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Abstract

As with any biological process, cancer development is inherently dynamic. While major efforts continue

to catalog the genomic events associated with human cancer, it remains difficult to interpret and

extrapolate the accumulating data to provide insights into the dynamic aspects of the disease. Here,

we present a computational strategy that enables the construction of a cancer progression model

using static tumor sample data. The developed approach overcame many technical limitations of

existing methods. Application of the approach to breast cancer data revealed a linear, branching

model with two distinct trajectories for malignant progression. The validity of the constructed model

was demonstrated in 27 independent breast cancer datasets, and through visualization of the data

in the context of disease progression we were able to identify a number of potentially key molecular

events in the advance of breast cancer to malignancy.
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Introduction
Human cancer is a dynamic disease that develops over an extended time period through the accumu-

lation of a series of genetic alterations. Once initiated from normal cells, the advance of the disease

to malignancy can be viewed as a Darwinian, multistep evolutionary process at the cellular level,

characterized by random genetic variations and natural selection imposed by the microenvironment

[1–6]. While the majority of genetic alterations confer no specific growth advantage, tumor cells that

acquire changes in genes and pathways that control key cellular processes can overwhelm less vigorous

cell populations within a tumor mass, resulting in a series of clonal expansions leading to the invasion

of surrounding tissues and metastasis to distant organs (Figure S1). Delineating the entire dynamic

process, identifying pivotal molecular events that drive stepwise disease progression, and placing iden-

tified changes in a cancer development roadmap would significantly advance our understanding of

tumor biology and lay a foundation for the development of improved cancer diagnostics, prognostics

and targeted therapeutics.

The concept of cancer evolution was posited in the 1970s [1], and numerous studies have since been

conducted that significantly expanded our understanding of the concept (see [7] for an excellent review).

However, beyond conceptual models [8,9], for most cancers there is currently no established progression

model derived from human tumor tissue data that describes the dynamic disease process. Traditionally,

system dynamics is approached through time-course studies achieved by repeated sampling of the same

cohort of subjects across an entire biological process. However, due to the need for immediate treatment

upon diagnosis, it is not feasible to collect time-series data to study human cancer progression, and

we have to rely on profile data obtained from excised tissue samples. Constrained by this sampling

limitation, previous studies have focused on inferring disease progression through the derivation of

phylogenetic trees. These are achieved by comparing DNA mutation or copy number variation (CNV)

profiles from a small number of evolutionary-related tumor samples (e.g., those collected either from

the same patient before and after surgery or from different regions of the same tumor) [7,10,11]. While

phylogenetic analysis experimentally verified cancer evolution theory, constructed models reflect only

the evolutionary histories of individual tumors at the time of sampling, and cannot be generalized to

other patients since tumors even of the same phenotype can have a completely different mutational

and CNV profiles [12]. A related line of research is oncogenetic modeling, which aims to estimate

the statistical dependencies among genetic alterations [13, 14]. By assuming that each tumor is an

independent realization of the same stochastic evolutionary process, the analysis can be applied to

cross-sectional data collected from different patients. However, constructed models represent only a

possible occurrence order of a small set of genetic events (usually the most abundant events, e.g., a

sequential accumulation of APC → KRAS → TP53 gene mutations in colorectal carcinogenesis [15]).

They cannot reveal the dynamic process of disease progression and be used to detect new cancer genes

[7]. As with phylogenetic analysis, oncogenetic tree analysis can only be applied to gene mutation and

CNV data [14]. While both phylogenetic analysis and oncogenetic modeling are sometimes collectively

termed as progression modeling in the cancer literature [7], they were not designed to construct models

that describe disease dynamics.

With the rapid development of molecular profiling techniques and the establishment of major

international cancer genome consortia [12, 16, 17], an impressive catalog of molecular profile data

obtained from excised tumor tissue samples is accumulating. Then, we ask the following question: can
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we construct a cancer progression model by using static sample data, instead of using time-course data?

Static samples each provide a snapshot of the disease process. If the number of samples is sufficiently

large, the genetic footprints of individual samples populate progression trajectories, enabling us to

recover the dynamic disease process from static samples using a computational approach. This idea

was first proposed in [18, 19], however, early work did not consider the problem of feature selection,

and could not extract branching lineages [20]. Several attempts have been made to address the two

aforementioned issues [20,21], but constrained by sample number and algorithm limitations, prior work

did not demonstrate the feasibility of using static samples to construct cancer progression models.

In this paper, we present a comprehensive computational pipeline for the derivation of cancer pro-

gression models and the identification of pivotal driver gene mutations. To demonstrate the utility of

the developed pipeline, we applied it to the analysis of 27 independent breast cancer datasets com-

prised of > 9, 000 breast tumor and normal tissue samples. Our analysis revealed a linear, branching

model with two distinct trajectories for malignant progression. To demonstrate the validity of the

developed model, we proposed a comprehensive validation plan and conducted a large-scale study that

provided support for the proposed model. To demonstrate the utility of the constructed model, we

also developed a new method to identify putative cancer driver genetic mutations within the cancer-

progression framework. This study demonstrates the feasibility of using static samples to construct

cancer progression models, and provides a technical foundation for the construction of high-resolution

cancer progression models by integration of all available molecular and genetic data.

Materials and Methods
Figure 1 provides an overview of the presented stepwise study. It consists of three major components:

(1) methodology development and cancer progression model construction, (2) model validation, and

(3) detection of cancer driver gene mutations.

Datasets

Molecular profile data from 27 studies was assembled into a database comprised of 8, 996 breast tumor

tissues and 285 normal breast tissues (Table S1). The progression modeling analysis was primarily

performed on the METABRIC [17] and TCGA RNA-seq [12] datasets, which are the two largest single

breast cancer datasets collected to date, containing 2, 133 and 1, 176 tumor samples, respectively. The

additional 25 datasets contained a various number of tumor samples, and were used mainly for model

validation. The 27 datasets include almost all breast tumor and normal tissue profile data assembled

over the past 15 years. A mutation data analysis was performed on the TCGA mutation data, which

cataloged 54, 013 non-silent mutations in 13, 870 genes in 958 breast tumor samples.

Comprehensive Bioinformatics Pipeline for Cancer Progression Modeling

We developed a comprehensive bioinformatics pipeline, referred to as CancerMapp, for cancer pro-

gression modeling using static tumor sample data (Figure 2). In line with cancer evolution theory, a

cancer progression trajectory can be mathematically described as a tree-like structure with branching

lineages hidden in a high-dimensional genomics space, connecting a series of clusters that represent

genetically homogeneous groups (Figure S1). Accordingly, the developed bioinformatics pipeline con-

sists of four major components. First, we performed feature selection to identify disease related genes.

Then, by using the selected genes, we constructed a principal tree to describe the general trend of

data, and performed clustering analysis to identify genetically homogenous groups. Finally, by using
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the constructed principal tree as a backbone, we combined the principal tree and the detected clusters

to construct a cancer progression model and extracted disease progression paths. Several algorithmic

innovations were proposed to identify cancer related genes that preserve data intrinsic structures, and

to extract a self-intersecting principal curve embedded in a high-dimensional space. The bioinformatics

pipeline was extensively tested on both simulation and cancer datasets and compared against existing

approaches.

Feature selection for identifying cancer related genes

Since only a small fraction of genes are likely to be involved in the biological processes of cancer devel-

opment, the first step toward cancer progression modeling is to identify disease related genes. Early

work on cancer progression modeling analysis did not consider the problem of gene selection [18, 19].

Several methods have been proposed to address the issue [20, 21], but our numerical analysis showed

that existing methods did not perform well (Sections S4). In our previous work, we conducted a

proof-of-concept study that used static sample data to study cancer dynamics [22]. Feature selection

was performed within the framework of molecular classification by using patient survival data. How-

ever, survival time is a poor indicator of cancer development, and multiple confounding factors (e.g.,

treatment regimens, patient compliance and even lifestyles) could significantly impact patient survival.

It is difficult, if not impossible, to include unknown confounding factors into a computational model.

Furthermore, the goal of molecular classification is to separate patients into good or bad prognostic

groups, rather than to maintain data intrinsic structure. Patients with distinct molecular characteris-

tics but with similar clinical outcomes can be grouped together, leading to structural distortion in a

constructed progression model.

To overcome these problems, we developed a new feature selection method within the molecular

subtyping framework. Formulated as an unsupervised clustering problem, molecular subtyping strat-

ifies cancer patients into subtypes with distinct clinical outcomes [23, 24]. While clustering analysis

treats each cluster as an independent event, we attempted to build a model to describe the disease

dynamics process. Thus, cancer progression modeling analysis can be considered a natural extension

of molecular subtyping. It is reasonable to assume that the sample distribution supported by the

selected genes is compliant with existing subtyping systems. A major issue associated with using

cancer subtypes as a template to select relevant genes is that for breast cancer there is currently

no definitive method for molecular subtyping, and several large-scale benchmark studies showed that

existing methods achieved only moderate concordance [25–27]. Moreover, most molecular subtyping

studies were performed on gene expression data. We want to develop a computational framework that

enables us to leverage the results of existing work and extend the search over other genetic data. From

the machine-learning perspective, feature selection for unsupervised learning is generally much more

difficult than that for supervised learning due to the lack of labels to guide the selection of relevant

features [28, 29]. We proposed a new method that transforms the problem of feature selection for

unsupervised learning into that for supervised learning by using subtype labels from existing methods.

Due to the use of different gene sets and clustering methods, existing subtyping methods may come

up with different assessments on a patient. To address this issue, we associated each sample with a

probability label vector that reflects decision uncertainty. As such, we can integrate the results of

subtyping methods developed in the past decade into one computational framework. Although in this

study we used only gene expression data for model construction, it can be easily extended to integrate
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other genetic data.

Let {(xn,yn)}Nn=1 be a training dataset, where xn ∈ <J is the nth sample with J features, and

yn ∈ <m is a label vector recording the probabilities of xn belonging to m subtypes (construction of

the label vectors is detailed in Section S2.1.4). Our goal is to find a gene subset so that the label

vectors of unseen samples can be optimally predicted. To this end, we performed feature selection

within the HSIC Lasso framework [30]:

min
w

∥∥∥∥∥Ȳ −
J∑

j=1

wjK̄j

∥∥∥∥∥
F

+ λ‖w‖1, subject to w ≥ 0 , (1)

where ‖ · ‖F is the Frobenius norm, w is a non-negative weight vector where the magnitude of each

element indicates the relevance of the corresponding feature, and λ is a regularization parameter that

controls the sparseness of a solution. K̄j = LKjL and Ȳ = LYL are centered Gram matrices, where

Kj(n,m) = k(xn(j), xm(j)), Y (n,m) = k(yn,ym), k(x, x′) is the Gaussian kernel function, xn(j) is

the jth element of xn, and L = IN − 1/N1N1T
N is a centering matrix with IN being an identity matrix

and 1N being a vector of all ones. Due to the use of the Gaussian kernel function, the nonlinear

dependency between individual features and label vectors can be extracted [30].

The above formulation can be interpreted as regressing matrix Ȳ constructed by using subtype

probability vectors against gene expression data through a linear combination of feature-wise matrices

{K̄j}. By vectorizing Ȳ and {K̄j} in the same order, it can be reformulated as a non-negative Lasso

problem with N2 samples and J features, and there are several well-known algorithms for solving a

Lasso problem [31]. However, for our application, direct optimization is computationally infeasible.

For example, if the METABRIC data is used, it amounts to solving a Lasso problem with ∼ 4 × 106

samples each with ∼ 2.5 × 104 features, requiring ∼ 10 terabytes of memory. This is a typical big

data problem. To address the computational issue, we developed a stochastic-learning based method.

The basic idea is to update a solution iteratively by using a gradient calculated based on a small

set of randomly picked samples, instead of using all samples [32]. Since problem (1) is a constrained

convex optimization problem, in order to use gradient descent techniques, we converted the constrained

problem into an unconstrained one by setting wj = v2j , 1 ≤ j ≤ J . Note that the new problem is no

longer convex, and gradient descent may find a local minimizer or a saddle point. However, it was

proved that it is quasi-convex for v ≥ 0, and if gradient descent starts from a nonzero initial point, the

solution obtained when the gradient vanishes is a global minimizer [33]. The mathematical derivation

is detailed in Section S2.1.2.

The proposed method has two parameters, the regularization parameter and the learning rate of

stochastic learning. We employed the ten-fold cross validation method to estimate the regularization

parameter. It has been proved that the asymptotic convergence rate of stochastic learning is indepen-

dent of the sample size [34]. Therefore, the learning rate can readily be estimated by using a small

subset of data. See Section S2.1.4 for a detailed discussion.

Constructing a principal tree to describe dynamic disease process

Once cancer related genes are selected, the next step is to build a mathematical model to formally

describe the tree structure of the cancer progression process. To this end, principal curve fitting

methods were used. Formally, a principal curve is a nonlinear generalization of the first principal

component line that passes through the middle of a data cloud [35] (Figure S4). In the past two

5



decades, a dozen methods have been developed for principal curve fitting [35, 36]. However, existing

methods are generally limited to learn a curve that is embedded in a low-dimensional space and does

not intersect itself [35, 36], which is quite restrictive for our application. We proposed a new graphic

model-based method to learn a tree structure from data that addresses some limitations of prior work.

Let {x1, · · · ,xN} be a sample dataset and xn ∈ <D be the nth sample with D features, and

assume that the tree structure to be learned lies in a latent space Z ⊂ <d with d � D. We used an

undirected graph G = (V , E) to represent the structure, where V = {v1, · · · , vN} is a set of vertices and

E is a set of edges connecting the vertices. We introduced a set of latent variables {z1, · · · , zN} ⊂ Z
to explicitly represent the graph, and associated zn with vertex vn. Our goal is to learn a mapping

function fG : <d → <D that projects data in the latent space back on to the input space so that a

reconstruction error is minimized. Without explicitly specifying a form for fG, it is generally difficult

to learn the structure of a graph. However, for our application, we are only interested in learning a tree

structure and projection points {fG(z1), · · · , fG(zN)}. In this case, a minimum spanning tree (MST)

[37] is a natural choice to describe disease dynamics. For notional simplicity, we denoted fG(zn) as θn,

and solved the following optimization problem:

min
{θ1,··· ,θN},{pij},{wij}

N∑
i=1

N∑
j=1

pij
(
‖xi − θj‖2 + σ log pij

)
, subject to

∑
(vi,vj)∈E

wij‖θi − θj‖2 ≤ ` , (2)

where pij is the probability of assigning sample xi to projection point θj, σ ≥ 0 is a parameter for soft

assignment using the negative entropy regularization [38], and {wij} are constrained to be a feasible

solution of a minimum spanning tree where the cost of an edge is computed as the squared Euclidean

distance between two projection points. The above formulation can be interpreted as fitting to a given

dataset a minimum spanning tree with a length constrained to be less than ` (Figure S6). It can

be proved that problem (2) is a biconvex optimization problem (Section S2.2.2), and thus can be

efficiently solved by alternate convex search [39]. Briefly, we first fixed {wij} and {pij} and found

a solution for {θ1, · · · ,θN} through convex optimization. Then, we fixed {θ1, · · · ,θN} and found a

solution for {wij} by solving a MST problem using Kruskal’s method [40] and solved {pij} analytically.

The two steps were iterated until convergence. To recover the obtained minimum spanning tree and

graph structure, we only need to check the non-zero entries of {wij}. The detailed mathematical

derivation of alternate convex searching and convergence analysis are given in Sections S2.2.2 and

S2.2.3.

The proposed method has two parameters σ and ` that control the model complexity of the

learned tree structure. They can be estimated from data automatically by controlling the bias-variance

tradeoff. For the purpose of this study, we employed the elbow method [41] to tune the parameters.

The elbow method was originally developed to estimate the optimal number of clusters for a given

dataset. The basic idea is to examine the percentage of variance explained as a function of the

number of clusters, and choose a number of clusters so that adding another cluster does not yield

much improvement in modeling the data. In our application, we fit a given dataset using a minimum

spanning tree with a bounded length. It can be shown that the data fitting error decreases with respect

to the total length of a tree that reflects model complexity, and at some point the rate of decrease

markedly flattens off as the model begins to fit data noise. Therefore, we can use the elbow method

to estimate parameters σ and ` that control the tree length. One issue in our application is that if the
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two parameters are estimated simultaneously, it leads to a two-dimensional search and it is hard to

determine an elbow in a two-dimensional surface. To address this issue, we performed the search of the

two parameters separately. First, we made a guess of σ and estimated ` by using the elbow method.

The initial guess of σ can be estimated by using the leave-one-out-maximum likelihood criterion. Then,

we fixed ` and estimated σ. To automatically determine the elbow position, we developed a method

that performs a regression analysis that fits two lines to the two arms of an elbow curve and estimates

the optimal parameter as the one that generates a principal curve with a length equal to that at the

intersection of the two lines (see Figure S9). The two-stage estimation procedure worked very well

on a wide variety of simulation data and breast cancer datasets (Figures S7, S9, and S21). We also

found that the performance of our principal tree construction method is largely insensitive to a specific

choice of the parameters, which makes parameter tuning and hence the implementation of our method

easy, even for researchers outside of the machine learning community.

Existing methods for detecting branching structure usually involve some manual manipulations

(Section S4). This is highly undesirable, since for structure learning prior information (e.g., the

existence of branches and the number of branches) is generally unavailable. In contrast, our method

relies on automatic parameter optimization, and once a principal tree is constructed, branches can be

determined trivially. Before our method was applied to breast cancer data, it was intensively tested

on synthetic data (Section S2.5).

Clustering analysis to identify genetically homogenous groups

By using the selected cancer genes, we next performed a clustering analysis to identify groups of

tumor samples with homogenous genetic profiles. For the purpose of this study, the K-means method

[42] was used. The optimal number of clusters was estimated by using gap statistic [43]. It is well

known that K-means may return a local optimal solution. To identify robust and stable clusters,

the technique of resampling-based consensus clustering [44] was used, where K-means clustering was

repeated 1, 000 times and in each time 80% samples were drawn randomly without replacement from

the entire dataset. The results of the 1, 000 runs were then aggregated into a consensus matrix that

gave a visual representation of the frequency of two samples being grouped into the same cluster. To

further assess the clustering robustness, the silhouette width of each sample was calculated, which is

defined as the difference between its average similarity with samples in the same cluster and the largest

average similarity with samples in different clusters. A cluster with an average silhouette width larger

than 0 is generally considered stable.

Building a cancer progression model

Finally, by using the learned tree structure as a backbone, we combined the clustering and principal

curve results to build a progression model and extract disease progression paths. Specifically, we

represented a progression model as an undirected graph, where the vertices were the centroids of the

clusters identified in the cluster analysis and they were connected based on the progression trend

inferred from the principal curve. Let P = {θ1, · · · ,θN} be the constructed principal curve. First,

we projected the tumor samples {x1, · · · ,xN} back on to the principal curve. Since P contains only

a finite number of data points, multiple tumor samples can be projected onto the same point, making

it difficult to determine the pseudo-time order of these samples for downstream analysis. To resolve

the issue, we augmented the set P by interpolation and extrapolation. Specifically, if a point to which

multiple samples were mapped is a leaf vertex, we extended the principal curve by using polynomial
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curve fitting, and if a point was an inner point of the principal curve, we locally interpolated the

curve and re-projected the samples onto an affine line determined by the inner point and its nearest

point on the curve. After all the samples were projected onto the principal curve, the progression

paths were extracted from the curve by finding the shortest path from a designated root vertex to

all the leaf vertices of the principal curve. In this study, we used the projection of the mean of the

normal samples as the root vertex to represent the origin of cancer progression. By following the

same procedure, the centroids of the clusters were mapped onto the principal curve, and an undirected

graph was constructed. Two projected centroids were connected if there are no other centroids between

them along a progression path, and the edge was weighted by the curve distance of the two centroids

measured along the progression path.

Method for Identifying Gene Mutations Associated with Cancer Progression

The development of a cancer progression model can inform a range of research goals (see Section S10

for a detailed discussion). As an example of model utility, we performed a cancer genome analysis,

focusing primarily on the detection of cancer driver gene mutations. Once a cancer progression model

was constructed, we projected the tumor samples back onto the identified progression paths. Here,

the projection of a sample is defined as a point on a progression path that is the closest to the sample

(see Figure S4). By using the normal samples as the baseline, the static samples were ordered along

a progression path according to the extent to which the tumors progress towards malignancy, and the

ordered samples can be viewed as pseudo-time series data. This provides a unique opportunity to

identify driver gene mutations and put their possible roles in the context of a dynamic disease process,

which is previously attainable in static sampling data analysis.

We developed a new method, referred to as MutationPattern, that combines the information of

mutation abundance and disease progression to detect driver gene mutations and delineate their dy-

namic patterns (Figure 5a). It consists of three major steps. First, tumor samples were mapped on

to a progression model, then the mutation rates of individual genes were estimated as a function of a

progression path, and finally null models were constructed to identify genes that showed a significant

change in mutation incidence along the progression path. The developed method was tested on some

previously described driver genes and passenger genes (Figures S34 and S35).

Estimating mutation rates as a function of a progression path. Suppose that we have N tumor

samples mapped onto a progression path. Let y = [y1, · · · , yN ] ∈ <N
+ be the progression distances of

the tumor samples measured with respect to the centroid of the normal samples, and M ∈ {0, 1}N×J
be a patient-by-gene mutation data matrix, where M(n, j) = 1 if the jth gene in the nth sample

carried a non-silent mutation and 0 otherwise. Without loss of generality, assume that y1 ≤ · · · ≤ yN ,

and the patients in M were organized in the same order as y. We used the non-parametric kernel

regression method [45] to estimate the mutation rate of a gene as a function of a progression path:

Pj(yn) =
N∑
i=1

k(yi, yn|σ)M(i, j)

/
N∑
i=1

k(yi, yn|σ), 1 ≤ n ≤ N, 1 ≤ j ≤ J , (3)

where k(yi, yn|σ) is the Gaussian kernel and σ is the bandwidth that can be estimated through cross

validation (see Section S9.2). By construction, Pj(yn) takes a value between 0 and 1, and can be

interpreted as the probability of a tumor sample at position yn carrying a mutation in the jth gene.
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Computing test statistics. After the mutation rate of a gene was estimated, we next determined

whether it showed a significant change along a progression path. To this end, we compared the

estimated mutation rate with the average mutation rate and used as a test statistic the sum of squared

errors given by

rj =
N∑

n=1

(
Pj(yn)−

N∑
i=1

M(i, j)
/
N

)2

, 1 ≤ j ≤ J. (4)

Constructing null model and determining statistical significance. We next constructed a null

model to assess the statistic significance of an observed test statistic. We first considered a constant

background mutation model, by assuming that if a gene is not involved in cancer progression its

mutations are random events uniformly distributed along a progression path. However, it is known

that cancer progression is accompanied by the accumulation of genetic alterations due to impairment

of DNA repair functions [2–5]. This means that even if a gene is a passenger gene, its mutation rate

can increase slightly along a path. We found that this is indeed the case (see Figures 4d and 5b).

Therefore, a constant background mutation model is not appropriate. One possible way to address

the issue is to build a null model by randomly permuting mutation data matrix M along the column

direction so that the total number of mutations in each position in a progression path is fixed. However,

this amounts to assuming that all genes under the null model have the same mutation rate, which is

clearly inappropriate. By assuming that under the null model a mutation in each nucleotide position

follows a binomial distribution, the probability of a gene carrying a mutation is proportional to its

length [46,47]. Let a = [a1, · · · , aJ ] be the exon lengths of the genes sequenced, and m = [m1, · · · ,mN ]

be the total numbers of mutations in the N tumor samples. Then, the probability of the jth gene

containing at least one mutation in the nth samples under the null model can be estimated as:

P̃j(yn) = 1−

(
1− aj

/ J∑
i=1

ai

)mn

, 1 ≤ j ≤ J, 1 ≤ n ≤ N. (5)

Once we estimated {P̃j(yn)}, a null mutation data matrix M̃ was generated via random sampling,

where M̃(n, j) took a value of 0 or 1 following a Bernoulli distribution specified by P̃j(yn). By using

the same procedure described above, a null statistic can be computed, and the P-value of the jth gene

can be computed as the occurrence frequency of the null statistics being larger than or equal to the

observed test statistic. Finally, after we computed the P-values of all genes, we controlled the false

discover rate (FDR) using the Benjamini-Hochberg procedure [48].

Point Set Registration for Microarray Data Alignment

Our progression modeling analysis performed on the METABRIC and TCGA RNA-seq data revealed a

bifurcating progression process. To investigate whether a similar progression pattern could be derived

from independent datasets, we performed a large-scale validation analysis on additional 25 breast

cancer datasets. Since the 25 datasets were generated by different studies using a variety of gene

expression profiling techniques, it is necessary perform data alignment in order to conduct biologically

meaningful comparisons.

We used the iterative closest point algorithm for point set registration [49] to align two datasets.

Let A = {x1, · · · ,xN} be the METABRIC dataset that was used as a discovery (or reference) dataset

and was kept fixed, and B = {y1, · · · ,yM} be a validation (or source) dataset to be aligned against
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the reference. Our goal is to find a spatial transformation to be applied to the source dataset so that

a certain cost function is minimized. For the purpose of this study, we defined the cost function as the

sum of the least square difference between each data point in B after alignment and its closest point

found in A. In order to maintain the geometric structure of the source dataset, we only considered rigid

transformation that consists of only translation and rotation. In this study, the molecular subtype

information of each tumor sample was also available. It is reasonable to assume that the samples of the

same subtype in the two datasets should be aligned as close as possible. We thus limited the searching

space of a transformation operation by searching for the closest point of ym only in the samples in

A with the same subtype as ym. This significantly reduced computational complexity and effectively

alleviated the local minimum issue. The modified iterative closest point algorithm was formulated as

a least-square optimization problem:

min
{R,t}

M∑
m=1

‖T (ym|R, t)− fA (T (ym))‖2 , (6)

where T (ym|R, t) = Rym + t is a transformation operator specified by rotation matrix R and transla-

tion vector t, and fA(T (ym)) is a function that finds the closest point of T (ym) in the reference dataset

A that has the same subtype label as ym. Note that the closest points of T (ym) in A is unknown

before learning. To address the issue, an iterative process was carried out. Specifically, for each sample

ym in B, we first found the closest point in A with the same subtype as ym, and then estimated the

combination of rotation and translation by minimizing the squared error cost function of (6) through

singular value decomposition. Once we obtained a transformation operator, we transformed the source

points and re-estimated their closest points. The above two steps were iterated until convergence. A

more detailed discussion of the algorithm is given in Section S7.2.1.

Statistical Methods and Code Availability

The statistical methods used and developed in this study, including survival data analysis, enrichment

analysis, Spearman’s test for non-uniformly sampled data, are presented in Section S5. An open-

source software package including all the methods used for cancer progression modeling and mutation

pattern analysis was developed and is available at http://www.acsu.buffalo.edu/~yijunsun/lab/

cancer_progression_modeling.html.

Results
Breast Cancer Progression Modeling

We applied the developed bioinformatics pipeline to the METABRIC data [17] to construct a progres-

sion model of breast cancer. The dataset contains the expression profiles of 25, 160 genes obtained

from 1, 989 surgically excised primary breast tumor samples. Since only a small fraction of genes

are likely to be involved in the biological processes of cancer development, we first performed feature

selection by using the method described in Methods that identified 359 disease related genes (see

Section S3.2 for detailed experimental procedures and parameter estimation and Table S2 for the

identified genes). To obtain a general overview of data distribution supported by the selected features,

we then performed a data visualization analysis using principal component analysis [45]. The dataset

also contains 144 normal breast tissue samples, which we used as the baseline to determine the origin

of cancer progression. By projecting each sample onto a three-dimensional space spanned by the top
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three leading principal components, some small structures (i.e., clusters and small branches) may not

be visible, but we can clearly see that the tumor samples form a linear, bifurcating progression path,

starting from the normal tissue samples and diverging initially to either luminal A or basal subtypes.

The linear trajectory through luminal A continues to luminal B and gradually transits to the HER2+

subtype (Figures 3a and S10). The two trajectory termini (i.e., HER2+ and basal) represent the

most aggressive breast tumor subtypes [23,24].

To formally describe the disease progression process, we applied the proposed progression modeling

approach to the selected genes. First, we applied the K-means method [42] to the expression measures

of the selected genes to detect genetically homogeneous groups. By using gap statistic [43], the

number of clusters was estimated to be ten (Figure 3b). To promote a robust clustering assignment,

a resampling based consensus clustering analysis [44] was performed. From the generated consensus

matrix that measures the probability of a pair of samples being grouped into the same cluster (Figure

3c), we can clearly identify ten blocks along the anti-diagonal line. The robustness of clustering

assignment was further confirmed by a silhouette width analysis that classified 1, 652 out of 1, 989

(83%) samples with a positive silhouette width (Figure 3d). Next, we used a new principal tree

method described in Methods to formally describe the cancer progression process. The optimal

regularization parameter and kernel width of the method were estimated by using the elbow method

[41] (Figure S9). Finally, by using the constructed principal tree as a backbone, we combined the

clustering and principal tree results to build a progression model of breast cancer presented in Figure

3e. Each node in the figure represents an identified cluster and the node size is proportional to

the number of samples in the corresponding cluster. Two connected nodes indicate a possible inter-

relationship, and the length of an edge connecting two nodes is proportional to the distance of the

curve connecting the centers of the two nodes. The pie chart of each node depicts the percentage of

the samples in the node belonging to one of the five PAM50 subtypes [50]. The overall structure of the

constructed model is consistent with the data visualization result (Figures 3a and S10), suggesting

that the model faithfully reflects the data distribution.

To help visualization and put the result into the context by referral to previous classification

systems, we added the PAM50 subtype labels to the model. However, as shown by the continued

subdivision of PAM50 subtypes [8, 51, 52], the PAM50 classification system does not represent the

full complexity of breast tumor molecular profiles. Indeed, the consensus matrix clearly showed that

the luminal subtypes can be further refined (Figure 3c). In the constructed progression model,

significant side-branches are evident for both luminal A and luminal B subtypes, and further analysis

of these luminal nodes showed that they had distinct copy number profiles, significantly different

genome instability levels, and distinct clinical outcomes (Figure S12). Notably, starting from node

2, through nodes 7 and 3 and diverging to either node 1 or 9, the proportion of luminal A samples

gradually decreased as luminal B samples increased (Figure 3e), and the genome instability increased

monotonically along with a worsening prognosis (Figure S12). This result suggests that the luminal

subtype is not a genetically homogenous group and can be further refined beyond the current luminal

A/B classification. However, the identified luminal nodes do not form clear-cut clusters and have

significant overlaps, particularly between adjacent nodes (e.g., nodes 2 and 7, nodes 3 and 9. See

Figure 3c, e). Significant overlap was also evident between luminal B and HER2+ (nodes 1 and

5), suggesting that they share a progression relationship. This explains why several recent large-scale
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benchmark studies found that existing subtyping methods could only achieve moderate concordance,

particularly when classifying the luminal and HER2+ subtypes [25–27]. It may also explain why, in

the TCGA breast cancer study [12], half of clinically defined HER2+ tumors were in the HER2+

mRNA group, and another half were predominantly in the luminal mRNA subtype.

A number of conceptual progression models have recently been proposed regarding the origins of

breast cancer subtypes and associated biological mechanisms [8,9]. One model proposes a distinct-path

scenario where each discrete subtype follows a path of initiation and progression independently of the

others. The alternative is a linear evolution model, which proposes that tumors gradually evolve from

normal cells to malignant states through the accumulation of genetic alterations [8]. The third model

describes two distinct pathways to breast cancer malignancy, either directly to basal-like subtype, or

a stepwise path to luminal and HER2+ subtypes [9]. While all three models embrace the notion of

cancer evolution, the first model implies that the subtypes are different diseases, while the alternative

models suggest that subtypes are different stages of the same disease. Clarifying this issue could have a

profound impact, as patient management and research strategies in the two scenarios could be entirely

different. The bifurcation structure revealed in our model supports the third model as a representation

of the breast cancer progression process. We should emphasize that our method is a generic, unbiased

approach that makes no model assumption a priori. If the four major subtypes evolve directly from

normal cells, we should be able to detect four independent paths connecting normal samples with

the four subtypes, but this was clearly not the case. Our result suggests that basal and luminal

subtypes are differentially derived from a normal cell origin, an idea consistent with the notion that

ER+ (estrogen-receptor-positive) and ER- tumors are two fundamentally different biological entities.

The idea that HER2+ phenotypes are derived from luminal tumors may also make biological sense.

Through association of CNA data and putative driver gene expression (data not shown), we found

that the copy numbers of the genes involved in the HER2 signaling pathway are significantly amplified

in HER2+ samples relative to luminal samples, suggesting that the HER2+ phenotype develops from

luminal through gene copy number alterations, and this event is distinct from progression to basal

phenotypes. Our findings support recent studies that suggested that while cancer is a genetically and

clinically heterogeneous disease, molecular subtypes are not hardwired, and genotypes and phenotypes

can shift over time [2], as commonly seen across multiple organisms.

Progression Model Validation

We performed a series of interrogations that provided substantial support for the constructed model,

and showed the utility of such a model for testing and generating hypotheses and providing novel

insights into previous observations from the cancer-evolution perspective. Our modeling analysis

revealed four major progression paths, referred to as N-B (normal to basal), N-H (normal through

luminal A/B to HER2+), N-LB (normal through luminal A to the luminal B terminus), and N-LA

(normal to the luminal A terminus) in the downstream analysis.

Similar progression patterns repeatedly observed in 28 independent datasets

To investigate whether a progression model with a similar topological structure could be derived from

an independent dataset, we performed a computational analysis on the TCGA RNA-Seq breast cancer

dataset [12]. Since the data sources are not entirely compatible (the TCGA study employed a different

gene expression-profiling platform from that used in the METABRIC study), we first mapped the 359

genes selected from the METABRIC data analysis back to the TCGA data, and then performed the
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described clustering and principal curve analyses and progression model construction. A total of 354

genes were also present in the TCGA data. By applying the same analytical protocol, eight robust

clusters were identified (Figure S23). The different number of clusters may be attributed to various

factors, including the different sample sizes or microarray platforms used, but despite these differences,

the overall structure of the progression model constructed using the TCGA data (i.e., the bifurcation

structure and the order of cluster connections) was almost identical to that constructed using the

METABRIC data (Figures 3f and S22). The learned structure also supported a linear bifurcating

progression path, distinctly diverging from a normal tissue origin to either luminal A or basal subtypes.

The linear trajectory through luminal A transitioned to luminal B, and on to the HER2+ subtype.

Side-branch termini were also evident for clusters comprised of predominantly luminal A/B subtypes.

We went on to demonstrate that the same progression pattern was repeatedly observed in additional

25 breast cancer datasets (Table S1). The majority of the validation datasets had small numbers

of samples (ranging from 50 to 300), which precluded the construction of progression models directly

from individual datasets, since the prerequisite of progression modeling by using static data is that

the number of samples are large enough so that progression paths are well populated. Another major

difficulty of model validation using gene expression data generated by different studies is that they are

not always directly comparable, due to various factors including RNA quantity and quality, different

gene expression profiling techniques, and different technical protocols used in data preparation. Thus,

it was necessary to perform data alignment in order to conduct biologically meaningful comparisons.

To this end, we developed a new validation method (see Methods and Section S7.2 for details).

Briefly, we first performed point set registration to align individual datasets against the METABRIC

data that was used as a reference dataset, and then mapped the aligned validation samples onto the

METABRIC progression path to examine whether the sample distribution of the validation data is

consistent with that observed in the METABRIC model. We found that the distribution pattern

was markedly similar in all 27 datasets analyzed (Figures S46-S71). Given the total number and

diversity of samples, and the range of analytical platforms included in the combined datasets, the

above analysis provides strong evidence suggesting that the data pattern presented in Figure 3e, f is

unlikely to be an artifact but universally present in breast cancer.

Mapping of clinical and genetic data back onto progression models

To further validate the constructed models, we mapped clinical and genetic variables onto the con-

structed model to investigate how they correlate with identified progression paths. Examples with

implications for cancer progression that we can test include increasingly poor survival functions, de-

viation of morphological traits of tumor cells from normal cells, and the accumulation of genetic

alterations.

We first performed a survival data analysis to examine the relationship between the clinical out-

comes of the identified subgroups and the modeled disease progression paths to malignancy. Due to

the lack of follow-up data for the TCGA data (the median overall follow-up was 17 months vs 98

months for the METABRIC data, and there were only 93 overall survival events), we only performed

the analysis on the METABRIC model. Kaplan-Meier plots of disease-specific survival for the ten

groups identified from the METABRIC data revealed a clear trend of worsening survival function

along the major trajectories to malignancy through normal to basal (node 10 to node 6), or to luminal

A dead-end (node 2 to node 8), or to luminal B dead-end (node 2 through nodes 7, 3 to node 9), or
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through luminal types to HER2+ (node 2 through nodes 7, 3, 1, 5 to node 4) (Figure 4a). As would

be expected, each cluster, or node, on a linear path generally had a worse survival function than the

preceding cluster.

We next mapped histological tumor grades onto the constructed model. Tumor grade is a measure

of the extent to which tumor cells morphologically deviate from normal cells [53]. If our constructed

model is valid, we would expect low-grade and high-grade tumors to be distributed at early and

late steps of a progression path, respectively. This was investigated using data available from the

METABRIC dataset (the TCGA data did not contain the grade information). Each sample was pro-

jected onto the specific progression path, and then a running sum score of grades was calculated.

Enrichment analysis indeed identified a strong association between increasing grades and progression

paths (Figure S25). Since the evaluation of histological grades particularly the intermediate grade

is rather subjective, a method to derive molecular grades has been developed [54]. Mapping of the

data onto the METABRIC model revealed that molecular grades were also highly correlated with the

four major progression paths (Figure 4b). Statistical significance was determined by Spearman’s

test. Since the tumor samples mapped onto the model are non-uniformly distributed along the pro-

gression paths, an improved Spearman’s test was developed (see Section S5.3). Strong correlation

was observed (N-B: ρ = 0.91, P-value = 5.5 × 10−108; N-H: ρ = 0.82, P-value = 8.7 × 10−282; N-LB:

ρ = 0.89, P-value = 0; N-LA: ρ = 0.65, P-value = 3.9× 10−110). Consistent with the results obtained

on the METABRIC model, the molecular grade index was also found to be highly correlated with the

progression trajectories modeled using the TCGA data (N-B: ρ = 0.74, P-value = 5.9 × 10−36; N-H:

ρ = 0.85, P-value = 5.7 × 10−150; N-LB: ρ = 0.92, P-value = 7.0 × 10−215; N-LA: ρ = 0.74, P-value

= 4.1 × 10−68. Figure S27). These findings support the validity of the progression model in that

statistically significant correlations were identified, but also because it aligns with established grade

associations. The majority of luminal A tumors are reported as low grade, luminal B are typically

graded higher than luminal A, and HER2+ tumors are primarily high-grade [55]. It would be difficult

to interpret this pattern in a discrete disease model. It has been proposed that this pattern can be

explained by a more complex inventory of luminal B phenotypes [8], but seen now in the context

of cancer progression, it could also be explained by a progressive transition from luminal A through

luminal B to the aggressive HER2+.

Finally, we mapped two genetic variables, namely overall mutation rate and genome instability

index (GII), onto the constructed progression models. Here, GII of a sample is defined as the sum

of the magnitude of copy number alterations including amplification and deletion in all genes in the

sample. Cancer evolution theory suggests that cancer development is accompanied by the accumulation

of genetic alterations in somatic cells [2–5]. Among them, mutations and copy number alterations play

a central role in tumorigenesis [56, 57], and genome instability is generally considered an enabling

characteristic of cancer progression [6]. Thus, if the model is valid, we might expect both somatic

mutation rates and GII to be positively correlated with the modeled progression trajectories. Mapping

data from each sample on to the TCGA progression tree revealed that this is indeed the case for both

overall mutation rate (N-B: ρ = 0.42, P-value = 1.2× 10−8; N-H: ρ = 0.59, P-value = 9.8× 10−47; N-

LB: ρ = 0.54, P-value = 4.6×10−36; N-LA: ρ = 0.4, P-value = 3.5×10−13. Figure 4d), and GII index

(N-B: ρ = 0.61, P-value = 3.5× 10−18; N-H: ρ = 0.62, P-value = 7.4× 10−50; N-LB: ρ = 0.89, P-value

= 7.3× 10−170; N-LA: ρ = 0.7, P-value = 6.2× 10−51. Figure S27). Despite the fact that individual
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patients have significantly different mutation incidents, a clear monotonically increasing trend was

also observed for both silent and non-silent mutation rates along all four progression paths (Figures

S28 and S29). Consistent with the results obtained on the TCGA model, GII was also significantly

correlated with progression in the model constructed using METABRIC data (N-B: ρ = 0.64, P-value

= 5.9× 10−36; N-H: ρ = 0.48, P-value = 6.7× 10−70; N-LB: ρ = 0.78, P-value = 6.7× 10−196; N-LA:

ρ = 0.53, P-value= 3.7 × 10−66. Figure 4c). The mutation data analysis was not performed on

the METABRIC data since only 170 genes have mutation information. The significant correlations of

both somatic mutation rate and genome instability with progression models built from two independent

datasets provide strong evidence supporting the validity of the proposed model.

Identifying Gene Mutations Associated with Cancer Progression

Discerning driver gene mutations from copious passenger mutations is a central task of large-scale

cancer studies [12,17,58–60]. By definition [61], driver gene mutations are those that confer a selective

growth advantage to the cells where they reside and cause clonal expansion, while passenger mutations

do not have a direct or indirect impact on the cell survival-to-death ratio and are simply passed on

through disease progression. The mainstay methods used today (e.g., MutSig [47] and MuSic [46])

are prevalence-based methods that work by searching a large number of samples for genes that are

mutated more frequently than random chance [59]. While existing methods somehow embrace the

notion of cancer evolution as they aim to identify driver genes, by lumping tumor samples together,

they can only catalog frequently mutated genes and do not provide information regarding how a gene

mutation promotes cancer progression. Different gene mutations may play specific roles. While some

tumors carrying certain mutations can become dormant, other mutations may be responsible for the

splitting of progression paths. With the development of a cancer progression model, it is now possible

to delineate the dynamic patterns of individual gene mutations and place their possible roles into a

disease progression context.

We applied the developed MutationPattern method to the TCGA mutation data to detect putative

driver genetic mutations. The dataset contains 54, 013 non-silent mutations in 13, 870 genes in 958

breast tumor samples. Each sample harbored an average of 54 mutations, however, the distribution of

the numbers of mutations was highly heterogeneous (Figure S33). Sixteen hyper-mutated samples

that harbored a significantly large number of mutations compared to other samples were removed from

the analysis. Since it is not reliable to estimate the mutation rate of a gene if there are only a few

samples containing mutations in that gene, we restricted analysis to genes that were mutated in > 1%

samples in a given progression path. A total of 51 genes were identified that had a significant change

in their mutation incidence in at least one progression path (FDR < 0.05. Table S3, Figure 5f,

g). Candidates included previously reported cancer driver genes (TP53, CDH1, PIK3CA, GATA3,

MAP3K1, and MAP2K4) and some yet to be characterized (DOCK11, QSER1, and ITSN2). Based

on mutation dynamic patterns, we found that genes could be classified into four categories, each with

potential biological and clinical implications.

Passenger mutation pattern: The mutation pattern of a gene across the progression model is

similar to those generated from its null models. Most genes belong to this category. As an example,

Figure 5b shows the estimated mutation rate of TTN and those derived from its null model along

the N-H progression path. Due to the prevalence of TTN mutations in breast cancer (∼ 20%), it was

nominated as a cancer gene in a number of studies [62–64]. However, our analysis showed that while
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the mutation rate of TTN exhibits an upward trend along a progression path, the observed data had

no difference from those derived from its null model (P-value = 0.57). This suggests that a mutation

in the gene provides no competitive advantage with respect to breast cancer malignancy, and that the

observed high mutation rate of TTN is simply due to the extreme length of the gene [12, 47]. The

mutation patterns of other putative passenger genes [47] that code large proteins (MUC16, RYR1,

DNAH11, USH2A) were also examined, but none of these genes exhibited a distinct mutation pattern

associated with breast cancer progression (Figure S35).

Monotonically increasing mutation pattern: The mutation rate of a gene significantly increases

along one or more progression paths compared with its null model. Most of the 51 progression-

associated genes are in this category (Table S3). Notably, the detected genes on the four paths were

mutually exclusive (P-value< 10−5, the exact test), implying distinct differences in the major biological

processes involved in specific cancer progression paths. TP53 is the only mutated gene identified as

being significantly associated with progression along all four paths (Figure S37, Table S3), a finding

consistent with the pivotal role played by this gene product in DNA repair and genome stability [65,66],

but distinct differences between the two major pathways to malignancy were described by the model.

At the onset of the N-B path, about 35% tumors already contained a mutation in TP53, and the

percentage quickly reaches 80%. In contrast, < 1% of tumors in the N-H path had TP53 mutations

at the onset, and the percentage gradually increases to 90%. Interestingly, there is an inflection point

at the progression distance of 0.6, which corresponds to the bifurcation that leads to the N-H and the

N-LB branches (Figure S37). Associated with the elevation of the mutation rate in TP53 along the

N-H path is a markedly worsening survival function (Figure 4a).

A total of 13 mutated genes were found to be significantly enriched at the luminal A side-branch,

including PIK3CA, GATA3, MAP2K4, CBFB, and CTCF (Figure 5f). The genes that are not

associated with progression beyond the N-LA path may play a role in tumorigenesis or early tumor

establishment, but may not drive tumors to the most malignant phenotypes. The 14 genes detected

to have an upward mutation trend along the N-LB path include TP53, GATA3, RP1, and PTPRD.

GATA3 is an example of a mutated gene that is associated with a luminal phenotype but does not

extend into either basal or HER2+ phenotypes. The 21 genes identified in the N-H path with an

upward mutation trend include TP53, ERBB3, RB1, DOCK11, and QSER1. Notably, except for

TP53, these genes have no mutations (or very few) present prior to the inflection to the HER2+

branch (Figure 5f). This suggests that these genes play a late role in the development of HER2+

tumors, and although mutation rates are low when viewed across all breast cancers, in the context of a

progression model these mutations are strongly associated with a shift to malignancy. Considering that

HER2+ tumors have extremely unfavorable clinical outcomes, our result provides a way to prioritize

experimental evaluation of the functions of the identified cancer driver genes.

Bell-shaped mutation pattern: Cancer evolution theory states that during disease development

while some tumor cell clones carrying certain genetic mutations thrive due to selective genetic ad-

vantages, others become dormant or extinct [2]. If this is the case, we might expect to observe some

bell-shaped mutation patterns where the mutation rate of a gene first increases and then decreases

significantly along a progression path. We did observe such a patterns in our study for a number of

genes. A typical example is CDH1 (Figure 5e and S43). It can be seen that the majority of CDH1

mutations occurred before the intersection between the HER2+ and luminal B branches (the second
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broken line in Figure 5e). If such mutations ceased to be driving events at some point and became

passenger mutations, then the observed rate would at least level off or even increase slightly (as seen

with TTN in Figure 5b), but this is not the case. A bell-shaped pattern indicates that tumors with

CDH1 mutations become dormant or extinct, and do not progress further into either of the lethal

N-LB or N-H paths. The specific mutations may individually, or coordinately, functionally inhibit

progression and thus favor other clones, or are part of a rate-limiting environment that drives further

tumor cell evolution. A similar mutation pattern was also observed on RUNX1, PIK3CA, KIF21B,

MED23, SF3B1, and HLA-DRB1 (Figure S43).

We found that bell-shaped mutation patterns in other genes suggest a driving role in luminal A

(CBFB, MYB, CTCF, MAP2K4) or luminal B tumors (GATA3), but these are lost along the N-H path

(Figure S44). An example of the latter is GATA3, where mutations were monotonically increasing

in early luminal samples and highly enriched in the luminal B side-branch, but only a few GATA3

mutations were located at the beginning of the HER2+ branch (Figure S44). This suggests that the

mutated GATA3 gene is a driver of luminal A/B tumors but may also influence the selective dominance

event that occurs at the inflection of N-LB and N-H progression trajectories.

It was observed that while the overall mutation rate is lowest in luminal A and highest in HER2+

and basal subtypes, the significantly mutated genes are considerably more diverse within luminal A

tumors [12]. Our analysis suggests that luminal A may be an early, intermediate stage in cancer

progression that provides a mutated gene repertoire for subsequent natural selection. After several

rounds of selection, tumors with specific gene mutations may become dormant or extinct. Indeed, as

shown in Figure 5g, the peaks of the bell-shaped mutation patterns mostly occur before entering the

HER2+ branch, explaining why HER2+ has less significantly mutated genes than luminal A, even

though its overall mutation rate is much higher.

High-level mutation pattern: Mutations in a number of well-known putative cancer genes, in-

cluding FOXA1, ERBB2, MLL3, NCOR1 and PTEN, follow another pattern. Interestingly, although

they were mutated more frequently than expected by random chance and thus generally regarded as

cancer driver genes by prevalence-based methods [46, 47], relative to their respective null models, the

mutation rates of these genes did not change significantly along any progression path (Figure 5d and

S45). This suggests that mutations in these genes do not offer any malignant growth advantage. The

observed high mutation levels in these genes indicate that their function may primarily be in cancer

initialization or in core tumor cell maintenance, but do not drive cancer progression.

We should emphasize that the above described analysis can only be performed after a progression

model is constructed. Similar analyses can be performed on other genetic alterations (e.g., copy

number, microRNA, and methylation), and integration of information on gene interactions and patient

genome wide information would reveal more genetic and epigenetic insights into cancer development

at both gene and pathway levels (Section S9.4, Figure S42).

Comparison with Existing Approaches

We performed an extensive experiment comparing the developed CancerMapp pipeline with four ex-

isting approaches, namely SPD [20], PAD [21], DPT [67] and SCMC [36]. While DPT and SCMC

were not designed for cancer progression modeling, SPD and PAD have been applied to small cancer

datasets to construct preliminary models. However, unlike the presented study, the constructed models

were not validated and no further analyses were performed to demonstrate model utilities. Our anal-
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ysis showed that the existing methods are not sufficient to construct a cancer progression model with

branching structures. CancerMapp overcomes many technical limitations of the existing approaches.

Specifically, our method includes feature selection, relies on automatic parameter optimization, is ro-

bust again noise, and works well for high-dimensional data without making any assumptions about

biological processes. Methodological comparison and experimental results are presented in Section

S4.

Discussion
Advancing sequencing and molecular profiling techniques are enabling the cataloging of cancer asso-

ciated genetic events in unprecedented detail, but to date, it has been difficult to put the observed

changes into the context of the dynamic disease process. In order to understand how cancer progresses

to a malignant, life-threatening disease, we require models of disease progression. This is difficult

because we typically can only obtain genetic data from excised tissues. In this study, we developed

a systematic approach that can overcome the static sampling limitation and enable researchers to

leverage the vast tissue archive for the study of disease dynamics. The application of the proposed

method to large-scale breast cancer genomic data identified a bifurcating progression model describing

two distinct pathways to breast cancer malignancy, either directly to the aggressive basal-like subtype

with little deviation, or a stepwise, more indolent path through the luminal subtypes to the HER2+

phenotype. The replication of the detailed data structure in the TCGA dataset, the observation of

the bifurcating structure in additional independent datasets, and the post-construction association

analysis of survival data and other genetic and clinical variables support the validity of the model. To

demonstrate the utility of the constructed model, we performed a mutation data analysis to identify

putative cancer driver genetic mutations within the cancer-progression framework.

As with any biology process, cancer development is inherently dynamic. We should emphasize that

a progression model constructed through a computational study has to be verified experimentally, but

such a model could provide investigators with testable hypotheses and inform a range of research

fields, as demonstrated above and discussed in Section S10. The utility of a progression model will

increase as its resolution is further refined. In this study, we used cancer subtypes as a template to

select cancer related genes, and the proposed strategy outperformed existing methods (Section S4).

However, there is no guarantee that the selected genes would enable us to identify small branches

within each subtype. We are developing a method for selecting relevant features that will enable us

to uncover subtle structures while maintaining a sample distribution that is compliant with existing

subtyping systems. Analyses performed in this study also provided evidence that the incorporation of

the complete range of quantitative molecular data could further increase the model resolution (Section

S9.4.1), and this work provides a technical foundation for performing such analysis. Although here

we focus on breast cancer, the analytical strategy is equally applicable to model other cancers and

other human progressive diseases where the lack of time-series data to study system dynamics is an

unavoidable problem.
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Figure 1: Overview of the presented stepwise study that consists of three major parts.

Figure 2: Overview of the bioinformatics pipeline for cancer progression modeling.

Figure 3: Progression modeling analysis performed on the METABRIC breast cancer data. (a)

Principal component (PC) analysis provided a general view of sample distribution supported by the

selected genes. To aid in visualization, each sample was annotated by its PAM50 subtype label,

and mapped onto a principal tree (black line) in a three-dimensional space. Figure S10 provides

a more clear picture of data distribution. (b-d) Clustering analysis performed to detect genetically

homogenous tumor groups. (b) The optimal number of clusters was estimated to be ten by gap

statistic. (c) Re-sampling based-consensus clustering analysis to identify robust and stable clusters.

The samples in the red box are predominantly luminal A/B tumors. (d) Silhouette width analysis to

assess the robustness of clustering assignment. (e, f) Progression models of breast cancer built from

the METABRIC and TCGA RNA-seq data, respectively. The overall structure of the progression

models constructed using the two independent datasets is almost identical.

Figure 4: Model validation analysis provided support for the validity of the constructed progression

models. (a) Disease-specific survival of ten breast cancer subgroups detected in the METABRIC data.

A clear trend of worsening survival function was identified that was associated with progression along

the four major malignant trajectories. (b-d) Spearman’s rank correlation analysis of molecular grade,

genome instability index, and overall mutation rate along the progression paths. Since only 170 genes

in the METABRIC data have mutation information, mutation data analysis was performed using the

TCGA data (see Figure 3f for the TCGA model).

Figure 5: Pseudo-time series analysis performed on the TCGA mutation data to identify gene mu-

tations associated with cancer progression. Fifty one genes were found to have significant changes

in their mutation incidences along progression paths (FDR < 0.05). (a) Overview of the proposed

MutationPattern method used to delineate the dynamic patterns of individual gene mutations along a

progression path. (b-e) Four distinct mutation patterns were observed. Examples of each are depicted:

(b) TTN, (c) TP53, (d) MLL3, and (e) CDH1. The red line depicts the estimated mutation rate,

and blue lines were generated from null models built by assuming that the corresponding gene plays

no role in cancer development. Each red or blue line in the bar above a figure represents the presence

or absence of a mutation in a sample, respectively. The first and second broken lines in (e) indicate

the locations where the N-H path intersects with the LA terminal and LB terminal, respectively. (f)

Genes showing an upward mutation trend along the N-LA, N-LB, N-H and N-B progression paths.

(g) Mapping of identified progression-associated genes onto the TCGA model. Genes reported at the

end of a path are those with an upward trend along the entire path. Genes with a bell-shaped pattern

are marked at the bell-peak locations. Genes associated with normal samples are those mutated more

frequently than random chance, but do not have significant changes along any progression path.
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Figure 4: Model validation analysis provided support 
for the validity of the constructed progression models. 
(a) Disease-specific survival of ten breast cancer 
subgroups detected in the METABRIC data. A clear 
trend of worsening survival function was identified 
that was associated with progression along the four 
major malignant trajectories. (b-d) Spearman’s rank 
correlation analysis of molecular grade, genome 
instability index, and overall mutation rate along the 
progression paths. Since only 170 genes in the 
METABRIC data have mutation information, mutation 
data analysis was performed using the TCGA data 
(see Figure 3f for the TCGA model).  
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Figure 5: Pseudo-time series analysis performed on the TCGA mutation data to identify gene mutations 
associated with cancer progression. Fifty one genes were found to have significant changes in their 
mutation incidences along progression paths (FDR<0.05). (a) Overview of the proposed MutationPattern 
method used to delineate the dynamic patterns of individual gene mutations along a progression path. (b-
e) Four distinct mutation patterns were observed. Examples of each are depicted: (b) TTN, (c) TP53, (d) 
MLL3, and (e) CDH1. The red line depicts the estimated mutation rate, and blue lines were generated from 
null models built by assuming that the corresponding gene plays no role in cancer development. Each red 
or blue line in the bar above a figure represents the presence or absence of a mutation in a sample, 
respectively. The first and second broken lines in (e) indicate the locations where the N-H path intersects 
with the LA terminal and LB terminal, respectively. (f) Genes showing an upward mutation trend along the 
N-LA, N-LB, N-H and N-B progression paths. (g) Mapping of identified progression-associated genes onto 
the TCGA model. Genes reported at the end of a path are those with an upward trend along the entire 
path. Genes with a bell-shaped pattern are marked at the bell-peak locations. Genes associated with 
normal samples are those mutated more frequently than random chance, but do not have significant 
changes along any progression path. 
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