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The degeneration of nigral (A9) dopaminergic (DA) neurons causes motor symptoms in Parkinson’s disease (PD). We use small-
molecule compounds to direct the differentiation of human induced pluripotent stem cells (iPSCs) to A9 DA neurons that share
many important properties with their in vivo counterparts. The method generates a large percentage of TH+ neurons that express
appropriate A9 markers, such as GIRK2 and ALDH1A1, but mostly not the A10 marker CALBINDIN. Functionally, they exhibit
autonomous pacemaking based on L-type voltage-dependent Ca2+ channels and show autoreceptor-dependent regulation of
dopamine release. When transplanted in the striatum of 6-OHDA-lesioned athymic rats, the human A9 DA neurons manifest robust
survival and axon outgrowth, and ameliorate motor deficits in the rat PD model. The ability to generate patient-specific A9 DA
autonomous pacemakers will significantly improve PD research and facilitate the development of disease-modifying therapies.

Molecular Psychiatry; https://doi.org/10.1038/s41380-022-01628-1

INTRODUCTION
Midbrain dopaminergic (DA) neurons are categorized into three
groups (A8, A9 and A10) based on the location of their somas and
projection patterns [1, 2]. A9 DA neurons, which reside in the
substantia nigra and project to the dorsal lateral striatum with
their massive axon arborizations [3], exhibit a fairly selective loss in
Parkinson’s disease (PD), while A8 and A10 groups of DA neurons
are largely spared [4]. A9 DA neurons express markers such as
ALDH1A1 and GIRK2 [5], but largely not CALBINDIN, which is
expressed in A10 DA neurons [6]. Transplantation of mouse A9,
but not A10, DA neurons in 6-OHDA-lesioned rat striatum supports
graft survival, fiber outgrowth and recovery of motor symptoms
[5, 7]. Nigral DA neurons fire action potentials spontaneously even
in the absence of synaptic inputs [8]; these autonomous
pacemaking action potentials ensure a steady release of
dopamine, which is necessary for the balanced actions of direct
and indirect pathways that control locomotion [9, 10].
Because of the importance of nigral DA neurons in Parkinson’s

disease, there have been strong interests in differentiating human
pluripotent stem cells (hPSCs) to A9 dopaminergic neurons for
disease modeling and transplantation studies. Directed differen-
tiation of hPSCs based on the development of mouse midbrain DA
neurons is currently the most successful approach [11]. Human
embryonic stem cells (hESCs) can be differentiated to neuropro-
genitors at a very high efficiency with dual SMAD inhibitors, such
as SB431542 and noggin [12]. As midbrain DA neurons are derived
from radial glial cells in the midbrain floor plate (mFP) [13, 14],
neuroprogenitors are regionally specified by appropriate levels of
SHH (for dorsal-ventral axis [15]) and WNT1 (for rostral-caudal axis
[16]). A high concentration of SHH is crucial for making ventral
progenitors [17], while an intermediate level of the GSK3 inhibitor
CHIR99021 (around 1 μM) activates WNT signaling to a degree that

restricts neuroprogenitors to a midbrain fate [18]. The correctly
specified mFP cells are terminally differentiated to dopaminergic
neurons in the presence of neurotrophic factors, such as BDNF,
GDNF and TGFβ3, all of which facilitate the expression of the gene
battery that defines mature DA neurons [19]. Inhibition of the
Notch pathway generally suppresses the differentiation of neural
stem cells to glial lineages and favors neuronal differentiation [20].
Thus, the Notch inhibitor DAPT has been used in the differentia-
tion of mESCs [21] and hPSCs [22] to neurons. Increasing
intracellular cAMP concentration promotes neuronal maturation
[22, 23] by enhancing the expression of voltage-dependent Na+,
K+ and Ca2+ channels, which increases action potential firing and
promotes Ca2+ signaling events critical for dendritic outgrowth
and synapse formation [24].
Previously established floor plate-based protocols [18, 22, 25]

work well for the differentiation of hESCs to midbrain DA neurons.
When we used them to differentiate human induced pluripotent
stem cells (iPSCs), we generated significantly fewer midbrain DA
neurons. This is in agreement with a previous study [26] that
suggests the retention of epigenetic memory in iPSCs in
comparison to hESCs [27–29]. Consistent with this, two indepen-
dent groups have sought to optimize a well-recognized method
[18] by using an appropriate seeding pattern [30, 31] or by sorting
CORIN+ neural progenitors to enrich TH+ neurons [32, 33]. The
most recent optimization [34] of this widely-used floor plate-based
method [18] shows continuing improvements in the development
of methods to differentiate hPSCs to midbrain DA neurons.
Here, we developed an enhanced method to differentiate

human iPSCs to A9 dopaminergic neurons by increasing and
prolonging the activation of Sonic Hedgehog signaling with
purmorphamine (PM) to elevate the expression of mFP genes to
similar levels as induced in hESCs. A previous study has shown
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that the BMP/SMAD signaling pathway plays an essential role in
the development of midbrain DA neurons [35]. We found that a
shorter duration of dual SMAD inhibition greatly elevated the
induction of many critical genes specifying mFP and A9 DA
neurons without affecting the differentiation of iPSCs or hESCs to
neuroprogenitor cells. While FGF8b did not significantly affect the
differentiation of mFP DA progenitors to mature A9 DA neurons, it
could be used to expand mFP progenitors in vitro. The
combination of these improvements enabled the differentiation
of human iPSCs to A9 DA neurons that expressed appropriate
markers, exhibited autonomous pacemaking and supported
excellent engraftment and functional recovery in the 6-OHDA
rat model of dopaminergic lesions.

MATERIALS AND METHODS
Differentiation of hPSCs to midbrain floor plate progenitors
H9 hESCs (at passages 35–45) were purchased from WiCell. The C001, C002
[36] and C005 [37] human iPSCs (at passages 25–45) were generated and
cultured as described previously. Colonies of hPSCs were detached with
dispase to generate embryoid bodies (EBs), which were cultured in
suspension in a 1:1 mixture of DMEM/F12 and Neurobasal media with N2
Supplements (1:100), B27 supplements without vitamin A (1:50), ascorbic
acid (0.2 mM), SB431542 (10 µM, Tocris), dorsomorphin dihydrochloride
(DM, 5 µM, Stemgent), and various concentrations of purmorphamine
(Stemgent) and CHIR99021 (CHIR, Stemgent) as indicated in each figure.
On day 4, the flask containing EBs was put in a vertical position for 10min
to allow EBs to sediment. The EBs were washed with DMEM/F12 once, and
then plated on the matrigel-coated plates evenly. On day 6 or day 9, SB
and DM were discontinued in the medium in different experiments.

Differentiation of midbrain floor plate progenitors to A9 DA
neurons
On day 16, properly specified midbrain floor plate progenitors were
washed with DMEM/F12 once and dissociated to single cells with accutase
at 37 °C for 5–10min. Cells were centrifuged at 200 × g for 5 min and
washed with DMEM/F12 twice, and then plated onto polyornithine/
matrigel-coated plates at a density of 5000–10,000 cells/cm2 in a 1:1
mixture of DMEM/F12 and Neurobasal that contained N2, B27 without
vitamin A (1:50), ascorbic acid (0.2 mM), purmorphamine (1 µM), and
CHIR99021 (0.8 µM). On day 18, the medium was changed to Neurobasal
with N2, B27 without vitamin A, Brain-derived Neurotrophic Factor (BDNF)
(20 ng/ml), Glial cell line-derived Neurotrophic Factor (GDNF) (20 ng/ml),
and TGFβ3 (1 ng/ml). On day 20, dibutyryl-cAMP (dcAMP) (0.5 mM) and
DAPT (1 μM) were added to the medium. The ROCK inhibitor Y27632 (10
μM) was added during the first 48 h. Purmorphamine and CHIR99021 were
gradually removed as shown in Fig. S4A. At day 24, cells were cultured in
the differentiation medium without purmorphamine and CHIR99021.

Electrophysiological recordings
Whole-cell patch-clamp recordings were performed in iPSC-derived
neurons at day 70 or later. Cells were perfused in artificial cerebrospinal
fluid (ACSF), consisted of (in mM): 127 NaCl, 1.2 KH2PO4, 1.9 KCl, 26
NaHCO3, 2.2 CaCl2, 1.4 MgSO4, 10 glucose, 290mOsm, and 95% O2/5%
CO2. Voltage-dependent sodium and potassium currents were recorded
with the internal solution containing (in mM): 125 K-gluconate, 10 KCl, 10
HEPES, 0.5 EGTA, 3 Na2ATP, 0.5 Na2GTP and 12 phosphocreatine, pH 7.4,
300mOsm. Voltage steps from −100mV to +40mV lasting 500ms were
used. For the recording of evoked action potentials, steps of currents from
−60 pA to +140 pA lasting 1.8 s were injected into the cell. To record
spontaneous action potentials, cells were held in the current-clamp mode
with no current injection. Recordings of voltage-dependent Ca2+ currents
(VDCC) used the internal solution consisting of (in mM): 170 N-methyl-D-
glucamine, 40 HEPES, 4 MgCl2, 5 1,2 bis-(o-aminophenoxy)-ethane-N,N,N*,
N*-tetraaceticacid, 12 phospho-creatine, 3 Na2ATP, 0.5 Na3GTP, and 0.1
leupeptin, pH 7.2–7.3, 265–270mosM/l. The external solution consisted of
(in mM): 127 NaCl, 20 CsCl, 1 MgCl2, 10 HEPES, 0.001 tetrodotoxin, 5 BaCl2,
and 10 glucose, pH 7.3, 300–305mOsm. VDCC were evoked by a ramp
voltage protocol from −80mV to +60mV. An Olympus BX51WI
microscope was used to visualize neurons. A MultiClamp 700B amplifier
(Molecular Devices, Sunnyvale, CA) was used to perform patch-clamp
recordings. Signals were filtered at 4 kHz and sampled at 100 kHz using a

Digidata 1322 A analog-digital converter (Axon instruments). Data were
analyzed with pClamp 10.0 (Axon Instruments) and were presented as
mean ± SEM. Data points that vary by more than 3 standard deviations
below or above the mean were excluded.

Animal surgery
The care and use of rats were approved by the Institutional Animal Care
and Use Committee (IACUC) in the State University of New York at Buffalo.
Male athymic rats (Hsd:RH-Foxn1rnu, Envigo) at 8–10 weeks of age,
weighing 200–250 g, were used in 6-OHDA lesion experiments. Only male
athymic rats were used to maintain consistency with our previous
experiments on male Sprague Dawley (SD) rats, as female SD rats did
not tolerate daily cyclosporin injections. Future experiments using both
sexes of athymic rats will reveal whether there are significant sex
differences in response to engraftment. We injected 3 µl of 6-OHDA (5
mg/ml freebase in a solution of 0.2 mg/ml L-Ascorbic acid in 0.9% sodium
chloride) using a 10 µl Hamilton syringe and a Kopf stereotaxic frame into
the medial forebrain bundle (AP: −4.4; ML: −1.2; DV: −7.8) on the right
hemisphere of the rat brain [38]. Four weeks later, successfully lesioned
rats with more than 6 rotations/min after an apomorphine IP injection at
0.05mg/kg body weight were used for transplantation. We randomly
picked 4 rats for the sham group and the other 6 rats were used for the
graft group. The A9 DA neurons at day 37 of differentiation were washed
with PBS once, treated with Accutase for 5–10min at 37 °C in an incubator.
The cells were aspirated gently with a 1ml pippet and washed twice with
Neurobasal medium containing 1 × B27 before they were resuspended at
37,500 cells/µl in the same medium. The cell suspension was placed in ice
for no more than 1 h before transplantation. Cells were transplanted in 4 µl
(37,500 cells/µl) using stereotaxic injection into the rat striatum (from the
bregma: AP:+ 0.5 mm; ML: −3.0 mm; DV: −6.0 mm and −5.0 mm), with 2
µl at each location for 5 min. Fourteen weeks after transplantation, rat
brains were harvested by transcardiac perfusion with paraformaldehyde
(4% in PBS). Coronal sections (20 µm thick) were immunostained with the
antibodies indicated.

Locomotor tests
Apomorphine-induced rotations and rotarod were performed at 0, 4, 8 and
12 weeks after cell transplantation. Rats were injected i.p. with
apomorphine (0.05 mg/kg, dissolved in 0.9% NaCl containing 0.1%
ascorbic acid). The number of rotations was recorded for 20min starting
10min after injection. The data were presented as the average number of
rotations per minute. For the rotarod test, rats were pre-trained on an
automated 4-lane rotarod unit (SDI Rotor-Rod, San Diego Instruments, INC,
USA) that could be set on fixed speed. Then, animals were tested three
times at 12 rpm with 20-minute rests between each trial. Latency to fall
recorded by the rotarod device was averaged for each animal.

Quantification and statistical analysis
SPSS 13.0 was used for statistical analysis. All data are expressed as mean ±
standard error of measurement. The sample sizes for animal behavior
testing were estimated based on a similar experiment in a previous study
[22] at n= 4 at least for achieving power over 0.8. Experiments with two
groups were compared by unpaired, two-sided t test, where data were
assessed to be normally distributed (Shapiro–Wilk test, p > 0.05) and
equally dispersed (Levene’s test, p > 0.05). Experiments with multiple
measures for two groups were analyzed by two-way repeated measure
ANOVA with Geisser-Greenhouse correction, followed by Bonferroni
correction for multiple comparison. Values of p < 0.05 were considered
statistically significant.

RESULTS
Differential efficiencies of a floor plate-based method in the
differentiation of hESCs and human iPSCs to midbrain DA
neurons
After testing several protocols for the differentiation of hESCs to
midbrain DA neurons [18, 22, 39], we chose the one that starts
with embryoid bodies (EBs) [22]. This approach avoids substantial
cell death at the beginning of differentiation [30, 31] or the need
to sort CORIN+ cells [32, 33] when differentiation is initiated in
hPSC colonies grown on matrigel [18]. When we differentiated H9
hESCs with the Kirkeby method [22] (Fig. 1A), 69.1 ± 10.1% of
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DAPI+ cells were TH+ neurons (Fig. 1B–D, N). When we used the
same method to differentiate three independent lines of normal
human iPSCs, only 5–6% of DAPI+ cells were TH+ neurons
(Fig. 1E–N), regardless of whether the human iPSCs were

generated with integrating lentiviruses (C001 and C002 iPSCs)
[36] or with non-integrating episomal plasmids (C005) [37]. The
generation of MAP2+ mature neurons was not affected as
markedly (Fig. 1N). Pluripotency makers, such as NANOG, SOX2,
SSEA3, and OCT4, were expressed at indistinguishable levels in
these iPSCs and H9 hESCs (Fig. S1A–E). Information on antibodies,
chemicals, and growth factors is listed in Supplementary Table S1.

Improving the differentiation of human iPSCs to midbrain
floor plate DA progenitors
We optimized the activation of the Sonic Hedgehog (SHH)
signaling pathway to specify floor plate cells [17] and the
activation of the WNT pathway to acquire a midbrain fate [40].
First, we used various concentrations of purmorphamine (PM), a
small-molecule activator of SHH signaling [41, 42], to treat C002
iPSCs or H9 hESCs for 9 days, in a medium containing the dual
SMAD inhibitors SB431542 (10 μM) and dorsomorphin (5 μM)
(Fig. 2A). As a robust induction of floor plate genes, such as FOXA2
and CORIN, is seen around day 14 in a previous study [18], we
performed qRT-PCR to measure the expression of various marker
genes at day 14. Sequences of PCR primers are listed in
Supplementary Table S2. In cells differentiated from C002 iPSCs,
expression of the floor plate markers FOXA2 and CORIN, as well as
the midbrain markers LMX1A and LMX1B, peaked at 3 µM PM. In
contrast, the forebrain marker PAX6 decreased dramatically in the
presence of PM, and the hindbrain marker HOXA2 increased
substantially at PM of 3 µM or above (Fig. 2C). On the other hand,
cells differentiated from H9 hESCs showed peak expression of
FOXA2 and LMX1B at 1 µM PM and increasing expression of
CORIN and LMX1A with PM. PAX6 expression was abolished by
PM, while HOXA2 increased dramatically at PM of 2 µM or above
(Fig. 2D). We confirmed these results with immunostaining of cells
differentiated from C002 iPSCs (Fig. 2E) or H9 hESCs (Fig. 2F). Thus,
the optimal PM concentration for C002 iPSCs was 3 µM, in contrast
to 1 µM for H9 hESCs. At such concentrations of PM, expression of
critical marker genes had significant differences compared to
those induced by the lower or the higher concentration.
Using these concentrations for PM, we then optimized the

concentration of CHIR99021 (CH), a potent GSK3 inhibitor that
activates WNT signaling to mimic rostral-caudal specification [25],
in the differentiation of C002 iPSCs and H9 hESCs to generate a
midbrain cell fate (Fig. 2B). Increasing doses of CH (0, 0.4, 0.8, 1.6
µM) were added to the medium containing SB431542 (10 μM) and
dorsomorphin (5 μM), in addition to 3 µM PM for C002 iPSCs or 1
µM PM for H9 hESCs for 9 days (Fig. 2B). The expression of CORIN
was not significantly affected by CH in both C002 (Fig. 2G) and H9
(Fig. 2H), while the expression of FOXA2, LMX1A and LMX1B
increased with CH concentrations (Fig. 2G, H). The expression of
OTX2 and SOX6, markers of midbrain dopaminergic progenitors,
peaked at 0.8 µM of CH in both C002 (Fig. 2G) and H9 (Fig. 2H).
However, the expression of the hindbrain marker HOX2 elevated
dramatically when CH concentration was greater than 0.8 µM for
both C002 (Fig. 2G) and H9 (Fig. 2H). When CH was at 0.8 μM, the
expression of critical marker genes had significant differences
compared to those induced by the lower or the higher
concentration. These qRT-PCR results were confirmed by immu-
nostaining (Fig. 2I, J). Thus, the optimal concentration for CH was
0.8 μM for both C002 and H9, along with 3 μM PM for C002 or 1
μM PM for H9.
We compared the efficacies of PM and SHH by differentiating

C002 iPSCs in medium containing SB431542 (10 μM), dorsomor-
phin (5 μM), CH (0.8 μM) and SHH at 200 ng/ml or 500 ng/ml or PM
at 3 μM for 9 days. PM at 3 μM induced the highest expression of
FOXA2 (Fig. S1F) and CORIN (Fig. S1G), lowest expression of
PAX6 (Fig. S1H), and unchanged expression of HOXA2 (Fig. S1I).
Adding 200 or 500 ng/ml SHH to 3 μM PM achieved no further
effects (Fig. S1F–I). Thus, PM can replace SHH in the differentiation
of iPSCs.
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Fig. 1 An existing floor plate-based protocol has different
efficacies in differentiating human iPSCs and hESCs to midbrain
DA neurons. A Using the Kirkeby method [22], we differentiated
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Shortening dual SMAD inhibition facilitates dopaminergic
differentiation
Previous methods for the differentiation of hPSCs to midbrain DA
neurons use the dual SMAD inhibitors dorsomorphin (5 μM) and
SB431542 (10 μM) or noggin for 9 days at the beginning of

differentiation [18, 22, 39]. We found that in such regimens, the
expression of OCT4 and NANOG were rapidly abolished within the
first two days, while the induction of the neural stem cell markers
SOX1 and NESTIN plateaued around day 4 (Fig. 3A). As BMP/SMAD
signaling is critical in the development of midbrain DA neurons
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[35], we tested whether shortening dual SMAD inhibition might
enhance the differentiation of iPSCs to midbrain DA neurons.
When we changed dual SMAD inhibition from the first 9 days to
the first 6 days, there were no significant differences in the
percentages of SOX1+ cells, NESTIN+ cells, or SOX1+NESTIN+ cells
among all cells at day 14 (Fig. 3B–D). However, expression levels of
LMX1B, SOX6, PITX3, ASCL1, MSX1 and MSX2 were significantly
increased at day 14 (Fig. 3E, F). Further differentiation of these
mFP cells to DA neurons at day 32 revealed significant increases in
the expression levels of TH, ALDH1A1, PITX3, GIRK2, and EN1
(Fig. 3G, H).

Prolonged ventral midbrain specification improves marker
gene expression
Using the optimized differentiation protocol (Fig. 4A), we
examined the expression of various marker genes when PM and
CH were used for up to 16 days. As expected, NANOG and OCT4
expression ceased within two days (Fig. 4B). Expression of floor
plate genes FOXA2 and CORIN was substantially elevated at day
16 than at day 8, as was the expression of the endogenous
ventralization factor SHH (Fig. 4B). Expression of midbrain
dopaminergic markers, such as LMX1A, LMX1B and PITX3, was
markedly increased at day 16 than at day 8, while the levels of
OTX2 and SOX6 were similar at the two time points (Fig. 4C). We
confirmed the qRT-PCR results by costaining cells at day 16 for
FOXA2, LMX1A/B, OTX2 and DAPI (Fig. 4D), as well as CORIN, SOX6,
FOXA2 and DAPI (Fig. 4E). The percentages of each of these
markers in all DAPI+ cells were over 94% (Fig. 4F).
Previous studies have shown that in the presence of GSK3β

inhibitors, FGF8b had only marginal effects [18] or was not
necessary [22, 39] in the differentiation of hPSCs to midbrain DA
neurons. We differentiated C002 iPSCs to mFP progenitors using
the protocol in Fig. 4A in three different scenarios: (1) no FGF8b
throughout; (2) with FGF8b (100 ng/ml) for days 0–8; (3) with
FGF8b (100 ng/ml) for days 8–16. Further differentiation of these
three kinds of mFP progenitors to midbrain DA neurons showed
no significant difference in the percentages of TH+ neurons
among all DAPI+ cells at day 60 (Fig. S2A–D). We found that mFP
progenitors did not proliferate in basal media (B) or basal media
plus PM and CH (BPC) but expanded substantially in media with
FGF8b (BPCF) (Fig. S2E, F). EdU incorporation assays [43] showed
that FGF8b significantly increased the percentage of EdU+ cells
(Fig. S2G–J). Unpassaged mFP progenitors generated in BPC
medium without FGF8b expressed CORIN, LMX1A/B, and FOXA2
(Fig. S2K). In the presence of FGF8b, expression of CORIN, LMX1A/
B and FOX2 were maintained in cells with a generally similar
round morphology from passages 1 to 3 (Fig. S2N, O, Q);
expression of OTX2 and EN1 was maintained as well (Fig. S2P,
R). In basal media (B) without PM and CH, FOXA2 and LMX1A/B
expression was lost with the concomitant change of cellular
morphology (Fig. S2L). At passage 1, neuronal processes started to
extend from mFP progenitors still positive for CORIN, LMX1A/B
and FOXA2, when FGF8b was not present (Fig. S2M). The addition
of FGF8b restored the generally round morphology of mFP
progenitors (Fig. S2N). Together, these data indicate that FGF8b is
not necessary for the differentiation of mFP progenitors to
midbrain DA neurons but can be used to expand mFP progenitors.

Differentiation of mFP progenitors to midbrain DA neurons
expressing A9 markers
To induce the terminal differentiation of midbrain floor plate
(mFP) progenitors to midbrain DA neurons, we gradually reduced
PM to 1 μM from days 16–24 and removed CH at day 20. The base
medium was changed from a 1:1 mixture of DMEM/F12 and
Neurobasal to 100% Neurobasal containing N2 and
B27 supplements and vitamin C, as well as dcAMP (0.5 mM)
[22, 23], DAPT (1 μM) [22], GDNF (20 ng/ml), BDNF (20 ng/ml), and
TGFβ3 (1 ng/ml) [18, 22, 39], which are all important for the
terminal differentiation of midbrain DA neurons (Fig. 5A). At day
60, neurons with complex morphology and extensive processes
(Fig. 5B) were immunostained for TH, Tuj1 or MAP2. We found that
72.5 ± 14.3% of all DAPI+ cells were TH+ neurons, 98.0 ± 3.8% of all
cells were Tuj1+ neurons, and 95.7 ± 4.1% of all cells were MAP2+

mature neurons (Fig. 5C–I). We also costained the neuronal
cultures for TH and the floor plate markers CORIN (Fig. 5J) and
FOXA2 (Fig. 5K), midbrain markers EN1 (Engrailed 1) (Fig. 5L) and
NURR1 (Fig. 5M), A9 DA neuron markers ALDH1A1 (Fig. 5N) and
GIRK2 (Fig. 5O), as well as the A10 marker CALBINDIN (Fig. 5P).
Except for CALBINDIN, which was expressed in only 7.5 ± 2.1% TH+

neurons, all the other markers were expressed in at least 82% of
TH+ neurons (Fig. 5Q). Thus, the majority of these midbrain DA
neurons expressed markers for A9, but not A10 DA neurons.
Separate channels of Fig. 5J–P are shown in Fig. S3. Using the
same method, we differentiated C001 and C005 iPSCs and H9
hESCs to midbrain DA neurons. There were no significant
differences in the percentages of TH+ neurons, Tuj1+ neurons or
MAP2+ neurons in all DAPI+ cells among the four lines (Fig. S4).
Both C001 and C002 iPSCs are generated with integrating
lentiviruses [36], while C005 iPSCs are generated with non-
integrating episomal plasmids [37].

iPSC-derived neurons exhibit the autonomous pacemaking
property of A9 DA neurons
Whole-cell patch-clamp recordings [36] of C002 iPSC-derived
neurons at day 70 showed that they had voltage-dependent Na+

(inward) and K+ (outward) currents in response to voltage steps
(Fig. 6A and enlarged inset). Most neurons at days 40–59, and
almost all neurons at day 60 or later had these currents. We found
significantly increased peak currents and corresponding changes
in the I–V curves of voltage-gated Na+ and K+ currents as the
neurons became more mature from days 40 to 120 (Fig. S5A–H).
Almost all neurons at day 60 or later had evoked action potentials
in response to injected currents (Fig. 6B). In DA neurons at days
80-120, spontaneous action potentials (sAP) were observed
(Fig. 6C). The sAP was not significantly affected by the AMPA
and kainate receptor blocker DNQX (Fig. 6D) or the NMDA
receptor blocker AP5 (Fig. 6E) but was abolished by the L-type Ca2
+ channel blocker nimodipine (Nim) (Fig. 6F) or the Na+ channel
blocker TTX (Fig. 6G). Statistical analysis of the results is shown in
Fig. 6H. These data indicate that the spontaneous action potentials
are autonomous pacemaking activities independent of glutama-
tergic input but dependent on L-type Ca2+ channels, like the
pacemaking properties of A9 DA neurons in rat brains [44].
Analysis of sAP in 703 traces from 16 neurons showed that these
APs shared remarkable similarities to those recorded from nigral

Fig. 2 Optimizing the differentiation of human iPSCs to floor plate DA progenitors. A Concentrations of purmorphamine (PM) were
optimized for the differentiation of human pluripotent stem cells (hPSCs) in the indicated base medium with SB431542 (10 μM) and
dorsomorphin (5 μM) for 9 days and maintained in the base medium to day 14. B After the optimal PM concentration was identified for the
differentiation of human iPSCs or hESCs, the schematic was used to optimize the concentration of CHIR99021 (CH). C–F C002 human iPSCs
(C, E) or H9 hESCs (D, F) were differentiated as in schematic (A). Expression of indicated marker genes was analyzed by qRT-PCR (C, D) and
immunostaining (E, F) at day 14. G–J C002 (G, I) or H9 (H, J) were differentiated with 3 μM or 1 μM PM, respectively, and varying concentrations
of CHIR99021 (CH) as in schematic (B). Expression of indicated genes was examined by qRT-PCR (G, H) and immunostaining (I, J) at day 14. n=
6 from 3 independent experiments, with 2 wells for each experiment. *p < 0.05, vs. the lower concentration; #p < 0.05, vs. the higher
concentration, all unpaired t test. Bars, 100 μm.
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DA neurons in rat brain slices [45], with slow firing rate (5.03 ±
0.60 Hz) (Fig. 6H), relatively long AP duration (4.47 ± 0.51 ms half-
width), similar AP amplitude (66.36 ± 1.60mV), and prominent
hyperpolarization (Fig. S5I–K). These properties are in sharp
contrast to those of the APs fired by nigral non-DA neurons,
which have much higher frequencies and shorter half-width [45].
Activating the dopamine D2 autoreceptors with quinpirole

significantly decreased the frequency of spontaneous action
potentials in a reversible manner (Fig. 6I, J). Consistent with this,
spontaneous dopamine release as measured by HPLC [36] was

significantly reduced by quinpirole (Fig. 6K). Voltage-dependent
Ca2+ currents, which could be largely blocked by nimodipine,
were significantly decreased by quinpirole (Fig. 6L, M). Thus,
quinpirole-induced reduction of Ca2+ currents may decrease the
frequency of pacemaking action potentials, as A9 DA neurons
depend on L-type Ca2+ channels for pacemaking [44]. We did not
study the hyperpolarization-induced current (Ih), which is present
in DA neurons in both the SNc [45] and the VTA [46] and thus
cannot be used to distinguish A9 and A10 DA neurons. More
importantly, many neurons with the Ih current are TH− [46–48].
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Transplantation of iPSC-derived A9 DA neurons in rat brains
We transplanted C002 iPSC-derived A9 DA neurons (150,000 cells
in 4 μl at two vertical locations with 2 μl each) at day 37 of
differentiation to the striatum of athymic nude rats, which were
lesioned with 6-OHDA in the medial forebrain bundle on the
ipsilateral side. Fourteen weeks after transplantation, a large
number of human cells positive for human nuclear antigen (hNA)
were found in the rat striatum (Fig. 7A). This was confirmed by
DAB staining for hNA (Fig. S6A and inset). Many of these human
cells were TH+ in immunofluorescence staining (Fig. 7A), which

was confirmed by DAB staining for TH (Fig. 7A inset and Fig. S6B).
Immunofluorescence staining showed that the TH+ neurons
transplanted in the rat striatum were also positive for human
NCAM, hNA, FOXA2, LMX1A/B, EN1, NURR1 and SOX6 (Fig. 7B–H).
More importantly, these human TH+ neurons coexpressed the A9
markers GIRK2 (Fig. 7I) and ALDH1A1 (Fig. 7J), but not the A10
marker CALBINDIN (Fig. 7K). Separate channels of these images
are shown in Fig. S7. DAB staining for hNCAM showed massive
neuronal processes extended by the grafted human neurons
(Fig. 7L and insets). Many hNCAM+ neurons were TH+ (Fig. S6C
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and Fig. 7B for enlarged view). Locomotor deficits induced by
6-OHDA lesion were gradually and significantly alleviated when
we measured apomorphine-induced rotations (Fig. 7M) or latency
to fall on the rotarod (Fig. 7N) in the rats at 4, 8 and 12 weeks after
engraftment.

DISCUSSION
In this study, we developed an efficient method for the directed
differentiation of human iPSCs to A9 DA neurons in chemically
defined media. By mimicking the development of midbrain DA

neurons in vivo [11], we optimized the timing, duration and
concentrations of various chemicals that properly direct the
differentiation of iPSCs to midbrain floor plate (mFP) DA
progenitors. Most of the current mFP-based methods initiate
differentiation in hPSCs cultured on matrigel [18, 30–34]. While the
approach is very effective for hESCs, its use on human iPSCs calls
for various adaptations, such as optimal seeding pattern of iPSCs
in the initial phase of differentiation [30, 31] or sorting of CORIN+

mFP cells to boost the yield of TH+ neurons [32, 33]. A recent
optimization of the matrigel approach adopts phasic applications
of CH in a medium without knockout serum replacement (KSR)
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[34], in contrast to the original constant exposure of CH [18] in a
medium with KSR, which contains lysophosphatidic acid, a
substance that interferes with WNT activation by CH [49]. Because
of these issues, we chose to optimize another mFP-based method
that initiates the differentiation of hPSCs in embryoid bodies (EBs)
in suspension culture without KSR [22]. When properly-specified
EBs are attached to the plate, they produce mFP cells with distinct

morphology and clear demarcation from non-mFP cells in the
periphery, which can be readily scraped away so that only mFP
cells are differentiated further to neurons. This advantage is highly
valuable, despite the technically more demanding requirement for
making high-quality EBs.
We made several improvements to the EB-based floor plate

method [22], which work very well in the differentiation of hESCs,
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but not human iPSCs, to midbrain DA neurons. First, the
concentration of purmorphamine needed to be substantially
higher for human iPSCs (3 μM) than for hESCs (1 μM). This reflects
what it may take to overcome the subtle epigenetic differences
between human iPSCs and hESCs [27–29], as their differentiation
to midbrain DA neurons in a rosette-based method also shows
significant differences [26]. The specification of a midbrain fate
was achieved using the same concentration of CHIR99021 (0.8 μM)
in the differentiation of both human iPSCs and hESCs. Second,
prolonged specification of ventral midbrain fate using 3 μM
purmorphamine and 0.8 μM CHIR99021 for 16 days (instead of
9 days for hESCs in previous methods) was important for the
differentiation of human iPSCs to midbrain floor plate (mFP) DA
progenitors, as evidenced by continued increases in the expres-
sion of many important marker genes. We decreased the
concentrations of purmorphamine and CHIR99021 stepwise at
days 16–24, as the mFP DA progenitors were further differentiated
to mature DA neurons. Third, it is important to shorten the initial
dual SMAD inhibition from 9 days to 6 days, which significantly
increased the expression of mFP genes at day 14 and midbrain DA
markers and A9 markers at day 32. This surprising finding is
consistent with the critical role of BMP/SMAD signaling in the
development of midbrain DA neurons [35]. An option to expand
the mFP DA progenitors is built into this protocol by passaging the
progenitors in the presence of FGF8b (100 ng/ml) at least three
times without substantially affecting differentiation efficiency. The
caveat is that FGF8b induces the production of hindbrain cells and
various types of mesenchymal-like cells [34].
The combination of these improvements generated midbrain

DA neurons that expressed A9 markers such as ALDH1A1 and
GIRK2, but largely not the A10 marker CALBINDIN. Most
interestingly, the DA neurons exhibited autonomous pacemaking
activities independent of glutamatergic input but dependent on
L-type Ca2+ channels. These activities were very similar to what
has been observed in rodent nigral DA neurons in brain slices
[8, 44]. Previous studies have generated human midbrain DA
neurons that fire action potentials with regularity [18, 50, 51]. The
defining feature of autonomous pacemaking is that the action
potentials are not significantly affected when synaptic inputs are
blocked [52], as exhibited by our A9 DA neurons. L-type Ca2+

channel-based autonomous pacemaking is one of the unique
vulnerabilities of nigral DA neurons [53], as increased demand for
Ca2+ handling exacerbates oxidative stress contributed by
dopamine catabolism [54]. Furthermore, we found that the
frequency of autonomous pacemaking action potentials was
significantly and reversibly reduced when the dopamine D2-class
receptors were activated by quinpirole. This hallmark physiological
response of nigral DA neurons serves to autoregulate dopamine
release [55].
Finally, engrafted human DA neurons showed excellent survival,

fiber outgrowth, expression of correct marker genes and
alleviation of motor deficits. Transplantation of iPSC-derived A9
DA neurons may change other behaviors in addition to decreased
apomorphine-induced rotations and improved performance on
rotorod. Future studies on the full range of behavioral changes in
exploration, learning, habit, etc., will reveal important functions of
human nigral DA neurons grafted in the striatum of 6-OHDA-
lesioned rats. Nigral DA neurons have massive axon arborization
[3], whose vulnerability increases with size [56, 57]. Only midbrain
DA neurons properly specified with the floor plate-based
differentiation methods are able to survive in a rodent brain,
generate extensive processes and reduce locomotor deficits in
rodent PD models. DA neurons differentiated from hESCs using
the floor plate methods show equivalency to human fetal ventral
mesencephalic tissue when grafted in the rat 6-OHDA PD model
[39]. Clinical trials using hESC-derived [58] or iPSC-derived [33]
midbrain DA neurons differentiated with the floor plate methods
[18, 32] are being conducted [59]. Continuing improvements in

the differentiation of hPSCs to midbrain DA neurons [34] will
help the field better understand the properties of these cells and
their vulnerability in PD. Our study showed that the human
midbrain dopaminergic neurons that we differentiated from iPSCs
had many important characteristics of A9 DA neurons. These
results will stimulate efforts to replicate our findings and use the
method to study the function and dysfunction of human A9 DA
neurons. We intend to write a detailed protocol elsewhere to
facilitate the adoption of our method by other investigators. The
ability to generate patient-specific A9 DA pacemakers will greatly
facilitate research and therapeutic development in Parkinson’s
disease.
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