Problems:

1. Given a piecewise function defined as

\[f(x) = \begin{cases}
 x^2 + 2x - 3, & \text{if } x > 1 \\
 x^2 - 1, & \text{if } x = 1 \\
 x^2 + 1, & \text{if } x < 1
\end{cases} \]

(1) Is \(f(x) \) well defined at \(x = 1 \)? Find \(f(1) \).

(2) Compute the values of \(f \) at the following points approaching 1 using calculator. Then guess the left limit.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.5</th>
<th>0.9</th>
<th>0.95</th>
<th>0.99</th>
<th>0.999</th>
<th>left limit as (x \to 1^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) Compute the values of \(f \) at the following points approaching 1 using calculator. Then guess the right limit.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.5</th>
<th>1.1</th>
<th>1.05</th>
<th>1.01</th>
<th>1.001</th>
<th>right limit as (x \to 1^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) Does the two-sided limit of \(f(x) \) as \(x \) approaches 1 exist? What is the limit?

(5) Is \(f(x) \) continuous at \(x = 1 \)? Why?

2. The following is the graph of a piecewise function.
Try to fill out the table below and discuss the limits at the integer points.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x) (may not be defined)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left limit (may be infinity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right limit (may be infinity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit (may not exist)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Compute the following the limits:
 (1) \(\lim_{x \to 2} (x^3 - 3x^2 + 2) \);
 (2) \(\lim_{t \to 0} \sqrt{t^2 + 1} \);
 (3) \(\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 1} \);
 (4) \(\lim_{u \to 1} \frac{u^2 + 1}{u + 1} \);
 (5) \(\lim_{x \to 3} \frac{x + 2}{x - 3} \).

4. Compute the following fractional limits:
 (1) \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2} \);
 (2) \(\lim_{t \to 1} \frac{t^2 - 4t - 5}{t^2 + 5t + 4} \);
 (3) \(\lim_{h \to 0} \frac{(1 + h)^2 - 1}{h} \).

5. Suppose \(f(x) = x^2 \).
 (1) Compute \(f(1) \) and \(f(1 + h) \) for some parameter \(h \);
 (2) Treat \(h \) as a variable and evaluate the limit as \(h \) approaches 0:
 \(\lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} \).

(Hard) 6. Suppose \(f(x) = x^2 - 3x + 4 \).
 (1) Compute \(f(x + h) \) for some parameter \(h \).
 (2) Treat \(h \) as a variable and \(x \) as a constant. Evaluate the limit as \(h \) approaches 0:
 \(\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \). Your answer should be an expression involving \(x \).

Answer to Homework 2

1. (1) Yes. \(f(1) = 4 \).

 (2)
 \[
 \begin{array}{|c|c|c|c|c|c|}
 \hline
 x & 0.5 & 0.9 & 0.95 & 0.99 & 0.999 \\
 \hline
 f(x) & 2.333 & 2.052 & 2.026 & 2.005 & 2.0005 \\
 \hline
 \end{array}
 \]

 (3)
 \[
 \begin{array}{|c|c|c|c|c|c|}
 \hline
 x & 1.5 & 1.1 & 1.05 & 1.01 & 1.001 \\
 \hline
 f(x) & 1.8 & 1.952 & 1.976 & 1.995 & 1.9995 \\
 \hline
 \end{array}
 \]

 (4) The limit exists and equals 2.
 (5) \(f \) is not continuous at \(x = 1 \) because the limit doesn't equal the functional value \(f(1) = 4 \).
2.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$ (may not be defined)</td>
<td>2</td>
<td>Un-def</td>
<td>0</td>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td>Un-def</td>
</tr>
<tr>
<td>Left limit (may be infinity)</td>
<td>2</td>
<td>1</td>
<td>$-\infty$</td>
<td>2</td>
<td>-1</td>
<td>$+\infty$</td>
<td>0</td>
</tr>
<tr>
<td>Right limit (may be infinity)</td>
<td>1</td>
<td>$+\infty$</td>
<td>$-\infty$</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Limit (may not exist)</td>
<td>DNE</td>
<td>DNE</td>
<td>DNE</td>
<td>2</td>
<td>-1</td>
<td>DNE</td>
<td>0</td>
</tr>
<tr>
<td>Continuity</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

3. (1) -2; (2) 1; (3) 0; (4) 1; (5) DNE.

4. (1) 4; (2) -2; (3) 2.

5. (1) $f(1) = 1$ and $f(1 + h) = (1 + h)^2 = 1 + 2h + h^2$.

 (2) The limit is 2. (Same as problem 4 (3).)

6. (1) $f(x + h) = (x + h)^2 - 3(x + h) + 4 = x^2 + 2xh + h^2 - 3x - 3h + 4$.

 (2) The limit is $2x - 3$.