction of p11 in layer
II/III PrL. Antidepressants including SSRIs and TCA restore the
expression of p11 in PrL, leading to the alleviation of stress-
induced depression. Overexpressing p11 in layer II/III PrL D2+

neurons (D2+ PrL) rescued depression-like behaviors in mice
using two genetic models of p11 deletion (D2+ neuron-specific or
global), as well as chronic stress exposure. Thus, our results have
identified p11 in D2+ PrL as a key molecular and cellular
determinant in chronic stress-induced depression.
What are the potential mechanisms underlying the regulation

of stress-induced depression by p11 in D2+ PrL? Our data
demonstrate that AMPAR- and NMDAR-mediated glutamatergic
transmission in D2+ PrL neurons is attenuated by chronic stress
exposure, which is restored by p11 expression. Since the
diminished glutamatergic signaling in PrL mediates cognitive
and emotional disturbances in response to stress,6,12,17,19 the anti-
depression effects of p11 in stressed animals may be through the
potentiation of glutamate receptor surface expression and
synaptic function.
Medial prefrontal cortical pyramidal neurons project to several

brain regions implicated in the pathophysiology of stress-induced
psychiatric symptoms,2,3,5,12,34 such as nucleus accumbens,35–37

hippocampus,38,39 lateral habenula,38,40,41 paraventricular nucleus42

of hypothalamus and basal lateral amygdala.38,43,44 The p11
regulation of glutamatergic transmission in layer II/III PrL D2+

neurons may impact the synaptic drive to these subcortical regions,
which mediates the depression-like behaviors through the inte-
grated action of the emotional circuits.
Identification of key molecules in specific neuronal types that

mediate the development of psychiatric disorders should enable
the discovery of novel treatments. Our finding of a role for p11 in
D2+ PrL neurons in the control of stress-induced depression
provides a framework for the development of new strategies to
treat stress-associated mental illnesses.
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