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SUMMARY

Studies over the past decade have enunciated silent
synapses as prominent cellular substrates for syn-
aptic plasticity in the developing brain. However, little
is known about whether silent synapses can be
generated postdevelopmentally. Here, we demon-
strate that highly salient in vivo experience, such as
exposure to cocaine, generates silent synapses in
the nucleus accumbens (NAc) shell, a key brain region
mediating addiction-related learning and memory.
Furthermore, this cocaine-induced generation of
silent synapses is mediated by membrane insertions
of new, NR2B-containing N-methyl-D-aspartic acid
receptors (NMDARs). These results provide evidence
that silent synapses can be generated de novo by
in vivo experience and thus may act as highly efficient
neural substrates for the subsequent experience-
dependent synaptic plasticity underlying extremely
long-lasting memory.

INTRODUCTION

Abundant in the developing brain, silent synapses are gluta-

matergic synapses in which N-methyl-D-aspartic acid receptor

(NMDAR)-mediated excitatory postsynaptic currents (EPSCs) are

relatively stable, whereas alpha-amino-3-hydroxy-5-methyl-4-iso-

xazolepropionic acid receptor (AMPAR)-mediated responses are

highly labile (Isaac et al., 1995; Liao et al., 1995; Petralia et al.,

1999). Upon activation of NMDARs, silent synapses can be unsi-

lenced by acquiring stable AMPAR activity, leading to long-term

potentiation (LTP) of glutamatergic synaptic transmission (Isaac

et al., 1995; Liao et al., 1995). Whereas unsilencing of silent

synapses in the developing brain has beenone of the mostefficient

mechanisms underlying experience-dependent synaptic plasticity

in vitro (Groc et al., 2006; Kerchner and Nicoll, 2008; Marie et al.,

2005), little is known as to whether silent synapses are generated

during invivo learningprocesses. Here, wedemonstrate thathighly

salient in vivo experience can generate silent synapses de novo.

Cocaine addiction has been conceptualized as an extremely

durable form of memory (Gerdeman et al., 2003; Hyman et al.,
40 Neuron 63, 40–47, July 16, 2009 ª2009 Elsevier Inc.
2006), which is, in part, mediated by experience-dependent

synaptic plasticity in the nucleus accumbens (NAc) (Hyman

et al., 2006; Wolf, 2002). The NAc shell has been closely tied to

motivational mechanisms (Kelley, 2004) and has been implicated

in a variety of addiction-related molecular, cellular, and behav-

ioral alterations (Hyman et al., 2006; Wolf, 1998). Taking advan-

tage of cocaine exposure as a strong memory inducer, we exam-

ined whether silent synapses could be generated in the NAc

shell. We observed that exposure to cocaine generated a large

proportion of silent synapses in the NAc shell, and these silent

synapses were formed by membrane insertion of new, NR2B-

containing NMDARs. Collectively, our results show that in vivo

experience can generate silent synapses de novo, and these

newly generated silent synapses may transiently provide highly

efficient plasticity substrates (Marie et al., 2005) for subsequent

experience-dependent, long-lasting synaptic plasticity.

RESULTS

Two independent assays revealed that exposure to cocaine

increased the number of silent synapses in NAc shell medium

spiny neurons (NAc MSNs) All rats were at postnatal day 30–32

when receiving injection unless otherwise indicated. First, we

compared the coefficient of variation (CV) of the AMPAR EPSCs

and NMDAR EPSCs measured at �80 mV and +40 mV, respec-

tively; an increase in silent synapses would be detected as

a decrease in the ratio of CV-NMDAR:CV-AMPAR (Kullmann,

1994; Marie et al., 2005). Following a withdrawal of 1 or 2 days

from a 5-day cocaine procedure, the ratio of CV-NMDAR:CV-

AMPAR in NAc neurons was decreased (saline: CV-AMPAR,

0.22 ± 0.02; CV-NMDAR, 0.20 ± 0.03; ratio, 0.99 ± 0.12; n = 11

cells/6 rats; cocaine: CV-AMPAR, 0.26 ± 0.03; CV-NMDAR,

0.14 ± 0.01; ratio, 0.62 ± 0.07; n = 14/7; p < 0.01 versus saline-

ratio, Figure 1C). We then used the minimal stimulation technique

to estimate the percentage of silent synapses among total

synapses by comparing the failure rates of EPSCs at �80 mV

and +40 mV (Figures 1D–1F). The failure rates were not different

in saline-treated rats (�80 mV, 50.9% ± 3.1%; +40 mV, 47.7% ±

3.3%; n = 22/12) but were significantly different in cocaine-

treated rats (�80 mV, 60.9% ± 3.6%; +40 mV, 44.6% ± 3.2%;

n = 25/14; p < 0.05, t test). The percentage of silent synapses

among total synapses (% silent synapses) was estimated by

mailto:yan_dong@wsu.edu


Neuron

In Vivo Experience Generates Silent Synapses
A

D

G H

E F

B C Figure 1. In Vivo Cocaine Experience Generated Silent

Synapses in NAc MSNs

(A) Example traces showing 10 consecutive EPSCs at +40 and

�80 mV from saline- and cocaine-treated rats, respectively.

AMPAR EPSC peaks were measured at �80 mV (arrows);

NMDAR EPSC amplitude was measured at +40 mV and

35 ms following the peak of AMPAR EPSCs (arrows). Dual

EPSCs at +40 mV could be pharmacologically separated

into AMPAR and NMDAR components. At 35 ms (arrow), the

amplitude of the dual EPSC was primarily attributable to

NMDAR EPSCs (95.2% ± 5.3% of dual EPSC, n = 8). (B) Plots

of AMPAR and NMDAR EPSC amplitudes in example NAc

MSNs (50 consecutive traces). (C) Grouped data showing

significantly decreased ratio of CV-NMDAR:CV-AMPAR in

NAc MSNs of cocaine-treated rats. (D) Example traces from

the minimal stimulation assays showing 10 consecutive

responses (successful or failed) at +40 and �80 mV from

saline- and cocaine-treated rats. (E) Plots of responses in (D)

(30 consecutive traces). (F) Grouped data showing signifi-

cantly increased percentage of silent synapses in NAc MSNs

by in vivo exposure to cocaine. (G) Grouped data showing

that silent synapses were gradually generated in the NAc

during exposure to cocaine and declined during withdrawal.

(H) Grouped data showing that silent synapses were also

generated in NAc in older (�65-day-old) rats following 1-day

withdrawal from the 5-day cocaine procedure. (n) = number

of cells; *p < 0.05; **p < 0.01.
the following equation: fraction of silent synapses = 1 � Ln-

(F�80mV)/Ln(F+40mV) (Isaac et al., 1995; Liao et al., 1995; Marie

et al., 2005), where F�80mV and F+40mV are failure rates at �80

and +40 mV, respectively (see Experimental Procedures). The

% silent synapses in NAc MSNs was significantly higher in

cocaine-treated rats than in saline-treated rats (saline, 10.9% ±

2.1%, n = 22/14; cocaine, 35.6% ± 3.6%, n = 25/14; p < 0.01,

t test, Figure 1F). Using the same approach, we detected that

silent synapses were generated gradually during repeated expo-

sure to cocaine and declined after long-term withdrawal (1-day

saline, 10.5% ± 3.0%, n = 14/4; 1-day cocaine, 14.1% ± 4.2%,

n = 13/5; 2-day saline, 9.2% ± 2.3%, n = 8/3; 2-day cocaine,

22.8% ± 4.7%, n = 12/5; 3-day saline, 10.3% ± 3.1%, n = 13/4;

3-day cocaine, 33.9% ± 5.8%, n = 13/5; 7-day withdrawal:

saline, 7.2% ± 2.8%, n = 10/4; cocaine, 24.3% ± 3.8%, n = 21/6;

p < 0.05; 14-day withdrawal: saline, 9.1% ± 2.7%, n = 19/4;

cocaine, 17.0% ± 3.4%, n = 17/5; p = 0.78; Figure 1G). Further-

more, cocaine-induced generation of silent synapses in the NAc

was also observed in older rats (�65 days old, first cocaine injec-

tion at postnatal day 60) (saline, 7.0% ± 1.8%, n = 20/3; cocaine,

27.0% ± 3.5%, n = 35/5; p < 0.01; Figure 1H). Note that the basal

level (saline-treated amount) of silent synapses in NAc MSNs

tends to be lower in older rats (7.0 ± 1.8, n = 20; �36 days old,

10.4 ± 1.9, n = 30; p = 0.10), presumably due to developmental

regulation (Durand et al., 1996; Hsia et al., 1998; Kerchner and

Nicoll, 2008; Liao and Malinow, 1996). Nonetheless, both the

CV and minimal stimulation analyses suggest that in vivo experi-

ence with cocaine generated silent synapses in NAc MSNs.
In theory, silent synapses can be produced by removing/

disabling AMPARs from existing synapses or adding new

NMDARs to new synaptic locations. We next examined the

surface levels of NMDARs. NMDARs in the forebrain are mainly

composed of the obligatory NR1 subunits along with NR2A

and NR2B subunits (Monyer et al., 1994). The surface and total

levels, as well as the surface:total ratio, of NR2B subunits were

significantly increased in cocaine-treated rats (measured at with-

drawal day 1; surface: saline, 1.04 ± 0.12, n = 17 rats; cocaine,

2.06 ± 0.48, n = 15; p < 0.05; total: saline, 0.98 ± 0.05, n = 22;

cocaine, 1.30 ± 0.13, n = 23; p < 0.05; surface:total: saline,

1.00 ± 0.11, n = 17; cocaine, 1.99 ± 0.36, n = 15; p < 0.05, Figures

2A and 2B), whereas NR2A subunits were not significantly

altered (surface: saline, 1.00 ± 0.12, n = 10; cocaine, 1.31 ±

0.12, n = 7; p = 0.09; total: saline, 1.00 ± 0.07, n = 14; cocaine,

1.23 ± 0.15, n = 15; p = 0.19; surface:total: saline, 1.00 ± 0.07,

n = 10; cocaine, 1.45 ± 0.20, n = 7; p = 0.12, Figures 2A and

2C). Furthermore, the surface level and the surface:total ratio

of NR1 subunits were increased in the NAc tissues from

cocaine-treated rats (surface: saline, 0.95 ± 0.07, n = 17;

cocaine, 1.22 ± 0.10, n = 15; p < 0.05; total: saline, 1.00 ±

0.05, n = 25; cocaine, 1.04 ± 0.09, n = 25; p > 0.4; surface:total:

saline, 1.00 ± 0.08, n = 17; cocaine, 1.38 ± 0.14, n = 13; p < 0.05,

Figures 2A and 2D). Thus, NR2B-containing NMDARs were

selectively inserted into the cell surface upon cocaine adminis-

tration. In addition, the selective increase in the total level of

NR2B, but not NR1, subunits implies that cocaine-induced upre-

gulation of NR2B subunits begins at the protein synthesis level;
Neuron 63, 40–47, July 16, 2009 ª2009 Elsevier Inc. 41
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Figure 2. In Vivo Exposure to Cocaine Increased the Number of Synaptic NR2B-Containing NMDARs

(A–D) Examples and summarized results from western blot assays showing that in vivo cocaine experience selectively increased the NR1/NR2B type of NMDARs

on the cell surface of NAc MSNs. (n) = number of rats. (E and F) Example EPSCs recorded at +40 and �80 mV shown on a slow (E) and a fast (F) timescale. The

half-decay time T1/2 was defined as the time elapsed from the peak to one-half peak of NMDAR EPSCs. (G and H) Example traces and grouped data showing

significantly slower decay and longer T1/2 of NMDAR EPSCs in NAc MSNs from cocaine-treated rats, compared to saline controls. (I and J) Example and summa-

rized results showing that the Ro256981-mediated inhibition of NMDAR EPSCs was significantly greater in NAc MSNs from cocaine-treated rats than those from

saline-treated rats. APV (50 mM) was applied at the end of each experiment to indicate no contamination from other conductances. (n) = number of cells; *p < 0.05;

**p < 0.01.
the newly synthesized NR2B subunits may then be assembled to

functional NMDARs by recruiting pre-existing NR1 subunits,

which, unlike NR2 subunits, are often overabundant intracellu-

larly (Wenthold et al., 2003).

We next tested whether NR2B-containing NMDARs were

increased at synaptic locations by biophysical and pharmaco-

logical assays. Because NR2B-containing NMDARs exhibit

slower decay kinetics than their NR2A-containing counterparts

(Cull-Candy and Leszkiewicz, 2004), we measured the decay

kinetics of NMDAR EPSCs in NAc MSNs. We observed that

the half-decay time (estimated by the time elapsed from the

EPSC peak to half of peak amplitude, or T1/2 [Barria and Mali-

now, 2002, 2005]), was significantly longer in cocaine-treated

rats on day 1 during withdrawal (T1/2 in ms: naive, 40.1 ± 2.4,

n = 11/6; saline, 38.2 ± 2.8, n = 18/10; cocaine, 57.6 ± 3.3,

n = 19/10; F(2, 47) = 13.42, p < 0.01, one-factor ANOVA; p <

0.01, cocaine versus saline or naive, Bonferroni posttest; Figures

2E–2H, see Supplemental Data available online for alternative

measurements). Furthermore, in NAc MSNs from cocaine-

treated rats, the sensitivity of NMDAR EPSCs to the NR2B-selec-

tive antagonist Ro256981 (200 nM) was increased (inhibition at

9 min during antagonist perfusion: saline, 27% ± 3%, n = 8/5;

cocaine, 42% ± 3%, n = 7/5; p < 0.05, t test; holding potential

[VH]: �40 mV; Figures 2I and 2J).

The above results suggest that cocaine-induced generation of

silent synapses was mediated by selective recruitment of NR2B-
42 Neuron 63, 40–47, July 16, 2009 ª2009 Elsevier Inc.
containing NMDARs into the new synaptic locations. To test this,

we aimed to detect the cocaine-induced, newly recruited

NMDARs by monitoring NR1 subunit trafficking. Using in vivo

viral-mediated gene transfer within the NAc of anesthetized

rats, we expressed a mutant NR1 subunit (mNR1-GFP, NR1a

with N598R mutation; wild-type NR1-GFP [wtNR1-GFP] and

GFP alone used as controls), which decreased the Mg2+-binding

affinity (Barria and Malinow, 2002). Thus, the mNR1-containing

NMDARs, once delivered to the synapse, can be detected as

NMDAR EPSCs at near-resting potentials (Barria and Malinow,

2002). We established a quantifiable parameter to measure the

synaptic delivery of mNR1-containing NMDARs. At a holding

voltage of �55 mV, where the Mg2+-block of NMDARs is incom-

plete (Jahr and Stevens, 1990), presynaptic stimulation elicited

a dual EPSC mediated by both AMPARs and NMDARs (Fig-

ure 3A). Because AMPAR activation and inactivation are sub-

stantially faster than those of NMDARs, the peak current (defined

as ‘‘0 ms’’) was mainly attributable to AMPARs, and the slow tail

current (measured at 35 ms) was mainly attributable to NMDARs

(Figure 3A). By contrast, at a holding potential of �90 mV,

where the Mg2+-block of NMDARs is maximal (Jahr and Stevens,

1990), little APV-sensitive current was observed, and the tail

current at 35 ms was negligible (Figure 3A). Therefore, we

defined the ratio of the current amplitude at 35 ms to the current

amplitude at 0 ms (I35ms/I0ms) as an indicator for the number of

synaptic NMDARs that were not blocked by Mg2+. As a control,
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Figure 3. Exposure to Cocaine Induced Synaptic Insertion of New, NR2B-Containing NMDARs

(A) Example EPSCs from NAc MSNs at �55 mV and �90 mV. Note the slowly decaying component at �55 mV, which was attributable to NMDARs (sensitive to

APV). (B) Grouped data showing the detection of Mg2+ unblocked NMDARs by I35/I0ms. (C and D) Example EPSCs at �90 mV in mNR1-expressing NAc MSNs

from saline- and cocaine-treated rats. (E) Grouped data showing that I35/I0ms at �90 mV was increased in mNR1-expressing MSNs by cocaine exposure. (F–H)

Example and summarized I-V relationship of NMDAR EPSCs in differently manipulated MSNs (normalized to +60 mV). Dashed line represents a hypothetical

linear I-V curve (by extrapolating the linear segment of I-V curve at depolarized voltages), in which the theoretical current by total NMDARs at �90 mV was

��1.4, whereas the measured current was ��0.28. (I–K) Example NMDAR EPSCs (at �40, �60, �80, and �90 mV) of an mNR1-expressing MSN from

a cocaine-treated rat (I, also grayed traces in J and K), differentially inhibited by subsequent applications of a low concentration of APV (J) and 200 nM

Ro256981 (K). A washout was applied between applications of APV and Ro256981. (L and M) Summarized (L) and renormalized (M) I-V curves of NMDAR EPSCs

show that the mNR1-expressing MSNs from cocaine-treated rats conducted a significant amount of current at hyperpolarized voltages, and this current was

differentially inhibited by applications of 0.5 mM APV and 200 nM Ro256981. (n) = number of cells; *p < 0.05; **p < 0.01.
I35ms/I0ms at �55 mV (0.145 ± 0.031, n = 5/3) was significantly

higher than that at �90 mV (0.018 ± 0.022, n = 5/3,

p < 0.01, Figure 3B).

We then stereotaxically injected viral vectors into the NAc of

anesthetized rats and �6 hr later started cocaine administration

(see Experimental Procedures). All subsequent recordings were

performed at �90 mV to maximally exclude the involvement of

endogenous NMDARs. Exposure to cocaine significantly

increased I35ms/I0ms in mNR1-expressing NAc MSNs, and appli-
cation of APV abolished this increase (mNR1-cocaine-control,

0.19 ± 0.03, n = 9/7; mNR1-cocaine-APV, 0.033 ± 0.003, n = 9/7;

F(5, 70) = 16.69, p < 0.01, two-factor ANOVA; p < 0.05, mNR1-

cocaine versus all others in Figure 3E, Bonferroni posttest). In

contrast, I35ms/I0ms in mNR1-expressing NAc MSNs from

saline-treated rats was not increased, suggesting that without

cocaine administration, the transiently expressed mNR1

subunits were minimally delivered to the postsynaptic membrane

(mNR1-saline-control, 0.08 ± 0.04, n = 8/6; mNR1-saline-APV,
Neuron 63, 40–47, July 16, 2009 ª2009 Elsevier Inc. 43
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Figure 4. Inhibition of NR2B-Containing NMDARs Erased Cocaine-Generated Silent Synapses

(A) Minimal stimulation assays in NAc MSNs perfused with Ro256981 from saline- and cocaine-treated rats. (B) Grouped data showing that cocaine-generated

silent synapses in NAc MSNs could not be detected when the NR2B-containing NMDARs were inhibited by application of Ro256981. (C) A diagram describing the

hypothetical cellular process of cocaine-induced generation of silent synapses. (n) = number of cells; **p < 0.01.
0.046 ± 0.004, n = 8/6; Figures 3C–3E). Moreover, I35ms/I0ms in

uninfected (UI) or wtNR1-expressing NAc MSNs was also not

increased, and not affected by application of APV, suggesting

that cocaine treatment by itself does not change the Mg2+-block

of wild-type NMDARs (UI-saline-control, 0.030 ± 0.002, n = 5/3;

UI-saline-APV, 0.026 ± 0.003, n = 5/3; UI-cocaine-control,

0.046 ± 0.006, n = 5/3; UI-cocaine-APV, 0.043 ± 0.004, n = 5/3;

wtNR1-saline-control, 0.045 ± 0.007, n = 4/3; wtNR1-saline-

APV, 0.032 ± 0.007, n = 4/3; wtNR1-cocaine-control, 0.044 ±

0.006, n = 6/4; wtNR1-cocaine-APV, 0.036 ± 0.002, n = 6/4,

Figure 3E). Together, these results suggest that following expo-

sure to cocaine, new NMDARs were recruited to the synaptic

membrane of NAc MSNs.

Consistent with the change in I35ms/I0ms, the current-voltage

relationship (I-V curves) of NMDAR EPSCs was also altered at

near-resting potentials in mNR1-expressing NAc MSNs in rats

treated with cocaine (Figures 3F–3H). Under physiological condi-

tions, the I-V curves of NMDAR EPSCs exhibit a strong rectifica-

tion at hyperpolarized potentials due to Mg2+ blockade. This

rectification was partially lost in mNR1-expressing NAc MSNs

from cocaine-treated rats (normalized current amplitude,

�80 mV: mNR1-saline, �0.11 ± 0.02, n = 8/7; mNR1-cocaine,

�0.19 ± 0.02, n = 8/7; p < 0.05; �90 mV: mNR1-saline, �0.08 ±

0.02, n = 8/7; mNR1-cocaine, �0.28 ± 0.04, n = 8/7; p <

0.05, Figure 3H). These results suggest that new, Mg2+-resistant

mNR1-containing NMDARs were delivered to synapses upon

cocaine exposure, and allowed us to estimate the percentage

of newly recruited mNR1-containing NMDARs among the total

synaptic NMDARs. Extrapolating the linear portion of the I-V

curve at depolarized voltages generated a theoretical linear I-V

curve at hyperpolarized voltages (dashed line in Figure 3H). At

�90 mV, the theoretical amplitude of total NMDAR EPSC was

��1.4 if all NMDARs conducted current (whereas the actual

amplitude of EPSC mediated by wild-type NMDARs was �0).

In cocaine-treated rats expressing mNR1, the current amplitude

was ��0.28 at �90 mV. Thus, assuming that the single-channel

conductance was not altered, the newly inserted mNR1-contain-

ing receptors could contribute to �20% (0.28/1.4) of the total

synaptic NMDARs in cocaine-treated rats (Figure 3H).

To determine whether the newly recruited mNR1-containing

NMDARs are NR2B enriched, we examined the I-V curve in the
44 Neuron 63, 40–47, July 16, 2009 ª2009 Elsevier Inc.
presence of the NR2B-selective antagonist Ro256981. We

focused on the I-V curve from �40 to �90 mV, a segment that

exhibited rectification. In mNR1-expressing MSNs from

cocaine-treated rats, application of Ro256981 (200 nM) not

only decreased the amplitudes of NMDAR EPSCs (normalized

current amplitude, �40 mV: control, �1.0, Ro256981, �0.60 ±

0.06, p < 0.05; �60 mV: control, �0.59 ± 0.08; Ro256981,

�0.36 ± 0.06, p < 0.05; �80 mV: control, �0.55 ± 0.03;

Ro256981, �0.19 ± 0.04, p < 0.05; �90 mV: �0.66 ± 0.07;

Ro256981, �0.13 ± 0.06, p < 0.05, n = 6/5, Figures 3I–3K), but

also appeared to decrease the cocaine-induced downward

bend in the I-V curve (Figure 3L). By contrast, although a low

concentration (0.5 mM) of APV, an NMDAR antagonist inhibiting

both NR2A- and NR2B-containing receptors with similar selec-

tivity, inhibited the amplitude of NMDAR EPSCs to a similar

degree (�40 mV: �0.68 ± 0.04; �60 mV: �0.39 ± 0.04; �80 mV:

�0.32 ± 0.05; �90 mV: �0.35 ± 0.05; n = 6/5), a substantial

downward bend in the I-V curve still remained (Figure 3L). When

the I-V curve in each pharmacological condition was individually

normalized, it became apparent that application of Ro256981,

but not APV, abolished the cocaine-induced ‘‘drift’’ in the rectifi-

cation at hyperpolarized voltages (�90 mV: control, �0.66 ±

0.07; APV, �0.52 ± 0.08, p > 0.04; Ro256981, �0.23 ± 0.06,

p < 0.05; �80 mV: control, �0.55 ± 0.03; APV, �0.49 ± 0.09;

Ro256981, �0.33 ± 0.07, p < 0.05; �60 mV: �0.59 ± 0.06,

APV, 0.59 ± 0.07; Ro256981, �0.65 ± 0.14; n = 7/5 or 7/6 in

each group, Figure 3M). Together, these results suggest that

cocaine-induced, newly recruited synaptic NMDARs were

NR2B-containing receptors.

If these new NR2B-containing NMDARs were indeed the basis

for cocaine-generated silent synapses, we reasoned that selective

inhibition of NR2B-containing NMDARs should prevent the detec-

tion of cocaine-generated silent synapses. We thus performed the

minimal stimulation assay and observed that the cocaine-induced

increase in the percentage of silent synapses in NAc MSNs was

abolished by application of Ro256981 (200 nM) (control-saline,

12.2% ± 2.6%, n = 16/10; control-cocaine, 31.7% ± 4.0%, n =

17/9; Ro256981-saline, 11.8% ± 5.7%, n = 26/12; Ro256981-

cocaine, 11.4% ± 2.6%, n = 22/12; F(3, 73) = 3.16, p < 0.05, one-

factor ANOVA; p = 1.00, Ro256981-saline versus Ro256981-

cocaine, Bonferroni posttest; Figures 4A and 4B).
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DISCUSSION

The present studies show that in vivo cocaine experience gener-

ates NMDAR-active/AMPAR-silent excitatory synapses in the

NAc shell, a process that appears to be achieved by recruiting

new, NR2B-containing NMDARs into new synaptic locations.

These results introduce the concept that silent synapses can

be produced by in vivo experience. This is significant in multiple

ways. First, although unsilencing of silent synapses serves as

a prominent model for LTP of excitatory synaptic transmission

(Isaac et al., 1995; Kerchner and Nicoll, 2008; Liao et al., 1995),

silent synapses are not normally abundant in the developed brain

(Groc et al., 2006; Kerchner and Nicoll, 2008). Our results show

that silent synapses can be generated de novo in the developed

brain, providing a conceptual basis for a silent synapse-based

mechanism as a potentially common molecular process for

synaptic plasticity. Second, it has been highly debated whether

the ‘‘silent’’ nature of silent synapses originates presynaptically

or postsynaptically (Kerchner and Nicoll, 2008) and whether

AMPARs are present in silent synapses (Groc et al., 2006; Ker-

chner and Nicoll, 2008). Our results suggest that for cocaine-

generated silent synapses, postsynaptic recruitment of new

NMDARs is the key.Third, silent synapses are characteristic struc-

tures in the developing brain. Thus, a broader view would be that

some strong in vivo experiences may selectively ‘‘rejuvenate’’ or

‘‘prime’’ the related neural circuits by generating silent synapses

for more robust synaptic plasticity upon subsequent experience.

Particularly for cocaine-induced adaptations at excitatory

synapses, the generation and potential maturation of cocaine-

generated silent synapses can be conceptualized as a two-

phased cascade. Specifically, the generation phase of silent

synapses likely starts during the repeated exposure and may

last through the early withdrawal period. During this time window,

the surface level of AMPAR subunits remains unchanged (Bou-

dreau and Wolf, 2005), suggesting that the cocaine-induced

change in synaptic AMPARs, if any, should be small. At a similar

time point, the AMPAR/NMDAR ratio at excitatory synapses of

NAc MSNs is decreased (Kourrich et al., 2007). Based on the

observations of a decrease in the amplitude of miniature AMPAR

EPSCs and no detectable change in NMDARs, the decrease in

AMPAR/NMDAR ratio was previously attributed exclusively to

the decrease in the number/function of AMPARs (Kourrich

et al., 2007; Thomas et al., 2001). However, in these studies,

only NMDAR mEPSCs from the nonsilent synapses were

sampled; the fast rising AMPAR mEPSCs were used to select

the dual-component miniature events (Kourrich et al., 2007;

Thomas et al., 2001). Thus, NMDARs in silent synapses were

largely excluded. On the other hand, when AMPAR/NMDAR ratio

was measured, NMDAR EPSCs from both silent and nonsilent

synapses were included. Piecing these results together with

our present findings, NMDARs from newly generated silent

synapses may also contribute to this observed decrease in

AMPAR/NMDAR ratio. Nonetheless, once generated, these

silent synapses may endow the NAc MSNs with an increased

capacity for recruiting AMPARs to strengthen excitatory synaptic

transmission (Figure 4C). As such, unsilencing cocaine-gener-

ated silent synapses may contribute to the decline of silent

synapses during long-term withdrawal (Figure 1G), which may
mediate the observed increase in the surface level of AMPARs

during long-term withdrawal from cocaine exposure (Boudreau

et al., 2007; Boudreau and Wolf, 2005; Conrad et al., 2008) and

the increase in AMPAR/NMDAR ratio during long-term with-

drawal (Kourrich et al., 2007). Thus, generation of NMDAR-

enriched silent synapses may prime excitatory synapses for the

subsequent plastic change. Indeed, the idea that drugs of abuse

initiate their effects by first inducing NMDAR-oriented metaplas-

ticity has been assessed in the ventral tegmental area (Argilli

et al., 2008; Schilstrom et al., 2006). Nonetheless, if the silent-

synapse-based metaplasticity is a key component in the cascade

of proaddiction cellular adaptations, inhibiting NR2B-containing

NMDARs in the NAc, which disables these silent synapses,

should prevent the development of some drug-induced behav-

iors. This prediction is consistent with the findings that NR2B-

selective antagonists prevent the acquisition of conditioned

place preference to morphine and reinstatement of morphine

during withdrawal (Ma et al., 2006, 2007).

It is important to note that changes in NMDAR localization and

subunit expression are likely not the only mechanisms that regu-

late excitatory synapses in the NAc following cocaine adminis-

tration. The dynamic changes in the synaptic AMPAR/NMDAR

ratio (Kourrich et al., 2007; Thomas et al., 2001) and AMPAR

surface expression (Boudreau et al., 2007) after re-exposure

suggest that AMPARs may also move in and out of pre-existing

synapses. Surface expression of atypical AMPAR subunits (Con-

rad et al., 2008) following long-term withdrawal from cocaine

self-administration suggests that not only the number but also

the properties of the inserted AMPARs are regulated. The lack

of in vivo LTP within the prefrontal cortex-accumbens pathway

(Goto and Grace, 2005; Moussawi et al., 2009), but not the

hippocampus-accumbens pathway (Goto and Grace, 2005),

following long-term withdrawal suggests that the basic

machinery underlying synaptic plasticity may also be subjected

to cocaine-induced modification within specific pathways; the

decreased intra-NAc level of glutamate during withdrawal impli-

cates the involvement of presynaptic alterations (Baker et al.,

2003; Szumlinski et al., 2004). Furthermore, cocaine-induced

synaptic adaptations including generation/maturation of silent

synapses may vary between the NAc shell and core (Martin

et al., 2006).

Some data from the present study appear to be at odds with

previous results. For example, the cocaine-induced kinetic

changes in NMDAR EPSCs in NAc MSNs demonstrated here

during short-term withdrawal were not detected during long-

term withdrawal (Kourrich et al., 2007). Furthermore, cocaine-

induced insertion of new, NR2B-containing NMDARs predicts

an increase in surface NR2B-containing NMDARs. However,

no change in the whole-cell current induced by bath application

of NMDA was detected during long-term withdrawal (Thomas

et al., 2001), and the effects of cocaine on NR2B subunits in

NAc appear to be highly inconsistent (see summaries in Supple-

mental Data #4). In addition to potential technical caveats,

one possibility is that the NR2B-containing NMDARs that are

inserted to create silent synapses are replaced with different

forms of NMDARs after longer withdrawal times. If that is the

case, the cellular behavior of NMDARs in NAc may be highly

dynamic during/after cocaine exposure.
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Finally, if cocaine-generated silent synapses are indeed

created de novo, these nascent synaptic connections may

present an ongoing process of circuitry modification. A leading

hypothesis of synaptogenesis suggests that during develop-

ment, premature synaptic connections are often overabundantly

created but then undergo experience-dependent elimination or

maturation (Waites et al., 2005). Consequently, only selected,

presumably ‘‘useful,’’ nascent synapses mature into fully func-

tional, long-lasting synapses (Waites et al., 2005). Therefore,

a hypothetical model of our finding is that the initial exposure

to cocaine generates an overabundant number of nascent, silent

synapses within the NAc in a nonspecific manner. Subsequent

stimulations, such as long-term withdrawal, consolidate (unsi-

lence) a selective portion of silent synapses, forming the fully

functional connections that enhance the existing neural circuits

or that even create new circuits (Figure 4C).

EXPERIMENTAL PROCEDURES

Detailed experimental protocols can be found in the Supplemental Data.

Cocaine Treatment and Slice Preparation

Male Sprague-Dawley rats at 30–32 days old were used for all experiments

unless indicated (Figure 1H). The two repeated cocaine procedures were

similar to those in earlier studies (Dong et al., 2006). In procedure 1, rats

received daily injections of either cocaine HCl (15 mg/kg i.p.) or the same

volume of saline for 5 days. In procedure 2 (referred to as the 2.5-day proce-

dure), rats received one injection of cocaine (15 mg/kg) in the afternoon of

day 1, and two daily injections (8 hr apart) of cocaine (15 mg/kg) for the

following 2 days. Procedure 2 was only used in experiments involving viral

expression (Figure 3), in which the in vivo viral injection was performed in the

morning of day 1. Rats were then used for electrophysiological recordings or

biochemical assays 24–48 hr following the last injection. Preparation of coronal

slices was as described previously (Dong et al., 2006). The MSNs in the

ventral-medial subregion of the NAc shell were preferentially examined in all

experiments.

Virus Preparation and In Vivo Delivery

The wt/mNR1 constructs were described previously (Barria and Malinow,

2002). The cDNA for wtNR1-GFP or mNR1-GFP was cloned into the

recombinant, replication-defective sindbis virus backbone vector (pSIN-

rep2S726). The protocol for making sindbis virus was similar to that used previ-

ously (Dong et al., 2006; Huang et al., 2008; Marie et al., 2005) except that the

toxicity was further minimized by using a new sindbis virus-based vector,

pSINrep (nsP2S726). The infected neurons were identified by the GFP signal.

Electrophysiology

Whole-cell voltage-clamp recordings were used with a MultiClamp 700B

amplifier (Molecular Devices). The solutions were as described previously

(Dong et al., 2006; Huang et al., 2008). To examine NMDAR EPSCs, the extra-

cellular solution contained picrotoxin (0.1 mM) and NBQX (5 mM). Presynaptic

stimuli were applied through a bipolar microelectrode. Amplitudes of AMPAR

EPSC were calculated by averaging 25 EPSCs at �80 mV and measuring the

peak (2 ms window) compared to the baseline (2 ms window). NMDAR EPSC

amplitudes were calculated by averaging 25 EPSCs at +40 mV and measuring

the amplitude (2 ms window) 35 ms after the EPSC peak compared to the

baseline.

The CV analysis was done as previously described (Kullmann, 1994). Briefly,

CVs were estimated for epochs of 50 consecutive trials. Sample variances

(SVs) were calculated for EPSC amplitudes and for noise sweeps. The CV

was calculated as the square root of the difference for the sample variances

[SV(EPSC) � SV(Noise)], divided by the mean. For minimal stimulation exper-

iments, the frequency of presynaptic stimulation was set at 0.33 Hz. After

obtaining small (>40 pA) EPSCs at �80 mV, stimulation intensity was reduced
46 Neuron 63, 40–47, July 16, 2009 ª2009 Elsevier Inc.
in small increments to the point that failures versus successes could be clearly

distinguished visually. Stimulation intensity and frequency were then kept

constant for the rest of the experiment. Failures versus successes were

defined visually. Percent silent synapses were calculated using the following

equation: 1 � Ln(F�80)/Ln(F+40), in which F�80 was the failure rate at �80 mV

and F+40 was the failure rate +40 mV. In the CV and minimal stimulation assays,

the types of cells were blinded for the experimenters. The phenotypes of the

cells, pharmacological manipulations, and in vivo treatments were decoded

only after all data analysis was completed.

Decay kinetics of NMDAR EPSCs was assessed using the time from the

peak amplitude to one-half peak amplitude of the EPSC (Barria and Malinow,

2002, 2005). The NMDAR EPSC used for analysis was obtained by averaging

20–30 consecutive individual EPSCs. Alternative measurements were also

applied and similar results were obtained (see Supplemental Data).

Western Blot Analysis of Surface NMDAR Subunits

from NAc Shell Slices

The NAc shell was isolated from acute slices, washed twice in ice-cold aCSF,

and then incubated in 1 mg/ml NHS-SS-biotin (Pierce, Rockford, IL) for 30 min

at 4�C to biotinylate surface proteins as described previously (Huang et al.,

2008). After being washed with aCSF containing 1 mM lysine, slices were

homogenized and sonicated in lysis buffer containing proteinase and phos-

phatase inhibitors (20 mM Tris, 50 mM NaCl, 1% Triton X-100, 0.1% SDS,

1 mM EDTA, 1 mM EGTA [pH 7.4]), followed by mixing for 30 min at 4�C.

The homogenates were centrifuged at 14,000 rpm for 15 min at 4�C. The

supernatants were incubated at 4�C for 2 hr with Neutravidin-linked beads

(Pierce) to capture biotinylated surface protein. After being washed three times

with lysis buffer, the surface proteins were eluted with protein sample buffer

containing DTT and subjected to western blotting. The total NMDAR subunit

levels were normalized to the actin level in each sample.

Data Acquisition, Analysis, and Statistics

In experiments of CV assays, minimal stimulation assays, and western blot

assays, all data were obtained blindly. In experiments involving measuring

the decay kinetics of NMDAR EPSCs (Figure 2) and mNR1-containing

NMDARs (Figure 3), �75% of the data were obtained blindly. All results are

shown as mean ± SEM. Statistical significance was assessed using the two-

tail t test or ANOVA.

SUPPLEMENTAL DATA

Supplemental data for this article include Supplemental Results, Supplemental

Experimental Procedures, Supplemental Discussion, three figures, and

one table and can be found at http://www.cell.com/neuron/supplemental/

S0896-6273(09)00460-7.
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