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A B S T R A C T

In existing wireless networks, the control programs have been designed manually and for certain predefined
scenarios. This process is complicated and error-prone, and the resulting control programs are not resilient
to disruptive changes. Data-driven control based on Artificial Intelligence and Machine Learning (AI/ML) has
been envisioned as a key technique to automate the modeling, optimization and control of complex wireless
systems. However, existing AI/ML techniques rely on sufficient well-labeled data and may suffer from slow
convergence and poor generalizability. In this article, focusing on digital twin-assisted wireless unmanned
aerial vehicle (UAV) systems, we provide a survey of emerging techniques that can enable fast-converging
data-driven control of wireless systems with enhanced generalization capability to new environments. These
include simultaneous localization and sensing (SLAM)-based sensing and network softwarization for digital
twin construction, robust reinforcement learning and system identification for domain adaptation, and testing
facility sharing and federation. The corresponding research opportunities are also discussed.
1. Introduction

Unmanned aerial vehicles (UAVs) have been envisioned as a key
enabling technology for a wide set of new applications because of their
unique characteristics such as fast deployment, high mobility, on-board
processing capabilities, and reduced size. This has allowed significant
progress in foundational research towards UAV-assisted communication
networks, e.g., swarm UAV networks. Specifically, the high mobility of
UAVs can be leveraged to enable dynamic network area coverage and
maximize service capacity at mobile ground nodes [1]. Furthermore,
UAV swarms can serve as MIMO-enabled self-organizing flying hotspots
for terrestrial ad-hoc networks to improve spectral efficiency [2]. In IoT
networks, UAVs can be leveraged as distributed relay nodes to expand
coverage area and improve quality of service (QoS) [3]. To enable
5G and Beyond network capabilities, UAVs can provide additional
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computational resources for offloading and support in mobile edge
computing (MEC) networks [4]. UAV swarms are also expected to en-
able 5G massive MIMO (MMIMO), serving as dynamic relays to enable
high-throughput communications between MMIMO base stations and
ground users and minimize inter-cell interference [5,6]. Additionally,
future network architectures, i.e., 6G, are projected to support hybrid
aerial-ground communications, in which terrestrial networks, aerial
UAV networks, and satellite communications are linked hierarchically
to further enhance QoS and network flexibility [7].

However, while UAVs can certainly enable a new range of ap-
plications, the challenges are multi-fold. First, the management of
UAV-assisted networks needs to consider the high mobility of all con-
nected nodes, and this requires new resource orchestration and algo-
rithm designs to anticipate the dynamics and requirements of each
flying node and hybrid link in addition to those dynamics inherent
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Fig. 1. Top-level overview of a DT-enabled system.
to the networking environment [8]. The situation will get even worse
when jointly considering the newly emerging sophisticated commu-
nication techniques, such as heterogeneous multi-band communica-
tions [9], device-to-device communication links [10], integrated access
and backhaul (IAB) 5G networks [11], non-orthogonal multiple access
(NOMA) [12,13] and spectrum coexistence [14,15]. Moreover, in the
current practice of wireless engineering, the networking environments
are usually assumed to be known at design time, and the resulting
control programs may fail when encountering unforeseen conditions.
Traditional manual network management has hindered the adoption of
new techniques and the evolution of wireless networks, motivating a
new paradigm that can enable zero-touch management of UAV-enabled
networks, including planning, design and deployment, service delivery,
resource management, and end-to-end optimization [16].

Data-driven Approaches. Data-driven modeling and decision-
making based on Artificial Intelligence and Machine Learning (AI/ML)
are envisioned to be key enablers of zero-touch wireless network
management. In recent years, data-driven approaches based on AI/ML
have shown great potential for automating the modeling and control of
complicated wireless systems. Examples of recent efforts include deep
learning-based edge computing for Internet of Things (IoT) [17], multi-
label classification for user association in mm-wave networks [18],
trajectory and passive beamforming design in UAV-RIS wireless net-
works based on a decaying deep Q-network [19], and network slicing
for industrial IoT based on deep federated Q-learning [20], among
others. Readers are referred to [21–24] and the references therein for
a good survey of the main results in this field.

However, the primary challenges with data-driven approaches are
their slow convergence rates and the limited generalization capabilities
of the learned policies when faced with new environments. Specifically,
the performance of ML (especially deep learning) algorithms highly re-
lies on the availability of a sufficient amount of well-labeled contextual
data for model training, leading to slow convergence rates in online
applications [21,25]. Additionally, collecting training data can be too
time costly and in some cases pose safety risks for hardware or network
operators. Alternatively, the models can be trained in an offline man-
ner using data previously collected or generated by simulators [26].
However, the trained models may suffer from poor robustness, i.e., it
is hard for the models to generalize to new environments with different
transition kernels.

Digital Twin-enabled Data-driven Control. Digital twins (DT) are
envisioned as key enablers of fast-convergent and robust learning for
next-generation intelligent cyber–physical systems, such as smart fac-
tories and manufacturing [27–29], smart cities [30,31], construction,
2

bio-engineering and automotive [32,33], as well as wireless communi-
cation networks [34,35].

With high-fidelity models in the virtual DT environment, the cor-
responding physical entity can be reconfigured, simulated and tested
at a fraction of the cost and in a fraction of the time of deployment-
based configuration testing. By simulating the behaviors of the physical
entity in real-time, possible trajectories of a physical entity’s life-cycle
can be generated using physics-based simulation in order to predict
events and conduct root-cause diagnosis. Further, the resulting data can
be used to train AI/ML models to determine the optimal solutions for
complex control problems, while the trained models can be fine-tuned
through real-time feedback from the physical entity. This has been
demonstrated in [28], in which a DT has been implemented to provide
fault monitoring, scenario evaluation, and adaptive data-driven control
for manufacturing systems to improve both safety and productivity.
Furthermore, the authors of [30] show that using a custom protocol
stack for real-time synchronization between physical and virtual en-
tities, city-scale public services can be managed and optimized using
data-driven algorithms deployed in a DT. While the great potential of
DTs has been demonstrated in various areas such as manufacturing,
smart city, and military applications [27–29], its adoption in wireless
communication networks is still in its early phase.

In this article, we aim to provide a survey of the main results of
DT-enabled machine learning in UAV-assisted wireless networks, and
discuss the research challenges and possible solutions. In existing liter-
ature, there are already a number of surveys and tutorials focusing on
DT-enabled wireless systems [33,36–39]. For example, in [33] Minerva
et al. discuss the foundational properties, essential characteristics and
business values of DTs focusing on IoT application domains such as
digital patient, digital city and cultural heritage. The authors of [36]
discuss DT-enabled 6G from an architectural perspective, including
the key design requirements in decoupling, scalability, security and
reliability as well as deployment. The authors emphasize the use of
DT as an enabling technology for ML-enabled wireless networking
via high-performance mobile edge computing and software-defined
networking. The enabling technologies for DTs are discussed in [38]
for cognizing and controlling the physical world, DT modeling, DT
data management, DT services as well as connections in DTs. In [39],
Nguyen et al. identify the potential benefits of DT for rolling out 5G
networks, including interactive 5G emulation, 5G radio and channel
emulation, and continuous validation and optimization. The design
and implementation of a DT for optical communication systems are
presented in [40], and results are presented to motivate the use of
DT systems for hardware configuration, transmission simulation, and



Computer Networks 236 (2023) 110000M. McManus et al.
fault prediction tasks. The application of AI/ML techniques in wireless
network modeling and control has also attracted significant research
attention. Readers are referred to [41–44] and references therein for a
good survey and tutorial for the main results in this field. Different from
the above surveys and tutorials, in this article we discuss the challenges and
enabling techniques for fast-convergent and robust learning in DT-assisted
wireless UAV systems.

2. Digital twins for wireless systems: A primer

Digital twins were first introduced in the NASA Apollo program
as a ‘‘multi-physics, multi-scale probabilistic simulation’’ of an object,
system, or process in the physical world, which uses physical pa-
rameters, historical data, and sensor updates to provide an accurate
virtual ‘‘mirror’’ of the target system [45]. As depicted in Fig. 1, a DT
system generally consists of three major components: a physical entity
with observable behaviors, a logical (or virtual) object that represents
the physical entity in a simulated environment, and a bidirectional
feedback system between the two entities [27,29,46,47]. Considering
modern applications, DT systems can monitor and virtualize dynami-
cally the behaviors of the physical systems at run-time and further aid
in a zero-touch manner the decision-making in unforeseen situations
based on data-driven modeling and optimization [48].

In order to provide accurate modeling and control decisions in spite
of mathematical generalization, a DT system requires a bidirectional
feedback loop capable of translating observed physical behaviors into
a virtual model and vice versa. This behavioral translation process is
termed domain adaptation. To broaden the scope of this investigation,
we consider a general theoretical definition of a DT with three critical
elements: the physical domain, the twin domain, and domain adapta-
tion. We discuss each element in the context of wireless networks with
flying base stations as an example to motivate the application of DTs
for next-generation wireless network optimization. A survey of more
general DT use cases envisioned to support 6G network capabilities
such as high-density deployment configuration and reflective intelligent
surface-enabled terahertz communications can be found in [49].

Physical Domain. The physical domain is also called the target
domain. This domain encompasses all scenario- and application-specific
aspects of the system, such as basic network functionalities, mobil-
ity controls, physical entities, and other features of the deployment
environment. This data can be collected by the DT through a direct
interface with each system component, as in [30,50], or aggregated by
a central controller prior to collection [51]. In general, data acquisition
is handled in the physical domain and uploaded to the twin domain
in real-time or stored as a dataset for later use, which we will discuss
further in Section 3. Considering the example of UAV-assisted net-
working, the physical domain would include UAV hardware, software,
and communication systems used to realize the aerial base station
capabilities, all comparable elements of network end-devices, as well
as environmental and geographical features, such as wind speed, RF
interference, and blockages, that constrain the UAVs’ flight patterns and
impact network coverage and performance.

Twin Domain. The twin domain, aka source domain, encompasses
all exogenous elements of the DT system that are designed to accel-
erate optimization of physical domain applications, facilitate machine
learning applications without impact on real-time system operation,
or otherwise improve system performance over what is achievable
in a deployment that is solely in the physical domain. In general,
this will include virtualization of the target environment, synthetic
data generation for policy convergence, and feedback with a domain
adaptation process for effective policy transfer across the sim-to-real
gap. The sim-to-real gap refers to the discrepancy in observable per-
formance and behaviors between physical domain entities and their
virtual counterparts. This discrepancy is typically caused by generaliza-
tions of unpredictable real-world phenomena present in the simulation.
3

Experience collected by agents, especially in dynamic or time-varying
environments, may only be valid temporarily, requiring continuous
computation and re-optimization. Virtualization is a key technique
for improving the flexibility and efficiency of zero-touch control for
wireless networking systems [16]. This requires dedicated computa-
tional resources and infrastructure to support synthetic data generation
and processing as well as bidirectional communication between twin
and physical domain systems. We will discuss several methods of
target system virtualization and softwarization for wireless networks
Section 4.

A detailed example of source domain design for a coordinated UAV
swarm network is outlined in [52]. This example includes a centralized
intelligence center collecting periodic updates of environment state
data, and returning control directives to the deployed hardware for
optimal MAC-layer configuration. The intelligence center contains a
simulation of the deployed hardware capable of generating synthetic
data analogous to physical domain experience, which is in turn used
to train a deep neural network to optimize protocol parameters based
on a physical domain scenario. With reliable communication between
the twin (i.e., source) and physical (i.e., the target) domains, offloaded
computation can facilitate accelerated convergence and practical appli-
cations, removing prohibitive resource constraints on physical domain
systems.

Domain Adaptation. This is the process by which experience col-
lected or generated in one domain is translated for use in the com-
plementary domain. While the addition of resources from the source
domain can be incredibly useful, communication between twin and
physical domains may not always be reliable. In the case of unre-
liable communication between domains, the sim-to-real gap may be
increased due to the lack of synchronization between physical systems
and their virtual counterparts. In such scenarios, learning conducted in
the twin domain must be robust to the difference between dynamics in
the physical domain and generalizations made in the source domain
to enable effective sim-to-real policy transfer. The core focus of do-
main adaptation is to modify learning algorithms and source domain
parameters to overcome these challenges, and is envisioned as the
key to solving open research challenges associated with robustness
and performance losses in transfer learning applications inherent to
DT-enabled systems [53]. In existing literature, domain adaptation
for RL applications can be achieved by modifying observations of
the source domain [53], simulation parameters [54], or the reward
function [55] of a well-defined Markov decision process (MDP). In
each of these approaches, a twin domain is constructed for rapid and
efficient training, with the goal of minimizing interaction with the
physical domain hence maximizing communications efficiency while
maintaining effective transfer learning performance between domains.
We will discuss DT testbed development to experimentally evaluate
domain adaptation techniques for sim-to-real policy transfer in wireless
networks in Section 6.

3. Data acquisition

In a DT system, the role of data acquisition is to generate and
maintain a virtual environment using ground truth data from the
physical domain. In addition to data required to build the virtual model,
timely updates from the physical domain are necessary to maintain
the accuracy of event prediction, trajectory modeling, and control
capabilities in the twin domain. For a DT-enabled wireless network as
outlined in Fig. 1, this time-sensitive information can include mobile
base station and user locations, performance metrics, and changes to
protocol specification such as modulation or bandwidth.

In existing work, especially for physics-based or high-fidelity mod-
els, construction of the virtual environment is done manually and
prior to simulation events based on expert understanding of the target
environment. The majority of works discussed in Sections 1 and 2
demonstrate the use of a virtual environment designed and deployed
prior to execution time, and otherwise do not consider an explicit
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interactive construction of an environment model. For example, the
authors of [50] propose a graph-based network topology portrait (NTP)
for optical network which does not rely on environmental data to
simulate network performance, instead relying on synchronization with
hardware. However, especially for dynamic physical environments with
low channel coherence time or mobile nodes such as UAV networks
[52], the deployment environment may not be known ahead of time
and the DT system must be able to generate blockage and bound-
ary rules at execution time in order to provide accurate simulation
capabilities.

The authors of [47] describe the virtual environment of a DT system
as a repository of environmental and system signatures. Behavioral
or physics-based modeling is of key importance to ensure accurate
decision-making based on the virtual environment [39], which requires
efficient, reliable collection of high-fidelity environmental data. New
methods of collecting these signatures automatically are currently be-
ing investigated to accelerate the development and deployment of DT
systems, especially with the help of robots, UAVs, or other technology
to enable autonomous mapping and unassisted control.

In the following section, we discuss the enabling technologies for
DT construction and deployment and discuss different methods of
environmental data acquisition in this context.

3.1. Enabling technologies and techniques

We identify online environment virtualization using various data
acquisition techniques as a key enabling technology for real-time and
mission-critical applications of DT in unknown physical environments.
These techniques include LiDAR [56,57], millimeter-wave radar [58],
and simultaneous localization and mapping (SLAM) [59,60], to quickly
and efficiently scan an environment and build an interactive virtual
model. Once an environment is generated, contextual datasets can
be generated using ray tracing or other simulation methodologies to
accelerate optimization tasks as shown in Fig. 1 [25,52]. However,
the automation of data acquisition to enable online, on-the-fly DT
construction is of critical importance to enabling DT for zero-touch
networking. Online DT construction in general, to the best of our
knowledge, is a challenge that remains unaddressed in existing DT
literature.

LiDAR. In recent literature, LiDAR has demonstrated excellent
promise for generating high-fidelity environmental models. LiDAR
systems detect surface points in an environment by emitting light in
the form of pulsed laser and calculating the time-of-flight based on
reflections [56]. These points are aggregated in the form of a point
cloud highlighting key features in an environment, which is then
converted into a representative mesh by a central controller (typically
via numerous filtering and reconstruction steps).

Currently, some visual sensor based autonomous vehicles use sim-
plified LiDAR sensors to accurately measure the distance between the
vehicle and obstacles, then fuse the LiDAR’s data with other sensors’
data to make a more robust map. Some LiDAR-based autonomous vehi-
cles, especially UAV systems, will use high-accuracy LiDAR as a primary
sensor to generate the ambient environment’s map. In addition, most
vacuum robots use a simplified LiDAR system to build the map of the
user’s house for path planning, collision avoidance, and localization.
A LiDAR-equipped UAV is used in [56] to construct an interactive
virtual model of an environment in the Unity gaming engine. The Unity
engine was selected to maintain the 3D environment model due to
its high-quality visualization and integrated physics capabilities. While
gaming engines such as Unity are typically optimized for rendering and
visualization with user interactivity, they are not generally capable of
rendering dynamic meshes from data acquired in real-time.

In general, LiDAR sensors, especially high-fidelity long-range sen-
sors, can be very expensive, ranging from hundreds to tens of thousands
of dollars [57]. The sensing range of high-accuracy LiDAR systems can
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reach more than 400 m, with an accuracy of 1 cm. However, a high-
accuracy LiDAR system is heavy (5 kg+) and expensive ($10,000+),
while low-cost, simplified LiDAR systems’ scanning frequencies are too
low. As a result, high-end LiDAR systems may not be the best choice
to enable large-scale aerial mapping, where the weight of sensors must
be minimized. Instead, low-cost short-range LiDAR systems can take
advantage of the high mobility of UAV systems to map larger areas
more effectively, using the UAV flight path to improve area coverage
without adding significant weight. For example, the authors of [61]
demonstrate the capability of a lightweight (<1 kg) LiDAR sensor with
a range of 200 m deployed on a UAV at an altitude of 10–20 meters to
perform large-scale mapping of a 1.7 km coastline.

Mm-Wave Radar. In addition to optical measurement methods, the
use of millimeter-wave (mm-wave) radar has attracted attention in re-
cent literature as a method of mapping a physical environment based on
measured backscattering and time-of-flight of emitted high-frequency
RF signals. Specifically, the use of Y-band (215 GHz) radar for indoor
navigation and mapping is demonstrated in [58]. In this work, a
portable mm-wave radar system is assembled using commercial-off-
the-shelf RF components interfaced with a vector network analyzer to
collect range information. The system was mounted on a turntable to
enable full rotational scanning, and a LabView interface was developed
to control the radar position and data collection. Data was collected
by emitting RF signals at 215 GHz with 1 GHz bandwidth at four
different types of polarization – HH, HV, VH, and VV – for performance
comparison. The reflected signal response was measured at 220 GHz
over 5 GHz bandwidth and processed using Hough transform, ghost
image elimination, and false blockage elimination techniques to extract
a 2D model of the local environment, providing up to 15 cm resolution
when scanning in HH polarization. Since this method supports real-
time map generation, it is considered a viable method for simultaneous
localization and mapping of DT environments. Towards this goal, the
authors of [62] present integrated sensing and communication (ISAC)
techniques for UAV-based environment exploration using mm-wave
massive MIMO antenna arrays.

The authors of [63] introduce the M-Cube, an experimental
software-defined millimeter-wave radio system which is constructed
using a low-cost 802.11ad radio and a programmable baseband mod-
ule. This system can provide full control over MIMO beamforming,
providing up to 256 antenna elements across 8 reconfigurable arrays,
and has been experimentally validated for both mm-wave (60 GHz)
communication at up to 325 Mbps as well as mm-wave radar based on
AoA estimation for object detection at a range of 1 m with 8 cm resolu-
tion. This system represents a very interesting enabling technology that
improves accessibility of experimental mm-wave approaches, reducing
the overall cost and complexity of applications and providing support
for new sensing-based virtualization techniques.

SLAM. SLAM is the method of creating a feature map of an unknown
physical environment while tracking the location of an agent traversing
through the environment at the same time, using monocular, stereo,
RGB-D, or other visual sensing methods. SLAM requires sensors to
detect the environment’s features, track specific features then calculate
the shape of the physical environment, the carrier’s movements, and its
relative location. While SLAM systems can leverage a variety of sensor
input types, including LiDAR and mm-wave sensors, visual SLAM (V-
SLAM) is very popular among different SLAM techniques because it
only requires a camera as the input sensor.

SLAM is critical to the process of autonomous virtual environment
construction. The authors of [64] propose ORB-SLAM3, an open-source,
extensible visual SLAM framework library that supports monocular,
stereo and RGB-D cameras for data collection. In general, most SLAM
algorithms are executed following three steps: tracking, local mapping,
and loop closure. In the tracking phase, points in the environment
are used to generate representative images of the environment called
keyframes. During local mapping, keyframes are inserted into a local

model of the environment. Finally, the loop closure process detects and
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Fig. 2. General diagram of ORB-SLAM3 mapping process.
Table 1
Mapping metrics for SLAM systems.

LiDAR mm-Wave Monocular Camera Stereo Camera RGBD Camera Monocular Camera-IMU

Range 160 m 300 m Relative 35 m 5 m Need Further Research
Accuracy 1.5 mm 20 mm Relative 20 mm 3.7 mm Need Further Research
Cost $10,000 $600 $40 $75 $200 $40
manages redundant points based on existing keyframes, integrates new
information with the global model, and performs bundle adjustment
(BA) to estimate camera trajectory. A more detailed overview of the
processes involved in each step of this method is shown in Fig. 2. In
ORB-SLAM3, the camera’s image input will be fused with acceleration
data from an inertial measurement unit (IMU) as shown in Fig. 2. This
can significantly improve the mapping accuracy and make the tracking
continuous even if visual tracking is lost. The IMU fusion of V-SLAM,
deployed in the Tracking and Local Mapping modules in Fig. 2, has
been shown to surpass other state-of-the-art SLAM methods on existing
datasets collected using stereo and monocular cameras. Additionally,
this framework library supports data collection and processing in real
time, which is critical for online DT creation and can be leveraged for
simultaneous virtualization and interaction.

The authors of [57] compare V-SLAM with LiDAR mapping using
low-cost sensors for environmental mapping and mesh generation. The
explored sensors include the Intel RealSense ZR300, which leverages
stereo IR vision and visual-inertial odometry to perform 3D scanning
and localization; the Microsoft Kinect V2, which leverages time of
flight of emitted light for 3D sensing, similar to LiDAR; and the Asus
ZenFone AR, which leverages a camera, a motion tracking camera, and
an IR depth sensor to collect environmental signatures. These three
approaches were compared to the ZEB-REVO handheld LiDAR system.
Each sensor was mounted on an Intel Aero UAV, which navigated
around a facility controlled by the native autopilot to collect environ-
mental data. The environmental datasets collected by each sensor were
loaded into the Unity game engine for offline visualization, observed
in virtual reality using the Oculus Rift headset, and evaluated in terms
of accuracy to the modeled environment and resolution of the selected
hardware. It was shown that while the ZEB-REVO LiDAR sensor out-
performed the other selected options, competent modeling performance
can still be achieved for DT environment virtualization using cheaper
visual sensor-based methods. Additionally, most modern passenger cars
use visual SLAM for Lane Centering Control (LCC) and Adaptive Cruise
Control (ACC).
5

3.2. Research opportunities and challenges

The adoption of these methods for DT construction provides the fol-
lowing key research opportunities towards enabling DT in the wireless
domain.

Online DT Construction: The construction of a DT is broadly defined
as the process by which spatial and temporal data is collected from
the physical domain and used to generate a virtual environment in
the twin or source domain. Online DT construction implies that data
collection and virtual environment construction are parallel comple-
mentary processes: as the environmental data is collected, the virtual
model is updated faster than the physical environment can transit to
the next observable state. For example, the sensing system in [60]
updates a local map of the environment roughly every 300 ms. In
order for this system to support an accurate real-time representation
of the environment for online DT, a physical entity observed by this
system cannot generate more than one set of data points in a period
shorter than 300 ms. This can be appropriate for wireless applica-
tions which observe networking performance over a period seconds
or minutes, such as node location optimization [65] or delay-tolerant
5G network services including background file transfer or cloud syn-
chronization [66], but cannot provide sufficient time granularity for
tasks such as predictive channel modeling, in which channel coherence
time can be <20 ms [67]. While [58,60] discuss the potential for
online environment construction and virtualization, the efficiency of
simultaneous exploration and virtualization of an environment for use
in an online DT-enabled wireless simulation remains an open problem.

Continuous SLAM is a special case of online DT construction in
which 3-D environmental data is collected continuously via SLAM to
update the virtual model in the twin domain. In general, this process
will run in parallel with behavioral or analytical simulations in order
to maximize spatial virtualization accuracy. An accurate DT simulation
relies on the maintenance of the virtual model, and requires constant
updates to track or model environmental dynamics in real-time. This
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Table 2
Wireless network virtualization platforms.

Platform Fidelity Accessibility Type Physics Interface

NS-3 High Free, Open-source Simulation Single (RF) C++, Python
EMANE Low Free, Open-source Emulation Multi (RF, mobility) C++, Python, XML
InSite High Paid, proprietary Simulation Single (RF) Software GUI
Colosseum High Free, proprietary Emulation Multi (RF, mobility) Linux VM
EXata High Paid, proprietary Emulation Single (RF) Software GUI
UBSim Low Free, Open-source Simulation Multi (RF, mobility) Python
is required for intelligence in the source domain to provide timely,
adaptive support to agents in the physical domain. Continuous SLAM
poses a unique challenge within the scope of online DT construction
due to the amount of end-device resources, especially computational
capacity and link bandwidth, required to simultaneously virtualize an
environment and begin behavioral modeling. Furthermore, behavioral
modeling, based on mobility models or historical data, may generalize
too much or provide only temporarily valid solutions. Online, continu-
ous generation of an interactive model presents a research opportunity
which can significantly improve the state-of-the-art for next-generation
wireless networks in dynamic, non-stationary environments.

Large Scale Sensing: Current approaches to environment virtualiza-
ion pose several limitations when considering sensor accuracy range,
specially above 100 m. The price, range, and accuracy of several
ensor types are compared in Table 1. The authors of [57,68] explore
he use of UAVs in expanding sensing range for environment data
ollection, which provides clear advantages in terms of observable
rea and flexibility compared to manual measurement or static sensing
pproaches. However, this approach poses several tradeoffs of its own:
AVs are limited in battery life, which inherently limits functional

ange and on-board hardware; LiDAR systems capable of collecting data
t long ranges without loss of fidelity can be prohibitively expensive;
nd cheaper optical/RGB-D cameras suffer at long ranges (typically >

100 m).
For LiDAR-based SLAM systems, LiDAR tracking is based on time-

of-flight measurements, and LiDAR can only measure the distance
between the carrier vehicle and landmarks. If there is a moving obstacle
between the carrier vehicle and the landmark, LiDAR tracking may be
lost. For optical-camera-based SLAM systems, camera tracking is based
on angle changes. If the ambient light or viewing angle changes rapidly,
then camera tracking may be lost. In either case, the relocalization
process is time consuming and significantly increases computational
complexity of SLAM systems.

In order to prevent tracking loss, multi-sensor fusion can be lever-
aged to significantly increases the robustness and mapping accuracy of
the SLAM system. During continuous tracking, the SLAM system could
use movement data of the carrier vehicle to correct the motion-caused
deviation and improve tracking accuracy. If the tracking is lost, the
SLAM system will still be able to keep updating the map with movement
data acquired from the carrier vehicle GPS data or IMU unit.

We envision one possible solution for large-scale DT construction
is monocular-IMU data fusion. Traditional monocular camera mapping
is a low-cost, low-complexity method for large-scale, low-resolution
sensing. However, a monocular camera can only measure the relative
distance between objects instead of the absolute distance. Additionally,
the point cloud generated by a monocular system is far less dense
than other visual methods. To address these challenges in a UAV-based
monocular-SLAM system, the camera frame can be fused with the UAV’s
IMU data to improve monocular mapping accuracy without additional
hardware. Furthermore, if the UAVs use accurate GPS service, such
as RTK differential GPS, the camera frame can also be integrated
with absolute coordinates to further improve mapping accuracy by
integrating collected data with geographical information system (GIS)
mapping in the DT. However, the application of this approach to enable
large-scale environment sensing and virtualization remains an open
research challenge in this area.
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4. Network softwarization and virtualization

In the context of wireless networking research, the benefits of DT
have attracted research attention as a key technology towards enabling
highly anticipated intelligent networking tasks. The use of high-fidelity
simulation in DT leveraging full environmental modeling for system
monitoring and control is the most widely-discussed implementation
observed across several industries [29,69].

Applications of machine learning, especially reinforcement learning
and deep learning applications, require significant amounts of time and
data to generate and employ optimal control parameters for a given
scenario. A source domain containing both simulation and optimization
in a centralized intelligence center or edge server allows the synthesis
of training data in place of experience which may be otherwise chal-
lenging or costly to obtain in the physical domain [53]. This generation
of contextual data by a virtual entity, termed ‘‘synthetic sensing’’ [47],
is considered a key feature of high-fidelity DT. Specifically, synthetic
sensing has been shown to reduce the time cost of dataset generation
associated with ML applications to enable intelligent wireless network
functionality, such as data collection and reliability, computational
capability requirements of end-devices, among others [21]. The fi-
delity/accuracy of synthetic data available in a DT is directly correlated
to the quality and quantity of available data for a physical context [70],
as well as the capabilities of the DT platform to process this data.
Due to the growing prevalence of software-defined networking (SDN)
and virtual network control, virtualization fidelity can vary widely
based on the requirements of the application and the tools leveraged to
create a virtual environment [38]. We have identified several state-of-
the-art network virtualization and softwarization platforms that have
demonstrated promising synthetic sensing capabilities to address this
challenge, which we will introduce later in this section. In addition to
accurate network simulation, we identify several frameworks that have
been developed for establishing accurate virtual models of physical sce-
narios. While supporting experimental literature using these tools for
DT development in the wireless domain remains a key open challenge
in this area, these tools offer support for the future value of DT for
enabling ML applications in the wireless domain.

4.1. State of the art

We have identified several network simulators that have immediate
potential for advancing research into DT for the wireless domain,
including NS-3 [71], Colosseum [72], EMANE [73], and Remcom Wire-
less InSite [74], among others. Refer to Table 2 for a comparison of
several key aspects of these platforms in the context of DT system
design.

NS-3: NS-3 [71] is a popular open-access, open-source network
modeling tool in both industry and academia, providing high-fidelity
wireless network simulation. NS-3 simulation is built around three
major elements: nodes, which serve as basic computing device ab-
stractions on which to run applications and install network devices;
packets, which provide data flow between applications; and channels,
which are used to connect nodes via installed network devices [71].
All elements in a simulation are constructed from behavioral models
written in C++ based on explicit protocol definition at each layer of
the network stack [75], with simulation control provided via C++ and
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Fig. 3. Architecture of Colosseum [78].
Python APIs. Simulated network traffic can be monitored and analyzed
using standard network observation software, such as Wireshark [76].
This tool can be directly interfaced with radio hardware such as USRP
to perform network emulation as well, improving accuracy of modeled
networks.

While NS-3 can provide high-accuracy network simulation, this tool
does not support explicit modeling of a physical networking environ-
ment. Additionally, NS-3 provides very limited native infrastructure
for simulation visualization and data processing and analysis, which
necessitates the use of 3rd-party software for these tasks. While its
accuracy is still limited by generalizations inherent to model-based
simulation [77], this tool is expected to play a significant role in
the development of DT-enabled systems in the future due to its high
fidelity, accessibility, and large community support.

Colosseum: Colosseum [72] is the world’s largest network emulator,
comprised of 256 software-defined radios (SDR) to provide a wide
variety of emulated RF propagation scenarios. The architecture of
Colosseum is shown in Fig. 3 [78]. Each of the 256 SDR nodes (SRN)
is made up of a software container that specifies physical, link, and
network layer protocol, as well as a USRP X310 SDR which transmits
data generated in the traffic generator (TGEN) based on this protocol
stack. The generated signals are transmitted through an FPGA fabric in
the massive channel emulator (MCHEM), which is configured to apply
channel effects by emulating predefined scenarios stored on the RF
scenario server. The platform is accessed, managed, and maintained
using a management network connected to all constituent elements.

Similar to NS-3, it is considered an open-access tool, and provides
support for a variety of different protocols including 4G/5G and IoT-
type protocols with spectrum sharing. While there are many different
predefined physical networking scenarios available, current support for
custom scenarios is very limited, reducing its flexibility in the context of
DT-enabled network deployments. We identify the need for an expan-
sion of this framework to include user-definable networking scenarios
with complete control over both network topology and communications
protocol and agent mobility and behavioral modeling.

EMANE: The Extendable Mobile Ad-Hoc Network Emulator [73],
or EMANE, is an open-source real-time framework for highly flexible
simulation of mobile network systems. Modular network development
allows for independent physical-layer modeling of each network el-
ement, providing accurate virtualization of system performance by
considering signal propagation, antenna profile effects and interference
sources between each emulated wireless link. In general, each emulator
instance is comprised of a physical layer model instance paired with
one or more radio waveform models, which are designed in C++ and
configured using XML. Similar to the Colosseum MCHEM, emulation
instances are linked to a shared multicast channel which generates
over-the-air network behaviors such as signal propagation, antenna ef-
fects, and interference. Additionally, EMANE provides radio waveform
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model plugins compatible with SDR hardware to enable shared-code
emulation, which is comparable to NS-3 emulation capabilities. While
EMANE is limited to emulation of PHY and MAC layers, emulation of
NET layer and above protocols is typically handled in practice through
integration with the Common Open Research Emulator (CORE) [79].

Wireless InSite: Remcom Wireless Insite [74] is a proprietary elec-
tromagnetic (EM) propagation modeling tool for wireless networking,
which can be leveraged for MIMO dataset generation [25] via ray
tracing as discussed in Section 1. The propagation behaviors are de-
signed around several modeling theories such as Shooting Bouncing
Ray (SBR), Adjacent Path Generation (APG), and Finite Difference
Time Domain (FDTD), considering environmental reflection behaviors
based on the Uniform Theory of Diffraction (UTD) [80]. From these
models, this tool can recover significant receiver-side information such
as received power, path loss, direction of arrival, delay spread, and in-
terference estimates. Due to its high-fidelity modeling capabilities, this
tool provides significant potential for accurate physics-based network
event simulation based on signal behaviors within the propagation
environment. However, this level of fidelity comes at a significant time
cost. While APG with GPU can accelerate some scenarios, in general this
tool will require several minutes to calculate network performance for
a given deployment, preventing faster-than-real-time applications [80].
Additionally, each scenario will need to be fully re-calculated in the
case of mobile transmitter, and partially re-calculated in the case of
mobile receiver, further increasing this time cost in mobile networking
scenarios.

ANSYS Twin Builder: The ANSYS Twin Builder [81] presents an open
platform for DT development, with a set of built-in tools for physical
and behavioral modeling of physical objects. This platform supports
multiple modeling domains and languages, enabling multi-physics sim-
ulation and heterogeneous data fusion for operation [39]. Specifically,
the core capabilities of Twin Builder rely on two key elements: a
multi-domain systems modeler, which can simulate interactions be-
tween synchronous modeled systems based on model libraries such as
mechanical, hydraulic, and electronic components, logic blocks, and
characterized manufacturer’s components; and a multi-domain systems
solver, which uses existing physics libraries for hydraulics, electronics,
pneumatic systems, and thermodynamics to simulate model behaviors.
While the platform itself is not immediately optimized for the wireless
domain, its use for simulation of hardware within an IoT network,
without explicit wireless network dynamics, is discussed in [38]. Twin
Builder supports integration of third-party platforms as well, which
implies compatibility with other tools capable of explicitly modeling
wireless network behaviors.

Spirent 5G DT: The Spirent 5G Digital Twin [82] presents a very
robust platform for emulating a full end-to-end 5G network. Various 5G
network elements, including independent channel emulation, virtual
EPC and gNB, and full-stack end-device emulation, are virtualized
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Fig. 4. Expansion of UBSim to include OSWireless as a physical domain framework, considering accelerated control algorithm convergence and practical system identification.
with very high fidelity in order to generate cost-effective accurate
behavioral analysis, enable evaluation of new security protocols, as
well as other ‘‘testing on demand’’ services. The authors of [39] outline
several key functionalities of this platform, including wireless network
automation and optimization, network slicing via SDR and network
functions virtualization (NFV), and accelerated 5G network planning
and validation, among others.

Pavatar: In the context of the Internet-of-Things (IoT), intelligent
online monitoring systems envisioned for smart cities, Industrial IoT
(IIoT), and other next-generation IoT systems are anticipated to play
a key role in supporting virtual environments constructed to support
a high degree of virtualization [83]. A key example of the capabil-
ity of high-fidelity DT supported by distributed heterogeneous sensor
networks is the Pavatar system [84]. Pavatar collects data at multiple
system layers simultaneously in order to conduct comprehensive sens-
ing of all system components and human activities in the operation
environment. This heterogeneous data, which is in excess of 1 TB
per day, is used to construct a VR representation of every system
element for human interfacing, as well as conduct error prediction,
anomaly detection, and root-cause diagnosis [84]. The use of different
types of data sources (e.g. RF, optical, temporal) to construct a robust
system virtualization, termed ‘‘data fusion’’, is necessary to provide ac-
curate simulation of physical system behaviors [33]. In [85], emphasis
is placed on detailed modeling of end-device behavior and dynamic
agent-based interactions in the virtual space as an integral component
of DT for distributed or decentralized networks.

Keysight EXata: EXata [86] is a network digital twin development
and analysis tool which uses network emulation and simulation for
network virtualization. The platform is based on a software virtual
network (SVN) to generate each protocol layer, antenna, and device
in the twin domain. This SVN is stated to be interoperable with real
radio hardware and capable of interacting with real applications. Addi-
tionally, the simulation kernel leverages parallel discrete-event drivers
during runtime, which can enable faster-than real-time processing nec-
essary for improved real-time ML algorithm training and deployment.

UBSim: UBSim is a custom hybrid network simulator designed for
use in DT research. It is capable of simulating microwave, millimeter-
wave, and terahertz-band communications in terrestrial, aerial, or hy-
brid aerial-ground networking scenarios deployed in a fully config-
urable physical networking area. It is fully open-source and open-
access, written in Python for flexibility, and ease-of-use. It is comprised
of three core elements: the network element module, which provides
behavioral definitions of all available simulation elements; the network
control module, which provides control over all deployed network
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elements; and the discrete event module, which schedules simulation
events. To facilitate ease of use, three sets of APIs have been designed:
the environment definition API, which coordinates all environmental
features and blockages; the network configuration API, which specifies
network topology and communications parameters; and the custom
algorithm API, which provides templates for data-driven algorithm
deployment. Each UBSim instance also provides a feedback tunnel,
as indicated in Fig. 4, to enable socket communications with exter-
nal software. In order to enable research into key technologies for
comprehensive DT as outlined in Section 2, UBSim supports parallel
learning across multiple simulation instances, configurable sim-to-sim
policy transfer1 for rapid evaluation of domain adaptation algorithms
such as robust learning and system identification, and is currently being
modified to enable online DT construction using SLAM. UBSim has
been leveraged for experiments in domain adaptation [87], UAV net-
work virtualization and optimization [88], and acceleration of machine
learning for wireless [65], among others. While the simulation fidelity
of UBSim is low, its flexibility is intended to enable integration with
high-fidelity platforms such as NS-3 or RF-SITL [89] to enable rapid de-
sign and evaluation of DT systems through multi-fidelity, multi-physics
experimentation.

4.2. Research opportunities

The tools discussed in this section provide an interesting scope of
customizable, potentially interoperable network simulation at varying
levels of fidelity for network virtualization as introduced in Section 1.
However, very few tools have been accepted to be individually suitable
for full DT implementation following the interdisciplinary feature set
shown in Fig. 1. Additionally, due to the lack of open-source and com-
munity support, they may not provide the level of accessibility required
for rapid experimental development in this area. The contribution of a
readily available, community-oriented DT platform for the purpose of
ML-based wireless network experimentation remains a significant open
challenge. It is expected that a combination of these tools, combined
with data fusion [16] and platform integration [90], can be leveraged
for a widely available, high-fidelity DT toolchain optimized for use in
the wireless domain.

Multi-fidelity Simulation: While data-driven methods can provide
significant improvements to network performance and services, they

1 Sim-to-sim policy transfer is similar to sim-to-real policy transfer, but the
policy is transferred to another simulation environment instead of the real
environment.
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can be very time-consuming and data-expensive, and may require
re-training if the target environment changes over time. To balance
the tradeoff between optimization time and algorithm accuracy, we
identify multi-fidelity simulation as an important element of future
DT-enabled wireless networking systems. Low-fidelity simulation can
be used for time-sensitive tasks, such as rapid control decisions, by
leveraging an approximation of wireless network behaviors based on
observable performance statistics, while high-fidelity models can be
used to maximize network performance in stable environments, or
leverage offline optimization algorithms for event prediction.

Standardization: Generating a standardized framework to facilitate
high degrees of virtualization in the wireless domain presents many
challenges, including simulation for highly complex and volatile net-
working environments [70], support for dynamic, heterogeneous, and
distributed network architectures [39], and ready integration with
machine learning and model-based network control [22]. Specifically,
we identify the need for an open, accessible DT framework that sup-
ports configurable network virtualization at multiple levels of fidelity.
The authors of [88] demonstrate preliminary work in this area, by
designing middleware between a high-fidelity UAV network virtualiza-
tion platform for environmental definition with a low-fidelity network
simulator for accelerated convergence of control algorithms. The con-
tinued development and distribution of such a framework would enable
many contributions in this area, providing a stronger definition of
the capabilities of DT technology for use in next-generation wireless
networks [49].

Faster-than-real-time Optimization: As part of the envisioned model
for 6G network architecture, DT is expected to play a large role in the
real-time or faster-than-real-time optimization of network deployments.
In order to provide high-fidelity simulation – hence accurate control
directives – protocols designed for UAV-assisted communications will
require support in virtual environments. Generalizable support for cus-
tom wireless protocols is possible on SDR hardware, and can be enabled
based on integration of UBSim with OSWireless [91]. OSWireless is a
wireless network operating system capable of decomposing operator
intent to explicit network control algorithms in a zero-touch manner.
Towards practical sim-to-real experimentation, we envision an expan-
sion of UBSim to support integration with OSWireless, as detailed in
Fig. 4. Specifically, OSWireless can serve as a physical domain control
system to decompose operator intent into custom control algorithms.
These control algorithms can be uploaded to UBSim, along with net-
work state data from the Wireless Network Abstraction Specification
(WiNAS) Subplane, for faster-than-real-time policy training based on
low-fidelity simulation. UBSim will return the optimized control policy
to OSWireless for deployment on hardware nodes. To address the sim-
to-real gap, UBSim will leverage the WiNAS Subplane data to perform
system identification, improving fidelity by tuning parameters to match
simulation performance to physical domain observations.

5. Domain adaptation techniques

As discussed Section 4, synthetic sensing is a useful method to
accelerate ML algorithm convergence for practical real-world applica-
tions [33,92]. In general, synthetic data is unable to fully represent all
system behaviors in the physical domain, and thus introduces some
inaccuracy during algorithm training. Many works seek to minimize
this by leveraging high-fidelity models to improve accuracy of synthetic
data [93,94]. These models achieve high fidelity through methods
such as ray tracing [95], hardware-in-the-loop emulation [78,96], or
component-level modeling [75,79]. However, processing high-fidelity
behavioral models can be quite time-consuming, taking possibly sev-
eral minutes to render a single environment [80]. This trade-off be-
tween simulation fidelity and processing time may be problematic
for time-critical applications. Domain adaptation seeks to minimize
the need for this trade-off by improving the capability of simulation-
accelerated learning frameworks to generalize from simulation in the
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source domain to real-world deployment in the physical domain.
Fig. 5. General outline of system identification.

5.1. State of the art

Instead of seeking a tradeoff between simulation fidelity and op-
eration time, domain adaptation seeks to improve the generalization
capability of low fidelity simulation. The ideal domain adaptation
system seeks to minimize the importance of simulation fidelity on the
accuracy of the resulting control policy in the physical domain, instead
focusing on solving the contextual mismatch between domains and
overcoming inherent simulation generalization to make sure the result-
ing control policy works. We introduce three representative examples of
this line of research as system identification [97,98], domain-agnostic
feature extraction [99,100], and robust learning [87,101,102]. In sys-
tem identification, source domain simulation parameters are adapted
based on feedback from the physical domain to improve behavioral
accuracy. In domain-agnostic feature extraction, contextual features
are identified from low-level data to generate a shared observation
space across domains. In robust learning, the gap between source and
physical domains is estimated through feedback and considered during
training in the source domain. Readers are referred to [103] and refer-
ences therein for a survey of robust reinforcement learning specifically
and [104,105] for other general domain adaptation techniques.

System Identification. System identification is the most established
approach to domain adaptation in existing literature [55]. In practice,
system identification seeks to iteratively improve behavioral parame-
ters in a source domain simulation based on feedback from the physical
domain. An outline of the general premise of system identification is
depicted in Fig. 5. While there are many application-specific variants
of system identification, this approach faces some challenges in general.
Primarily, a significant amount of feedback is required from the target
system to validate source domain performance. Additionally, some
virtualization platforms such as Colosseum and InSite introduced in
Section 4 may not be fully open-source or parameterized to support sys-
tem identification. Such simulation platforms that are configurable and
offer full control of behavioral parameters are termed hybrid simulators,
due to their analytical and behavioral modeling capabilities.

The authors of [97] explore sim-to-real transfer learning using robot
navigation tasks, in which it was noticed that learners in the source
domain are capable of exploiting a given simulation to perform tasks
beyond capabilities in the real world. By modifying the simulator based
on this feedback, the source-to-target gap was reduced and the sim-
ilarity between simulated and real robot performance was improved.
Similar to system identification, the use of domain-agnostic features can
be used to enable domain adaptation. Instead of converging simulation
parameters to maximize behavioral similarity, source domain observa-
tions can be adapted to extract high-level features common to both the
source and physical domains, minimizing the impact of domain-specific
dynamics on transfer learning performance. The authors of [99,106]
demonstrate this practice using pixel-level observation adaptation for

policy transfer in tasks related to computer vision.
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Domain-Agnostic Feature Extraction. This method seeks to reduce the
effect of the source-to-target gap by finding commonality between each
domain. Specifically, this approach seeks to align behavioral infer-
ences made in each domain through extraction of high- or low-level
features that can minimize domain-specific phenomena. For example,
the approach to semantic image segmentation outlined in [99] lever-
ages pixel-level segment representation and classification to improve
unsupervised adversarial domain adaptation for computer vision. The
authors of [100] propose transfer component analysis, which seeks a set
of features, termed transfer components, to minimize the difference in
data distributions between domains. By projecting transfer components
onto a shared latent space and applying standard machine learning
models for classification or regression tasks.

Robustness Mechanisms. Robust learning aims to mitigate the effect
of environmental perturbances, such as modeling errors, time-varying
dynamics, or unreliable data, on the resulting control policy. This can
be typically accomplished by applying a random or adversarial noise
process to a system during policy training. Defined in the scope of the
DT framework outlined in Fig. 1, this noise is generated by the source
domain during policy training to mitigate the effect of the source-
to-target gap during policy transfer [87,101,102,107]. In many cases,
the noise is added in the form of training samples manually selected
from worst-case scenarios or an average of potential environmental
anomalies. This is intended to generate a policy that will provide better
generalization than non-robust policies when faced with unexpected,
unknown, or adversarial physical domain dynamics, at the cost of
reduced maximum achievable performance.

An effective approach to applying this policy noise to generate a
robust policy is the R-contamination model [101]. Leveraged in [87,
101] to implement model-free robust reinforcement learning, the R-
contamination model is used to probabilistically alter, or ‘‘contam-
inate’’, observations made by the agent with random or worst-case
dynamics to encourage conservative policy learning. Instead of an agent
following a deterministic transition kernel 𝑝𝑎𝑠 for a given state 𝑠 and
action 𝑎, this contamination probabilistically cause an arbitrary state
transition 𝑞, selected from an uncertainty set  , which is comprised of
all possible transitions in an environment. In order to model contami-
nated agent trajectories, the R-contamination model generates a subset
𝑎
𝑠 of  for each 𝑠 and 𝑎 pair according to 𝑎

𝑠 = (1 − 𝑅)𝑝𝑎𝑠 + 𝑅𝑞𝑎𝑠 , 𝑞
𝑎
𝑠 ∈

𝛥
||, where 𝛥

|| is the simplex of state space , and 𝑅 represents the
probability of state transition according to 𝑞.

It is shown in [87] that the selection of random parameters from
the environment can improve policy transfer performance when the
source and physical domains have different transition kernels due to
differences in the environment dynamics. Both [87,101] demonstrate
the requirement for careful parameter selection prior to training, high-
lighting a key limitation of robust learning in the context of domain
adaptation. While robust learning can provide very conservative poli-
cies, the authors of [107] propose soft-robust learning, which takes
an average over the uncertainty set instead of selecting worst-case
scenarios to reduce the conservative nature of the resulting policy. This
yields a model capable of generalization while limiting performance
degradation.

5.2. Research opportunities

Expertise Incorporated Learning : In order to advance the use of do-
main adaptation for wireless networks, we consider constraint sampling
reinforcement learning (CSRL) [108] as a promising method to quantify
the reality gap using domain expertise. In this way, expert knowledge
of the networking environment can be integrated during the training
process via sensing [56,60] to enable effective policy transfer in un-
known environments with minimal human interaction. Additionally,
the authors of [109] underscore the importance of expert knowledge
in guaranteeing both the overall accuracy as well as the safety of
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agents during state space exploration in RL scenarios. Sophisticated
applications of this approach, especially in the wireless domain, remain
an open challenge in this area.

Reality Gap: The mathematical generalizations present in all sim-
ulations make sim-to-real transfer a persistent challenge due to the
inherent non-linearities of natural phenomena. Sim-to-sim experiments
can be used to estimate the domain transfer performance of new algo-
rithms for domain adaptation, but even high-fidelity models of physical
domain hardware are incapable of predicting performance exactly.
Additionally, while synthetic sensing can help accelerate convergence
of data-driven models, synthetic data will introduce inaccuracies to the
learning model based on generalization [98].

To overcome the reality gap between simulation results and physical
system behaviors, the authors of [103] discuss different applications
of robust learning to provide performance guarantees in the presence
of environment uncertainties. While some contributions address chal-
lenges associated with the reality gap [53,97], sim-to-real adaptation
in the wireless domain remains an open research area.

Real-time Training : In ML applications, especially methods that
leverage neural networks, the training process is generally time-
consuming. Even considering faster-than-real-time training capabilities
provided by a DT system, significant system or environmental changes
may require re-training some or all of a learned policy. In time-
critical applications, this may require interim behavioral models to
be leveraged during policy re-training. As such, the complexity of ML
algorithms require careful consideration of the long convergence times
when deployed in an online DT system. The authors of [22] explore the
integration of low-complexity inference models with ML algorithms to
reduce the impact of long training times on system performance in such
scenarios. Similarly, the authors of [110] demonstrate an example of
real-time training of a DL-enabled routing algorithm, leveraging stan-
dard non-DL routing algorithms such as round-robin during operation
until the DL model can provide improved performance, and continually
improving the DL model in the background during online operation.
As mentioned in Section 3, implementing this method of real-time ML
training in a DT-enabled system requires the update period of the DT to
be shorter than the observation period (i.e. data generation rate) of the
target environment. To address the case of incomplete data collection
due to environmental variance, the authors of [109] investigate the
combination of direct environmental observation with a convolutional
long short-term memory (ConvLSTM) network for the prediction of
missing values to guarantee online performance, with a fixed data
collection period proportional to the estimated observation period of
the environment.

When simultaneously optimizing multiple agents, as in multi-agent
reinforcement learning (MARL), the computation complexity and com-
munication overhead increase exponentially due to the additional prob-
lem dimensionality. This may further exaggerate the sim-to-real gap
based on the aggregate generalizations made across multiple agent rep-
resentations in the twin domain. In the example of a self-coordinating
swarm UAV network, each agent may be required to relay significant
state information including location, speed, height, and network status
of itself and other agents to the twin domain in each training step
to avoid collisions, reduce interference, and take actions without loss
of information. Collecting this information from all agents in each
timestep can cause significant communications overhead increasing
latency and, as a result, algorithm convergence time [111]. Addition-
ally, as the number of agents increase, the amount of information
required by the twin domain to maintain an accurate model of the
physical domain system increases as well, which further increases
network resource consumption. The complexity of algorithm design and
deployment can be further increased when considering a decentralized
scenario, in which a twin domain model needs to be maintained at each
agent instead of a central controller.

The Advantage Actor-Critic (A2C) algorithm [112] has been demon-
strated as an effective tool to minimize policy training times consider-

ing high-dimensional state and action spaces. A2C uses the estimated
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Fig. 6. (a) Snapshot of the UB NeXT testbed; (b) UB NeXT testbed topology.
optimal state–action value to update the policy, of which the gradient
can be calculated as follows:

∇𝜃𝐽 (𝜃) = E𝜋𝜃 [∇𝜃 log𝜋𝜃(𝑠, 𝑎)𝐴𝜋 (𝑠, 𝑎)] (1)

where 𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋𝜃 (𝑠, 𝑎) − 𝑉𝜋𝜃 (𝑠) is termed the Advantage function,
in which 𝑄𝜋𝜃 (𝑠, 𝑎) is the action-value function and 𝑉𝜋𝜃 (𝑠) is the state-
value function. With this advantage function, variance of the gradient
can be reduced which improves model training stability. It is very time
consuming to find hyperparameters that stabilize the learning process,
since A2C relies on the initial estimation of values, therefore A2C
algorithms can be challenging to design or further time-consuming for
real-time training scenarios.

To further accelerate policy convergence, an Asynchronous Ad-
vantage Actor-Critic (A3C) [113] can be used. Similar to A2C, A3C
uses an advantage function to reduce variance and improve training
stability. The only difference is that A3C allows agents to interact with
the environment in parallel. In A3C, virtual agents work individually
in multiple instances of the same environment to update a global
policy asynchronously. This parallelism can significantly reduce policy
convergence times.

To reduce the communication overhead of both centralized and
decentralized MARL scenarios, the Lazily Aggregated Policy Gradi-
ent (LAPG) method [111] can be used to reduce the frequency of
communication. Most information related to collision avoidance and
task completion does not need to be exchanged in every time period,
e.g., sensor malfunctions, low battery states, and obstacle detection.
LAPG sets a trigger condition for this kind of information to reduce
the exchange frequency, which can reduce the overall network com-
munication overhead and computational complexity. The lower bound
of the trigger condition for LAPG can be written as:

‖𝛿∇̂𝑘
𝑚‖

2 ≥ 𝜉
𝛼2𝑀2

𝐷
∑

𝑑=1
‖𝜃𝑘+1−𝑑 − 𝜃𝑘−𝑑‖2 + 6𝜎2𝑚,𝑁,𝛿∕𝐾 , (2)

where 𝛿∇̂𝑘
𝑚 represents the importance of updating the information,

which is calculated by the difference between previous and current
policy parameters.

Another strategy that can be used to reduce the per-update com-
munications overhead of a distributed network is by using a Partially
Observable Markov Decision Process (POMDP) [114]. Instead of re-
quiring the agents to fully observe the environment in each time step,
action selection for each agent is based on a probability distribution
given by the model instead of directly observing the underlying state.
In this case, each agent has less information to maintain in the local
twin domain model and the required information to be shared between
agents per network update can be reduced.
11
6. Physical scenarios development

While several works have proposed DT framework concepts to
support adoption of DT-enabled technologies at scale [36,39,83], the
state of the art in this area generally relies on performance inference
based on sim-to-sim experimentation, inflexible virtualization of pre-
defined physical scenarios, or small-scale sim-to-real experiments with
numerous experimental constraints.

6.1. State of the art

Scenario development is a key consideration for high-quality wire-
less experimentation platforms, which must support user-defined net-
work topologies, protocols, and control problems in order to provide
accurate validation for use in a practical DT system. The NSF PAWR
platforms, including POWDER, COSMOS, AERPAW and ARA, represent
the state-of-the-art for wireless network scenario development and
experimentation, considering scale, accessibility, and capability. For
UAV-enabled wireless networking research, AERPAW [115] provides a
large-scale experimentation platform comprised of static nodes, mobile
ground nodes, and UAV systems equipped with SDR hardware. The
goal of AERPAW is to provide a general platform to develop and
evaluate new capabilities for UAV-enabled wireless networks, and is
envisioned to enable research into scalable zero-touch control sys-
tems for hybrid aerial-ground networks. POWDER [116] is a city-
scale wireless networking research testbed in Salt Lake City, Utah,
specializing in topics such as 5G O-RAN, massive MIMO, and spec-
trum sharing in the sub-6 GHz band. COSMOS [117] is a testbed
deployed in an ultra-dense area of New York City, specializing in re-
search for ultra-high-bandwidth, low-latency wireless communications,
millimeter-wave MIMO and beamforming, and advanced edge comput-
ing scenarios. Finally, ARA [118] is a wireless living laboratory focused
on enabling research into rural broadband wireless connectivity by
connecting an open-access software-defined virtual infrastructure with
a heterogeneous mesh of terrestrial radio hardware and LEO satellite
communication terminals, capable of providing 600 square miles of
contiguous wireless coverage.

In addition to AERPAW, the UB NeXT testbed [65] provides a
comprehensive framework for network virtualization and domain adap-
tation research in integrated aerial-ground wireless networking. We
have included a picture and topology diagram of the UB NeXT testbed
in Fig. 6. The NeXT testbed platform is part of the UB indoor autonomy
research facility, and is comprised of 21 USRP N210 SDRs, 6 USRP
B210 SDRs, and two millimeter-wave routers, with mobility support
provided by three ground robots with 22 kg payload capacities and
a netted UAV enclosure for safe aerial network testing. The testbed
networking environment has been fully virtualized in UBSim, which has
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Fig. 7. Overview of UnionLabs testbed federation.
been demonstrated in [87]. This testbed can enable rapid, small-scale
experimentation to address existing challenges in DT research such as
evaluation of the sim-to-real gap, integrated optimization-learning al-
gorithm design for efficient ML, and virtual network self-configuration
via system identification.

6.2. Research opportunities

Scenario development is at the core of validating DT-enabled exper-
imental frameworks for the wireless domain. We identify several key
research opportunities for expanding the scope and depth of continued
research in this direction.

Sim-to-real gap Estimation: In general, domain adaptation methods
seek to bridge the gap between physical and DT domains. However,
especially in the case of robust learning, estimation of the sim-to-
real gap may not guarantee optimal performance if the gap between
physical and DT domain behaviors is large or unknown. Furthermore,
since there is no unifying framework for sim-to-real gap measurement,
methods that seek to reduce the sim-to-real gap may require manual
tuning in the case of multi-physics optimization. System identification
has shown promise in reducing the performance gap between phys-
ical and DT domains for physical scenarios regarding mechanical or
robotic systems [98], but there is insufficient investigation into how
12
to quantify the sim-to-real gap between different physical scenarios
for other methods of domain adaptation. Further research into the
measurement or estimation of the sim-to-real gap induced by various
physical networking scenarios is expected to accelerate design of do-
main adaptation schemes and advance the state-of-the-art of practical
DT-enabled wireless networking.

Portable environments for UBSim: We demonstrate in [87,119] the
need for multiple environmental models to enable experimentation in
domain adaptation, with specific attention to both sim-to-sim and sim-
to-real gaps. Specifically, more virtual models will be made available
for future work to build on the contributions in [87], enabling rapid
and repeatable experimentation for domain adaptation in the wire-
less domain through sim-to-sim experimentation. By virtualizing real
testbeds, as done in [87], this will provide preliminary benchmark
results required to motivate continued research for sim-to-real transfer.

Building on the sim-to-sim framework outlined in [87], we identify
the need for a flexible sim-to-real domain adaptation framework that
can accommodate different environmental models based on the phys-
ical domain specification. This will enable the design of new domain
adaptation algorithms for the wireless domain as well as adaptation of
existing algorithms. Using the same simulation platform as [87,119],
as well as the indoor autonomy research facility and UB SOAR facility
at University at Buffalo, many network configurations can be observed,
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including heterogeneous aerial-ground networks and UAV-to-UAV net-
works. To achieve the short-term goal of sim-to-real experimentation,
we plan direct integration with the UB NeXT testbed platform [65].
In preliminary sim-to-sim experiments, we have virtualized the NeXT
testbed [87] and will use this DT environment to better understand
the sim-to-real gap through rigorous sim-to-real experimentation and
domain adaptation algorithm design.

Testbed Sharing and Remote Access: Considering the need for open,
accessible DT experimentation platforms, we believe it is of critical
importance to facilitate remote access and control for a fully real-
ized DT-enabled wireless networking testbed. There remains a lack
of testbeds and networking environments to enable validation of AI
integration and further research into virtualization for network au-
tonomy [16], especially to support advancement towards zero-touch
networking. To address this challenge, we emphasize the contributions
made in [90] as discussed in Section 4, and propose an expansion of
the supported framework to include simulation/emulation capabilities.
We envision a new framework referred to as UnionLabs for testbed
sharing and federation. As illustrated in Fig. 7, the architecture of
UnionLabs consists of three planes, connected by the internet: the
User Plane, which handles user/operator interactivity, registration, and
management; the Federation Plane, which coordinates testbed access
and stores experimental code, datasets, and virtual machines; and the
Testbed Plane, which is comprised of all federated testbeds connected
through institutional gateways. This initiative will provide a platform to
share code, data, and software/hardware resources across a federation
of cloud-enabled heterogeneous testbeds distributed throughout the
country, with an emphasis on the advancement of research topics re-
lated to NextG wireless networks, zero-touch and network automation,
and the wireless Internet of Things.

7. Conclusions

In this work, we reviewed existing literature regarding the use
of DTs for ML-enabled wireless networks with an emphasis on UAV-
enabled networking, and discussed the open research challenges in
the area. DT for the wireless domain is a particularly important open
research area, and can serve as an enabling technology for practical
applications of data-driven network self-optimization such as UAV
network self-coordination and autonomous network control. Domain
adaptation, a key element to bridge the gap between simulations and
real network deployments, requires further investigation in the wire-
less domain. Several methods of domain adaptation, including system
identification, domain-agnostic feature extraction, and robust learning
have been evaluated for use in a DT system, focusing on limiting
interactions between domains to improve data efficiency. However, a
comprehensive exploration of the reality gap present in DTs remains an
open challenge in this area, as well as accelerating real-time training
using domain adaptation in multi-agent systems such as UAV swarm
networks. In order to further identify the reality gap across domains,
the topic of physical scenario development also needs to be further
explored especially for wireless UAV networks.
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