
“slad” — 2018/7/9 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Original Paper

Sequence analysis

A parallel computational framework for
ultra-large-scale sequence clustering analysis
Wei Zheng1, Qi Mao2, Robert J. Genco3, Jean Wactawski-Wende4, Michael
Buck5, Yunpeng Cai6 and Yijun Sun1,2,∗

1Department of Computer Science and Engineering, 2Department of Microbiology and Immunology, 3Department of Oral Biology,
4Department of Epidemiology and Environmental Health, 5Department of Biochemistry, University at Buffalo, The State University of
New York, Buffalo, USA and 6Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

∗To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on October 19, 2017; revised on June 14, 2018; accepted on July 6, 2018

Abstract

Motivation: The rapid development of sequencing technology has led to an explosive accumulation of
genomic data. Clustering is often the first step to be performed in sequence analysis. However, existing
methods scale poorly with respect to the unprecedented growth of input data size. As high-performance
computing systems are becoming widely accessible, it is highly desired that a clustering method can easily
scale to handle large-scale sequence datasets by leveraging the power of parallel computing.
Results: In this paper, we introduce SLAD (Separation via Landmark-based Active Divisive clustering), a
generic computational framework that can be used to parallelize various de novo operational taxonomic
unit (OTU) picking methods and comes with theoretical guarantees on both accuracy and efficiency. The
proposed framework was implemented on Apache Spark, which allows for easy and efficient utilization
of parallel computing resources. Experiments performed on various datasets demonstrated that SLAD
can significantly speed up a number of popular de novo OTU picking methods and meanwhile maintains
the same level of accuracy. In particular, the experiment on the Earth Microbiome Project dataset (∼2.2B
reads, 437GB) demonstrated the excellent scalability of the proposed method.
Availability and implementation: Open-source software for the proposed method is freely available at
https://www.acsu.buffalo.edu/˜yijunsun/lab/SLAD.html.
Contact: yijunsun@buffalo.edu
Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction
Microbes play an essential role in processes as diverse as human health
and biogeochemical activities critical to life in all environments on earth.
However, due to the inability of traditional techniques to cultivate most
microbes, our understanding of complex microbial communities is still
very limited. The advent of high-throughput sequencing technology allows
researchers to study genetic materials recovered directly from natural
environments and opens a new window to extensively probe the hidden
microbial world. Consequently, metagenomics, where the amplicon
sequencing of 16S rRNA gene serves as a major probing tool, has recently

become an exploding research area and was selected as one of the ten
technical breakthroughs in 2013 by the Science magazine (Editorial, 2013).

In 16S rRNA sequence analysis, the first major step after quality
control is usually to bin sequences into taxonomic or genotypic units,
which forms the basis for performing ecological statistics and comparative
studies (Di Bella et al., 2013; Sun et al., 2010). Existing methods
can be generally classified into taxonomy-dependent approaches, where
sequences are annotated against a reference database, and taxonomy-
independent approaches (Mande et al., 2012), where sequences are
clustered into operational taxonomic units (OTUs) based on pairwise
similarities without using external references (thus also called de novo
OTU picking). Since the main goal of metagenomic studies is to explore
uncharted biospheres where a significant portion of genetic material is

© The Author 20xx. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“slad” — 2018/7/9 — page 2 — #2

2 W. Zheng et al.

contributed by previously unknown taxa, taxonomy-independent analysis
is often the preferred, if not the only, choice.

A dozen of methods have been proposed in the last decade for de
novo OTU picking of 16S rRNA sequences (Li and Godzik, 2006; Edgar,
2010; Sun et al., 2009; Cai and Sun, 2011; Schloss and Handelsman, 2005;
Ye, 2010; Cai et al., 2017). Yet, the computational burden of generating
clusters from massive sequence data remains a serious challenge, and
only a few algorithms are able to handle millions of sequences. Based on
the structure into which generated OTUs are organized, existing methods
can be generally divided into two categories: hierarchical clustering (HC)
and greedy heuristic flat clustering. HC is one of the most widely used
approaches for sequence binning (Sun et al., 2009; Cai and Sun, 2011; Di
Bella et al., 2013). It organizes sequences in a hierarchical tree, enabling
researchers to examine OTUs at various similarity levels that may bear
biological significance. A major drawback of HC is its extremely high
computational complexity stemming mainly from the need of computing
and storing a pairwise distance matrix, making it unsuitable for large-scale
sequence analysis. Various data pre-processing heuristics have recently
been proposed that were proven to be very effective in reducing the
computational complexity of a clustering process (Schloss and Westcott,
2011). Yet, these heuristics do not fundamentally change the nature
that HC is an O(N2) algorithm. As a trade-off between computational
efficiency and accuracy, several heuristic methods including Cd-hit (Li
and Godzik, 2006) and UCLUST (Edgar, 2010) were proposed that employ
greedy flat clustering to reduce the computational complexity associated
with sequence binning. The basic idea is to process input sequences
sequentially, by either assigning each sequence to an existing cluster or
designating it as the center of a new cluster if the distances between the
sequence and the centers of all existing clusters are larger than a pre-
defined threshold. As such, heuristic methods calculate only the distances
between input sequences and cluster centers, and run much faster than
hierarchical clustering, though at the cost of decline of clustering quality
(Chen et al., 2013; Schloss and Westcott, 2011; Sun et al., 2011). However,
the sizes of OTUs generally exhibit a long-tailed distribution (Sun et al.,
2011), meaning that there are a few large OTUs and a large number of
small OTUs, and when processing massive sequence data, the number of
OTUs is non-negligible. Consequently, existing heuristic methods are still
not sufficient to handle extremely large datasets.

As high-performance computing systems are becoming widely
accessible, it is highly desired that a clustering method can easily scale
to handle massive sequence data by leveraging the power of parallel
computing. However, efficient parallelization of sequence clustering is
inherently difficult. For example, for UCLUST and Cd-hit, distance
calculation in each iteration depends on cluster centers generated in
previous iterations; for hierarchical clustering, each merging or dividing
operation relies on the results of all previous merging or dividing
operations. Several attempts, including HPC-CLUST (Matias Rodrigues
and von Mering, 2013), DACE (Jiang et al., 2016) and subsampled open-
reference clustering (Rideout et al., 2014), have been made to speed
up a clustering process by utilizing the power of parallel computing.
However, existing methods do not sufficiently address the computational
issue associated with large-scale sequence analysis. HPC-CLUST takes
a pre-aligned profile as input, which is computationally very expensive
to calculate. For DACE, data partition relies on locality sensitive hashing
(LSH) for approximate nearest neighbor search. While there exist a number
of hash functions designed for various similarity measures (Slaney and
Casey, 2008), it remains an open problem to perform LSH on sequence
alignment distances. Subsampled open-reference clustering first generates
cluster centroids by using randomly sampled sequences and then assigns
remaining sequences to the centroids in parallel. However, it did not
fundamentally address the issue of clustering parallelization, since the

Algorithm 1: SLAD(D, A, B, k)
Input: data D, clustering methodA, OTU picking method B, the

number of division branches k
Output: hierarchical tree Tslad
run Tslad = LADC(D, A, k);
extract leaf nodes of Tslad as {C1, · · · , Ct};
for i = 1 to t do
Ti = B(Ci);
replace the ith leaf node of Tslad with the root node of Ti;

end

SLAD
Sequence Data

Partition

Parallel Sub-clustering

...

...

...

...

Sub-cluster Sub-cluster Sub-clusterSub-cluster

LADC

Fig. 1. Overview of the proposed parallel computational framework for ultra-large-scale
sequence clustering analysis. LADC: landmark-based active divisive clustering.

clustering process performed on sampled sequences remains a single-
thread procedure and becomes the performance bottleneck when the
number of sequences becomes excessively large.

In this paper, we proposed a general-purpose computational framework
referred to as SLAD (Separation via Landmark-based Active Divisive
clustering) that can in principle be used to parallelize any single-thread
de novo OTU picking method. Theoretical analysis was performed
that showed that the proposed method has a linearithmic computational
complexity and can recover the true clustering structure with a high
probability under some mild assumptions. We implemented the proposed
method on Apache Spark, which allows us to easily and fully utilize
parallel computing resources. Experiments performed on various datasets
demonstrated that SLAD can significantly speed up a number of commonly
used de novo OTU picking methods while maintaining the same level
of accuracy. Finally, we conducted a scalability study on the Earth
Microbiome Project (EMP) dataset (Gilbert et al., 2014) (∼2.2B reads,
437GB). To our knowledge, this is the largest de novo OTU picking
analysis ever performed in a distributed computing environment. By using
17 computer processors provided by Amazon Cloud, our method coupled
with UCLUST finished the analysis of the 2.2B sequences in∼17.8 hours.
In contrast, it was estimated that it would take UCLSUT ∼636 days to
finish the analysis on a single computer.

“slad” — 2018/7/9 — page 3 — #3

SLAD for ultra-large-scale sequence clustering analysis 3

Algorithm 2: LADC(D, A, k)
Input: data D, clustering methodA, the number of division

branches k
Output: hierarchical divisive tree Tladc
if termination conditions are satisfied then

return D;
end
s = log2|D|;
q = |D|/k;
choose l0 ∈ [1, |D|] uniformly at random;
L = {l0};
dmin[i] = d(xl0 , xi), ∀i ∈ [1, |D|];
for iter = 1 to s− 1 do

obtain indexes i1, · · · , i|D| by sorting dmin in descending
order;
choose liter ∈ {i1, · · · , iq} uniformly at random;
L = L ∪ {liter};
dmin[i] = min(dmin[i], d(xliter , xi)), ∀i ∈ [1, |D|];

end
S = {xl ∈ D | ∀l ∈ L};
obtain {C̃i}ki=1 by applyingA(S, k);
for xj ∈ D \ S do

find the closest cluster C̃m of xj
m = arg mini=1,···,k

1
|C̃i|

∑
xl∈C̃i

d(xj , xl);

Cm ← Cm ∪ {xj};
end
return {Ci, LADC(Ci, A, k)}ki=1

2 Methods

2.1 Overview

We developed a new computational framework for the parallel de novo
clustering analysis of ultra-large-scale sequence data, a task currently
computationally intractable with conventional methods. The basic idea is
to first partition data into small parts by using an incomplete hierarchical
divisive tree, then process each part by using a user-chosen OTU picking
method, and finally assemble individual clustering results to form the final
output. Fig. 1 presents the flowchart of the proposed method, and the
pseudo-code is given in Algorithm 1.

The development of the method is motivated by the following
observation. Suppose that we have a dataset of N sequences, where N
is on the order of O(109). We partition the data into M parts, and
perform hierarchical clustering on each part using M processors. If
each sub-dataset is of equal size, the overall computational complexity
is O(N2/M2). If M = 100, theoretically, we could achieve 104-
fold speed-up compared to the standard method. The above observation
motivated us to develop a novel divide-and-conquer based approach. By
partitioning data into small parts, we can significantly reduce the total
number of sequence comparisons, and by feeding each sub-cluster into a
computing node, the proposed method can be easily adapted to parallel
computing environments. Our numerical experiments showed that if the
parameters that control the height of a hierarchical divisive tree are properly
set, the new method is able to achieve clustering accuracy comparable to
the standard method but runs much faster even than heuristic methods.

2.2 Landmark-based Active Divisive Clustering

The core component of SLAD is the procedure that partitions data into
small sub-clusters (Fig. 1), which has to meet two requirements. First,
the partition process must be efficient; otherwise, the efficiency gain from

parallelization is amortized. Second, the partition result must be accurate,
since all the downstream operations depend on the top-level partition. We
developed a new method, referred to as landmark-based active divisive
clustering (LADC), that achieves the above two goals simultaneously.
Below, we give a detailed discussion of the proposed method.

The LADC method partitions a sequence dataset recursively into
clusters and represents them as an incomplete hierarchical divisive (HD)
tree. An HD tree is a k-ary tree consisting of multiple layers of nodes
with each node representing a cluster. It can be constructed by recursively
partitioning a node into k children using a clustering method as one moves
down the hierarchy. In a complete tree, each leaf node contains only
one sequence. However, the partition process can stop intermediately
so that each leaf node contains multiple sequences, thus forming an
incomplete HD tree. The standard method for constructing an HD tree
has a computational complexity ofO(N2), and hence is computationally
infeasible to process large sequence datasets. One possible way to address
the issue is to randomly select a small number of sequences and perform
clustering analysis only on the selected sequences in each partition
operation (Krishnamurthy et al., 2012). In this way, the number of pairwise
sequence comparisons can be significantly reduced. One issue associated
with random selection is that samples in small clusters are seldom selected,
and thus it may not be able to recover small clusters. In order to address the
issue, we propose to construct an incomplete HD tree by using the adaptive
landmark selection method (Voevodski et al., 2012). The method was
originally proposed for flat clustering, and to the best of our knowledge, it
has never been used for constructing a data hierarchy.

The proposed method consists of three major steps. The first step is to
select s landmark sequences from a dataset D = {xi}Ni=1. We start by
randomly selecting a sequence xl0 from the dataset that forms a landmark
setS. Then, we compute the pairwise distance between each sequence and
the landmark set, randomly select a sequence from q sequences that are
farthest from the landmark set, and put it into the landmark set. Here, the
distance between a sequence and a landmark set is defined as the minimum
distance between the sequence and a landmark sequence. The selection
procedure is repeated until s landmark sequences are selected. Once we
form a landmark set, the second step is to partition the landmark sequences
into k clusters {C̃i}ki=1. For the purpose of this study, we used spectral
clustering (Von Luxburg, 2007). Other clustering methods including k-
means andk-medoids can also be used. However, one advantage of spectral
clustering is that it is able to identify clusters of any shape, not merely
limited to those with a hyper-sphere. The third step is to assign all non-
landmark sequences {xi : xi ∈ D\S} to one of the k clusters {C̃i}ki=1.
To this end, we compute the average distance between a sequence and the
landmark sequences in each cluster, and assign it to the cluster with the
minimal average distance. Since all the distances used in this step have
already been computed in the first step, this step does not introduce any
extra computational cost. The above three steps are iteratively performed
on each cluster obtained in the previous partition until termination criteria
are satisfied. The pseudo-code of LADC is presented in Algorithm 2.

2.3 Parameters

There are three parameters, namelyk, q and s, that need to be determined in
LADC. For ease of implementation, we set the number of division branches
k to 2. In this way, an HD tree becomes a binary tree. It was suggested
that q is set to be the average size of ground-truth clusters (Voevodski
et al., 2012). However, in our applications, the ground-truth clusters are
generally unknown. A natural choice is to set q = n/k, where k = 2 is
the number of clusters generated in each partition and n is the number of
sequences in a cluster to be partitioned. Another important parameter is
s, the number of landmark sequences selected. By following Voevodski
et al. (2012), we set s to be log2 n. For the problems that we are most

“slad” — 2018/7/9 — page 4 — #4

4 W. Zheng et al.

interested in, the number of sequences is on the order of 107 ∼ 109.
Only∼30 landmark sequences need to be selected. Thus, the selection of
landmark sequences can be performed very efficiently with computational
complexity ofO(N log2N).

We next discuss the termination criteria that we use to control the
height of an HD tree, which is a trade-off between solution accuracy and
computational efficiency. Three termination criteria are used, including
the sub-cluster radius, the sub-cluster size, and the number of sub-clusters.
Among them, the sub-cluster radius is the most important one. In order not
to introduce extra computational costs, we estimate the radius of a node as
the median of the pairwise distances between landmark sequences in the
node. The reasoning is that if the result of spectral clustering performed
on the landmark sequences is a good approximation of that obtained by
spectral clustering performed on all sequences in a node, the estimated
radius should be a good approximation of the radius of the node. Generally
speaking, the probability of falsely separating sequences belonging to the
same species increases as recursive bisection goes deeper. Hence, we can
effectively control clustering accuracy by preventing clusters with small
radiuses from being partitioned. In Section 4.2, we performed a parameter
sensitivity analysis that demonstrated how to estimate a proper sub-cluster
radius in order to achieve a good balance between solution accuracy and
computational efficiency. Besides, we also use two auxiliary termination
parameters, namely, the sub-cluster size and the number of sub-clusters.
These two parameters are highly dependent on the input data size, so it
is difficult to use them to control clustering quality. However, they can be
used to force an early termination in order to balance the time spent on the
top-level partition and sub-clustering phases.

2.4 Implementation

We implemented the proposed method on Apache Spark V2.0.2 by using
the Scala programming language V2.11.8. Apache Spark is a fast and
general engine for large-scale data processing, providing researchers with
an interface for programming entire clusters with implicit data parallelism
and fault-tolerance. It can run on Hadoop, Mesos, standalone, or in the
cloud, and can access diverse data sources including HDFS, Cassandra,
and HBase. Most existing parallel de novo OTU picking methods utilized
message passing interface (MPI) for speed-up in a distributed computing
environment (Matias Rodrigues and von Mering, 2013; Jiang et al.,
2016; Cai et al., 2017). While MPI enables the message communication
between computational nodes via network, it lacks job scheduling and fault
recovery. Since our method can be easily fit into the MapReduce model, the
low-level flexibility offered by MPI becomes less appealing. By using high-
level and portable Apache Spark, our method is scalable, fault-tolerant, and
compatible with different file systems. Apache Spark also supports several
programming languages, including Python, R and Scala. We chose Scala
since Apache Spark focuses on data transformation and mapping concepts,
which are flawlessly supported by functional programming languages
including Scala. Moreover, Scala is a JVM native language and thus is
much more efficient than Python and R in Spark. Another advantage of
using Apache Spark is that it is equipped with a bunch of built-in libraries.
In our implementation, we used Spark MLlib (Meng et al., 2016), which
is a distributed framework built on top of Spark Core and provides a
library of commonly used machine learning algorithms. Due in large part
to the distributed memory-based Spark architecture, the implementations
provided by Spark MLlib run much faster than disk-based counterparts.
Due to space limitation, other implementation details are presented in
Supplementary Data.

3 Theoretical Analysis
In this section, we present an analysis that provides theoretical guarantees
for the proposed method on both accuracy and efficiency. We start by
introducing some notations and definitions used in the analysis.

Definition 1. A hierarchical clustering T on a datasetD is a collection
of non-empty clusters that satisfy the following three constrains: 1) C1 =

D ∈ T , 2) ∀Ci, Cj ∈ T , either Ci ⊂ Cj , Cj ⊂ Ci or Ci ∩ Cj = ∅, and
3) for any cluster C ∈ T , if ∃C′ with C′ ⊂ C, then there exist a set of
disjoint clusters {Ci}ki=1 so that

⋃k
i=1 Ci = C.

Each node in a hierarchical clustering T corresponds to a cluster.
Specifically, the root node contains all the input sequences (constrain
1), any two nodes either have an ancestor-child relationship or have the
same ancestor (constrain 2), and any non-terminal node has k child nodes
(constrain 3). A hierarchy T can be constructed through a serial of k-ary
splits (or partitions) in a top-down fashion. There are at most N/(k − 1)

internal splits, where N is the number of sequences. Let S1, · · · , Sm be
the split of C1, · · · , Cm, respectively, where m ≤ N/(k − 1). Each split
has a parent split except for the root split, and each split has k child splits
except for the leaf splits. We denote the parent split of Si as Sπ(i), where
π(i) is the index of Si’s parent in the hierarchy.

In the proposed method, each internal split Si consists of three
phases: 1) adaptive landmark selection, 2) spectral clustering, and 3)
averaging assignment. Denote as Li, Pi and Vi the possible error events
in the three phases, respectively. Our method fails if any of these error
events occurs in an internal split. It is easy to see that P{failure} ≤
P
{⋃m

i=1 Li ∪ Pi ∪ Vi
}

. Following the work of Krishnamurthy et al.
(2012), the upper bound of the overall failure probability can be
decomposed into the sum of probabilities of the three phases.

Lemma 1. Let B1, B2, · · · , Bt be events in a measurable space. Then
P
{⋃t

i=1Bi
}
≤
∑t
i=1 P {Bi|¬B1, · · · ,¬Bi−1} .

LetBi be an event in topological ordering ({L1, P1, V1}, · · · , {Lm, Pm, Vm}).
By applying the following independence assertions: 1) each adaptive
landmark selection phase is independent of previous error events and
conditioned on the successful recovery of the corresponding parent
clustering, 2) each spectral clustering phase is independent of previous
failure events and conditioned on the success of landmark selection, and
3) each averaging assignment phase is independent of previous failures and
conditioned on the success of landmark selection and spectral clustering,
we have:

(1)P{failure} ≤ P{L1}+ P{P1|¬L1}+ P{V1|¬L1,¬P1}+ · · ·

+ P{Lm|¬L1,¬P1,¬V1, · · · ,¬Lm−1,¬Pm−1,¬Vm−1}

+P{Pm|¬L1,¬P1,¬V1, · · · ,¬Lm−1,¬Pm−1,¬Vm−1, Lm}

+P{Vm|¬L1,¬P1,¬V1, · · · ,¬Lm−1,¬Pm−1,¬Vm−1, Lm, Pm}

=P{L1}+
m∑
i=2

P{Li|¬Pπ(i),¬Vπ(i)}+
m∑
i=1

P{Pi|¬Li}+
m∑
i=1

P{Vi|¬Li,¬Pi}.

After decomposition, we only need to consider the upper bound of the
failure probability of each phase separately in the following analyses.

3.1 Adaptive Landmark Selection Phase

Definition 2. An instance (D, d) satisfies the (1 + α, ε)-property for
the k-median objective function Φ with respect to the target clustering CT

if any clustering C with Φ(C) ≤ (1 + α)Φ∗ is ε-close to CT .

In Definition 2, d is a distance function, D = {xi}Ni=1 is the input
data, and Φ∗ is the optimal value of the objective function Φ. We say that
two clusterings C and C′ are ε-close if the fraction of points on which
they disagree in terms of the optimal matching of these two clusters is at

“slad” — 2018/7/9 — page 5 — #5

SLAD for ultra-large-scale sequence clustering analysis 5

most ε. Let C∗ = {C∗j }kj=1 be the optimal k-median clustering. The jth
sub-cluster and its center point are denoted by C∗j and c∗j , respectively.
We define w(xi) = minkj=1 d(xi, c

∗
j) as the contribution of xi to the

objective function Φ. Hence, Φ∗ =
∑n
i=1 w(xi). We also definew2(xi)

as the distance between xi and the second closest center point among
{c∗j}kj=1. Let us define the critical distance dcrit = αw̄/17ε, where
w̄ = Φ∗/n is the average weight. We say a point xi is good if w(xi) <

dcrit and w2(xi)−w(xi) ≥ 17dcrit; otherwise, xi is bad. In addition,
the set of good points can be partitioned into good sets {Gj}kj=1 so that
Gj ⊂ C∗j . We can consider Gj as the core of cluster C∗j .

According to Voevodski et al. (2012) and Balcan et al. (2009), we have
the following lemma:

Lemma 2. Assume the optimal k-median clustering C∗ satisfies the
(1 + α, ε) property with respect to the target clustering CT , and each
cluster in CT has a size of at least 2εn, then less than (ε − ε∗)n points
on which C∗ and CT agree have w2(x) − w(x) < αw̄/ε, and at most
17εn/α points have w(x) ≥ αw̄/17ε.

In Lemma 2, n is the number of input points and ε∗ is the exact
distance between C∗ and CT . Thus, ε∗ < ε. By the definition of bad
point, the lemma bounds the number of bad points. We have at most
ε∗n+ (ε− ε∗)n+ 17εn/α = (1 + 17/α)εn = b bad points.

Definition 3. A landmark set S satisfies the landmark spread property
if for any Gi there exists a landmark in S with a distance smaller than
2dcrit to a certain point in Gi.

Lemma 3. Given the number of clusters k and some δ > 0, let s =

4k + 16 ln(1/δ) and q = 2b. Assume that an instance (D, d) satisfies
the (1 + α, ε)-property for the k-median objective function and each
cluster in the target clustering CT has a size of at least (4 + 51/α)εn.
With probability at least 1− δ, the landmark set returned in Algorithm 2
satisfies the landmark spread property.

Proof. By Lemma 2, C∗ is ε-close to CT , and there are at most b bad
points. Since each cluster in the target clustering has at least (4+51/α)εn

points, we have |Gi|≥ (4 + 51/α)εn− εn− b = (2 + 34/α)εn = 2b,
which means each good set has at least 2b good points.

We define a random variable Ii as an indicator of choosing a good
point at the ith iteration so as to bound the probability of selecting less
than k good points. A good point is selected at the ith iteration if Ii = 1;
otherwise, Ii = 0. Random variables {Ii} are independent and identically
distributed. For s iterations, the number of selected good points is Ī =∑s
i=1 Ii. Since there are at most b bad points, the probability of uniformly

selecting a good point from 2b points is P{Ii} ≥ 1/2. The expectation of
selecting a good point is µ = E[Ī] =

∑s
i=1 E[Ii] =

∑s
i=1(0×P{Ii =

0} + P{Ii = 1}) ≥ s/2. By the Chernoff bound, we have P{Ī <

(1−δ)µ} ≤ e−µδ2/2, where 0 < δ < 1. If s = 4k+16 ln(1/δ) > 2k,

we have P{Ī < k} ≤ e−
s
4
(1− 2k

s
)2 ≤ e−(4k+16 ln(1/δ))/16 ≤ δ.

Therefore, the probability of selecting less than k good points is smaller
than δ after s iterations.

Once we have selected k good points, we need to prove that they
satisfy the landmark spread property. There are two possible cases. In case
1, good points are selected from distinct good sets. The landmark spread
property trivially holds. In case 2, at least two good points are selected
from the same good set. Suppose that xi and xj are two good points from
the same good set. LetS be the landmark set at the moment and d(x,S) =

minl∈S d(x, l) be the distance between x and point set S. Without loss
of generality, we assume that xj is selected after xi. According to the
triangle inequality implied by the metric space assumption, d(xj ,S) ≤
d(xi, xj) < 2dcrit. Moreover, xj is chosen from the farthest q = 2b

points. Therefore, when xj is chosen, at least n− 2b+ 1 points x satisfy

d(x,S) ≤ d(xj ,S) < 2dcrit. Hence, there must exist a landmark with
distance closer than 2dcrit to a certain point in each good set. �

3.2 Spectral Clustering Phase

Lemma 4. If a landmark set S satisfies the landmark spread property
over {Gj}kj=1, d(xl, xl′) is either larger than 12dcrit or smaller than
6dcrit for any xl ∈ S and xl′ ∈ S.

Proof. Let xl be a landmark that satisfies d(xl, xi) < 2dcrit for a good
point xi ∈ Gj . For any xp ∈ Gj , we have d(xp, xl) ≤ d(xp, xi) +

d(xi, xl) < 4dcrit. For any xp′ ∈ Gj′ , j′ 6= j, we have d(xp′ , xl) ≥
d(xp′ , xi) − d(xi, xl) > 16dcrit − 2dcrit = 14dcrit. In case 1,
we assume d(xl, xi) < 2dcrit, d(xl′ , xi′) < 2dcrit, and i = i′ for
landmarks xl ∈ S, xl′ ∈ S and good points xi ∈ Gi and xi′ ∈ Gi′ .
Then, we have d(xl, xl′) ≤ d(xl, xi)+d(xi, xl′) < 2dcrit+4dcrit =

6dcrit. In case 2, we assume d(xl, xi) < 2dcrit, d(xl′ , xi′) < 2dcrit,
and i 6= i′ for landmarks xl ∈ S, xl′ ∈ S and good points xi ∈ Gi
and xi′ ∈ Gi′ . Then, we have d(xl, xl′) ≥ d(xl, xi′)− d(xi′ , xl′) >

14dcrit − 2dcrit = 12dcrit. �

Lemma 5. Spectral clustering can obtain a clustering over a landmark
set, where landmarks whose nearest good points belonging to the same
good set are grouped to the same cluster, and landmarks whose nearest
good points belonging to different good sets are assigned to different
clusters.

Proof. By Lemma 3, given a landmark set S = {xli}
s
i=1, each xli

must be closer than 2dcrit to a certain point in a good set Gϕ(li), where
ϕ is a mapping from li to the index of its closest good set. Let {Si}ki=1 be
the partition result of landmark set S. Lemma 4 states that the distance is
smaller than 6dcrit if two landmarks are assigned to the same cluster, and
larger than 12dcrit otherwise. Let K be a similarity function. Spectral
clustering solves the following optimization problem to obtain the optimal
clustering: min{Si}ki=1

∑k
i=1

1
|Si|

∑
xlp∈Si,xlq∈S\Si

K(xlp , xlq).

The intuition is to separate points in different groups according to their
similarities: the similarity of two points in the same group is high, while
the similarity of two points in different groups is low. This is obvious for
the landmark set S according to Lemma 4. Hence, the points located far
away from each other (> 12dcrit) are assigned to different clusters. For
k = 2, the optimization problem is exactly the unnormalized spectral
clustering problem, and for k > 2, k-means method is usually applied on
the projected space (Von Luxburg, 2007). �

3.3 Averaging Assignment Phase

We define the average distance between point x and point set C =

{x1, · · · , xm} as d(x, C) = 1
m

∑m
i=1 d(x, xi). The following lemma

states that any point that is not in the good set but satisfiesw2(x)−w(x) ≥
17dcrit can be assigned correctly in the averaging assignment phase.

Lemma 6. Let {Si, · · · ,Sk} be the partition result returned by spectral
clustering on the selected landmark set S. For any good point x in C∗i , we
have d(x,Si) < d(x,Si′) if i′ 6= i and Si ⊆ Ci.

Proof. Let ci be the center of cluster Ci. By the definition of good point,
we have ci ∈ Gi. The average distance between ci and landmark setSi =

{xi1 , · · · , xim} is d(ci,Si) < 5dcrit. To see this, let x be a good point
that is grouped by spectral clustering into a cluster containingGi. Hence,
d(x, xij) < 4dcrit based on the proof of Lemma 4, and d(x, ci) =

w(x) < dcrit. Thus, we have d(ci, xij) ≤ d(x, xij) + d(x, ci) <

5dcrit for xij ∈ Sj . It follows that d(ci,Si) = 1
m

∑m
j=1 d(ci, xij) <

“slad” — 2018/7/9 — page 6 — #6

6 W. Zheng et al.

Table 1. Averaged running time (in second) of four methods performed on
the plaque and Greengenes (GG) datasets with and without SLAD. For the
Greengenes dataset, only UCLUST finished the analysis in 72-hour wall-time
limit. When a method was used with SLAD, the total running time is the sum
of the time spent on top-level partition and sub-clustering. The experiment was
performed on a 4×2.4GHz Intel Xeon E5645 processor machine.

Data Method w/o SLAD
with SLAD

Speed-uptop-level sub-
partition clustering

Plaque

UCLUST 507 160 130 1.8
Cd-hit 4344 160 691 5.1

AbundantOTU 41391 160 4622 8.7
ESPRIT-Tree 12067 160 5017 2.3

GG UCLUST 17247 1325 2101 5.0

5dcrit. By triangle inequality, we have the following results:

d(x,Si) =
1

|Si|

|Si|∑
j=1

d(x, xij) ≤
1

|Si|

|Si|∑
j=1

(
d(x, ci) + d(ci, xij)

)

< w(x) +
1

|Si|

|Si|∑
j=1

d(ci, xij) = w(x) + 5dcrit ,

d(x,Si′) =
1

|Si′ |

|Si|∑
j=1

d(x, xi′j) ≥
1

|Si′ |

|Si′ |∑
j=1

(
d(x, ci′) + d(ci′ , xi′j)

)

> w2(x)−
1

|Si′ |

|Si′ |∑
j=1

d(ci′ , xi′j) > w(x) + 12dcrit .

Thus, d(x,Si) < w(x) + 5dcrit < w(x) + 12dcrit < d(x,Si′). �

After the spectral clustering and averaging assignment phases, all good
points are correctly clustered. Since there are at most b bad points, the
distance between clustering C, which is generated by Algorithm 2, and
C∗ is at mostO(ε/α). Thus, C is at leastO(ε/α+ ε)-close to CT .

3.4 Main Theoretical Results

To sum up, we present our final main theoretical results.

Theorem 1. Let D be a dataset with a hierarchy T ∗. Assume that an
instance (D, d) in some metric space satisfies the (1 +α, ε)-property for
the k-median objective function and each split Si in T ∗ has a size of at
least (4 + 51/α)ε|Ci|. The following results hold for Algorithm 2: 1) A
hierarchy ε-close to the true hierarchy can be obtained with probability
1 − O(1), if the number of landmarks s ≥ 4k + 16 ln N

k−1
, and 2) the

total number of distance calculations isO(sN logN).

Proof. By Lemmas 3, 5, 6, and inequality (1), we have P{failure} ≤
N
k−1

δ. By Lemma 3, s = 4k+ 16 ln(1/δ). In order to achieveO(1), let

δ = k−1
N

. It follows that s ≥ 4k+ 16 ln N
k−1

. In each split Si, we need
to calculate the distances to all selected landmarks for each point in Ci,
and the splitting tree has logN levels. Thus, the total number of distance
calculations involved isO(Ns logN). �

4 Results
We performed a large-scale experiment to demonstrate that the proposed
framework can significantly speed up various commonly used methods for
de novo OTU picking and meanwhile maintain the same level of accuracy.

0.1 0.15 0.2 0.25

Termination Radius

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
S

u
b
-c

lu
s
te

rs

0.1 0.15 0.2 0.25

Termination Radius

0.95

0.96

0.97

0.98

0.99

1

1.01

N
M

I
S

c
o

re

(a) plaque data

0.1 0.15 0.2 0.25

Termination Radius

0

50

100

150

N
u

m
b

e
r

o
f

S
u

b
-c

lu
s
te

rs

0.1 0.15 0.2 0.25

Termination Radius

0.95

0.96

0.97

0.98

0.99

1

1.01

N
M

I
S

c
o

re

(b) Greengenes data

0.1 0.15 0.2 0.25

Termination Radius

0

5

10

15

20

25

N
u
m

b
e
r

o
f
S

u
b
-c

lu
s
te

rs

0.1 0.15 0.2 0.25

Termination Radius

0.95

0.96

0.97

0.98

0.99

1

1.01

N
M

I
S

c
o

re

(c) EMP-755

Fig. 2. Parameter sensitivity analysis performed on (a) plaque, (b) Greengenes, and (c)
EMP-755 datasets. The first and second columns report the numbers of sub-clusters and
NMI scores obtained after the top-level partition by using different termination radiuses
and the subsequent mock sub-clustering, respectively. The radius thresholds for the three
datasets were estimated to be 0.17, 0.19, and 0.20, respectively.

4.1 Datasets

When evaluating an OTU picking method for sequence analysis, clustering
accuracy and computational efficiency are two major considerations.
Accordingly, four datasets were used in the experiment. The first dataset
was generated from oral plaque samples that cover the V3-V4 hyper-
variable regions of 16S rRNA gene. To generate species-level taxonomic
labels for the dataset, we performed BLAST search against the HOMD
database (Chen et al., 2010) and annotated each sequence by using a
stringent criterion: the identity percentage ≥97% and the length of the
aligned region ≥97% of the total length. A total of 410,600 sequences
were confidently annotated at the species level. The second dataset is
the Greengenes database (McDonald et al., 2012), which is one of the
most commonly used databases for 16S rRNA gene sequence annotation
and contains 1,269,986 taxonomically labeled sequences spanning over
the V1-V9 hyper-variable regions. The third dataset, which contains
66,520,485 sequences of the V4 region, comes from a study of a water
purification system (Haig et al., 2014). Since it is one of the studies
performed in the Earth Microbiome Project (EMP) (Gilbert et al., 2014)
(study #755), we refer to it as the EMP-755 dataset. The fourth dataset
is the whole EMP dataset, consisting of 27,751 samples from 97 studies.
The dataset has∼2.2 billion V4 16S rRNA sequences and is probably the
largest publicly available 16S rRNA sequence dataset.

4.2 Parameter Sensitivity Analysis

In the proposed method, the termination of top-level partition plays
a critical role in determining the trade-off between clustering quality

“slad” — 2018/7/9 — page 7 — #7

SLAD for ultra-large-scale sequence clustering analysis 7

and computational efficiency. We proposed to use the sub-cluster radius
as a termination criterion. Here, we performed a parameter sensitivity
analysis to demonstrate that the proposed method suffers a minimal loss
in clustering accuracy when the termination parameter is properly set.
Three datasets were used, namely, plaque (V3-V4), Greengenes (V1-V9)
and EMP-755 (V4). The first two datasets have already been annotated.
Since it is computationally expensive to annotate the entire EMP-755
dataset, we randomly sampled 1M sequences and annotated the sequences
by searching against the Greengenes database using USEARCH (Edgar,
2010). Given an annotated dataset, we randomly extracted 80% sequences
without replacement, applied LADC to the extracted sequences by using
different termination radiuses ranging from 0.11 to 0.26, and repeated the
above process 10 times. Since LADC can be used with various de novo
OTU picking method, it is likely that a termination threshold is dependent
on the clustering method used in the subsequent sub-clustering phase. In
order to derive a generally applicable termination threshold and assess the
performance loss incurred from using LADC, we assumed that the sub-
clustering phase is perfect and mocked it so that as long as sequences with
the same taxonomic label are not falsely partitioned into different clusters
at the top level, they can always be correctly grouped at the sub-clustering
phase. After the top-level partition and mock sub-clustering, we calculated
a NMI (normalized mutual information) score by comparing the result with
known sequence annotations.

Fig. 2 reports the numbers of sub-clusters and NMI scores obtained
after the top-level partition using different termination radiuses. As
expected, the numbers of sub-clusters decrease and the NMI scores
increase with respect to the termination radius. To select a proper
termination threshold, we performed a one-side paired t-test at each radius
level and picked the smallest radius level that accepted the alternative
hypothesis that the NMI score loss is significantly smaller than 0.01 (P -
value < 0.05). Note that the selected termination thresholds are slightly
different for sequences covering different hyper-variable regions. It is also
worth pointing out that an NMI score loss of 0.01 is very small. As we will
see shortly, the application of different de novo OTU picking methods to
the same dataset can have 0.05 difference in NMI scores (see Fig. 3).

4.3 Benchmark Study on Clustering Quality

The proposed method can in principle be used to parallelize any single-
thread de novo OTU picking method. To demonstrate this, we applied
four different methods to the plaque and Greengenes datasets. UCLUST
V9.0 (Edgar, 2010) and Cd-hit V4.6 (Li and Godzik, 2006) are two most
commonly used heuristic methods. AbundantOTU V0.93 (Ye, 2010) is a
consensus alignment based method. ESPRIT-Tree (Cai and Sun, 2011) is a
fast implementation of hierarchical clustering method. For a given dataset,
we first randomly sampled 80% sequences, grouped the sampled sequences
at various distance levels ranging from 0.01 to 0.10, and compared NMI
scores obtained with and without SLAD. To minimize statistical variations,
the above process was repeated 10 times. The termination radius parameter
used in the top-level partition was set to 0.17 for the plaque dataset and
0.19 for the Greengenes dataset as determined above. The experiment was
performed on a 4×2.40GHz Intel Xeon E5645 processor machine.

Fig. 3 reports the averaged NMI scores evaluated at the ten distance
levels for the two datasets. For the experiments performed on the
Greengenes dataset, only UCLUST finished in 72 hours, which is the
wall-time limit of our computing cluster, so only UCLUST results are
presented. For each tested method at a given distance level, the first and
second box plots show the NMI scores obtained without and with SLAD
applied, respectively. We used a one-side paired t-test to compare two sets
of NMI scores. With only one exception (ESPRIT-Tree at the 0.02 distance
level), all tests accepted the alternative hypothesis that the NMI score loss
is significantly smaller than 0.01 at P -value < 0.05. This is consistent

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10
0.75

0.8

0.85

0.9

0.95

N
M

I
S

c
o
re

Distance Level

(a) UCLUST

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10
0.75

0.8

0.85

0.9

0.95

N
M

I
S

c
o
re

Distance Level

(b) Cd-hit

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10
0.75

0.8

0.85

0.9

0.95

N
M

I
S

c
o
re

Distance Level

(c) Abundant OTU

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10
0.75

0.8

0.85

0.9

0.95

N
M

I
S

c
o
re

Distance Level

(d) ESPRIT-Tree

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10
0.75

0.8

0.85

0.9

0.95

N
M

I
S

c
o
re

Distance Level

(e) UCLUST applied to Greengenes

Fig. 3. Averaged NMI scores obtained at the ten distance levels for four tested methods
performed on (a-d) the plaque and (e) Greengenes datasets. At a given distance level, the
first box plot shows the NMI scores obtained without SLAD, and the second one shows
NMI scores obtained with SLAD applied.

with the results shown in the parameter sensitivity analysis. We noted that
at some distance levels, the NMI scores obtained with SLAD can be even
larger than those obtained without SLAD. This can be explained by the fact
that OTU picking methods used in the sub-clustering phase is not perfect
as we assumed in the parameter sensitivity analysis, and when the top-level
partition correctly separates sequences with different taxonomic labels, it
prevents from a possible false merge at the sub-clustering phase. Following
one of the reviewers’ suggestion, we also computed the NMI scores by
comparing the clustering results obtained by the four tested methods with
and without SLAD and reported the results in Supplementary Fig. 1. At
the 0.03 and 0.05 distance levels (the two commonly used thresholds for
defining species- and genus-level OTUs, respectively (Caporaso et al.,
2010)), the NMI scores stay at a very high level (0.97 ∼ 0.99) across all
datasets and all tested methods.

Table 1 reports the average running time of the four tested methods
with and without SLAD. In general, a clustering method can utilize only a
single core, but when SLAD is applied to generate sub-clusters, all 4 cores
can be used. Notably, the speed-up can go beyond 4-fold, which is the
maximum speed-up that one can achieve through naive parallel computing.
This is because the generation of sub-clusters at the top level reduces
the search space for subsequent sub-clustering, which further boosts the
computational efficiency. We should point out that SLAD is designed for
large-scale sequence clustering analysis, and we will shortly observe even
more significant speed-up when it is applied to the EMP dataset.

“slad” — 2018/7/9 — page 8 — #8

8 W. Zheng et al.

4.4 Scalability Study

We finally conducted a large-scale scalability study on the EMP-755 and
entire EMP datasets. For computational considerations, only UCLUST
was tested. To investigate how the running time of UCLUST with and
without SLAD grows with respect to the number of input sequences,
we randomly sampled various numbers of sequences (5M, 10M, 15M,
20M, 25M, 30M, 35M, 40M, 45M, 50M) from the EMP-755 dataset. The
termination radius parameter used in the top-level partition in SLAD was
set to 0.20 as per the parameter sensitivity analysis, and the distance-level
parameter of UCLUST was set to 0.03. The experiment was performed
on a 4×2.40GHz Intel Xeon E5645 processor machine. Fig. 4 reports the
running time of UCLUST with and without SLAD. Since UCLUST applied
to 40M, 45M, and 50M sequences did not finish in 72 hours, the results are
not reported. With only one exception (5M), SLAD accelerated UCLUST
by more than one order of magnitude. Also note that the running time of
UCLUST with SLAD grows much more slowly than that without SLAD
with respect to the input data size. This suggests that the proposed method
has the potential to achieve even more speed-up on larger datasets, as shown
below. We also compared the clustering results obtained by UCLUST with
and without SLAD and the NMI scores are around 0.97 ∼ 0.98 (Fig. 4),
which is consistent with the result observed in Supplementary Fig. 1.

To further demonstrate the scalability of the proposed method, we
conducted an experiment on the entire EMP dataset. To our knowledge,
this is the largest de novo 16S rRNA sequence clustering analysis ever
performed in a distributed computing environment. We first transferred the
data to Amazon Web Server (AWS) S3 and requested a computing cluster
consisting of 17 m3.xlarge (Intel Xeon E5-2680 V2 Ivy Bridge Processors,
4 cores, 15GB memory) Amazon Elastic Compute Cloud (Amazon EC2)
instances. The Apache Spark computing environment was then set up via
AWS Elastic Map-reduce service (EMR) V5.6.0. The cluster was launched
in a client mode, where 16 slave instances were used for computation
and a master node was used for monitoring. The memory limit was set
to 10,473MB for the master node and 9,658MB for the slave nodes. The
termination radius parameter and the distance-level parameter of UCLUST
were the same as above. We also set the number of sub-clusters to 300 for
an early termination. The top-level partition phase took 533 minutes and
the sub-clustering phase took 536 minutes. The total running time was
∼17.8 hours. In contrast, it has been estimated that the running time of
UCLUST applied to a subset of the EMP dataset that contains ∼660M
sequences is 150 days on a single computer (Rideout et al., 2014). We
have previously shown that the empirical computational complexity of
UCLUST isO(N1.2) ∼ O(N1.3) (Sun et al., 2011). Thus, if UCLUST
were applied to the entire EMP data, it would take ∼636 days.

5 Conclusion
In this paper, we have developed a novel two-stage parallel sequence
clustering framework that addresses the computational issue of existing
methods for ultra-large-scale sequence analysis. Theoretical results have
showed that our method can recover the true hierarchy with a high
probability under mild assumptions and has a theoretical linearithmic time
complexity with respect to the number of input sequences. In addition, we
have demonstrated that the proposed method can efficiently process ultra-
large-scale sequence datasets by taking advantage of parallel computing
resources with the implementation on Apache Spark.

Input Size 5M 10M 15M 20M 25M 30M 35M 40M 45M 50M

Speed-up 6 24 22 27 36 35 23 N/A N/A N/A

NMI Score 0.98 0.97 0.97 0.97 0.97 0.98 0.97 N/A N/A N/A

 5 10 15 20 25 30 35 40 45 50
Input Size (million)

0

500

1000

1500

2000

2500

3000

3500

El
ap

se
d

Ti
m

e
(m

in
)

UCLUST
Top-level Partition
Sub-clustering

Fig. 4. Results of UCLUST with and without SLAD performed on various numbers of
sequences sampled from the EMP-755 dataset. When UCLUST was used with SLAD, the
running time is the sum of the time spent on top-level partition and sub-clustering. The
NMI scores compare the clustering results obtained by UCLUST with and without SLAD.
UCLUST did not finish in 72 hours when it was applied to 40M, 45M, and 50M sequences,
so the results were not reported.

Funding
This work is in part supported by 1R01AI125982 (YS, RG, JWW),
1R01DE024523 (JWW, RG, YS, MB, WZ), and National Science
Foundation of China (YC, grant # 11471313).

References
Balcan,M.F. et al. (2009) Approximate clustering without the approximation. Proc.

20th Annual ACM-SIAM Symposium on Discrete Algorithms, 1068-1077.
Cai,Y. and Sun,Y. (2011) ESPRIT-Tree: hierarchical clustering analysis of millions

of 16S rRNA pyrosequences in quasilinear computational time. Nucleic Acids Res.,
39, e95.

Cai,Y. et al. (2017) ESPRIT-Forest: Parallel clustering of massive amplicon sequence
data in subquadratic time. PLOS Comput. Biol., 13, e1005518.

Caporaso,J.G. et al. (2010) QIIME allows analysis of high-throughput community
sequencing data. Nat. Methods, 7, 335-336.

Chen,T. et al. (2010) The Human Oral Microbiome Database: a web accessible
resource for investigating oral microbe taxonomic and genomic information.
Database, 2010, baq013.

Chen,W. et al. (2013) MSClust: a multi-seeds based clustering algorithm for
microbiome profiling using 16S rRNA sequence. J. Microbiol. Methods, 94,
347-355.

Di Bella,J.M et al. (2013) High throughput sequencing methods and analysis for
microbiome research. J. Microbiol. Methods, 95, 401-414.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26, 2460-2461.

Editorial (2013) Your microbes, your health. Science, 342, 1440-1441.
Gilbert,J.A. et al. (2014) The Earth Microbiome project: successes and aspirations.

BMC Biol., 12, 69.
Haig,S.J. et al. (2014) Replicating the microbial community and water quality

performance of full-scale slow sand filters in laboratory-scale filters. Water Res.,
61, 141-151.

Jiang,L. et al. (2016) DACE: a scalable DP-means algorithm for clustering extremely
large sequence data. Bioinformatics, 33, 834-842.

Krishnamurthy,A. et al. (2012) Efficient active algorithms for hierarchical clustering.
Proc. 29th International Conference on Machine Learning, 887-894.

Li,W. and Godzik, A. et al. (2006) Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658-1659.

Mande,S.S. et al. (2012) Classification of metagenomic sequences: methods and
challenges. Brief. Bioinform., 13, 669-681.

“slad” — 2018/7/9 — page 9 — #9

SLAD for ultra-large-scale sequence clustering analysis 9

McDonald,D. et al. (2012) An improved Greengenes taxonomy with explicit ranks
for ecological and evolutionary analyses of bacteria and archaea. ISME J., 6, 610.

Meng,X. et al. (2016) MLlib: Machine learning in Apache Spark. J. Mach. Learn.
Res., 17, 1235-1241.

Rideout,J.R. et al. (2014) Subsampled open-reference clustering creates consistent,
comprehensive OTU definitions and scales to billions of sequences. PeerJ, 2, e545.

Matias Rodrigues, J.F. and von Mering, C. (2013) HPC-CLUST: distributed
hierarchical clustering for large sets of nucleotide sequences. Bioinformatics, 30,
287-288.

Schloss,P.D. and Handelsman,J. (2005) Introducing DOTUR, a computer program
for defining operational taxonomic units and estimating species richness. Appl.
Environ. Microbiol., 71, 1501-1506.

Schloss,P.D. and Westcott,S.L. (2011) Assessing and improving methods used
in operational taxonomic unit-based approaches for 16S rRNA gene sequence
analysis. Appl. Environ. Microbiol., 77, 3219-3226.

Slaney,M. and Casey,M. (2008) Locality-sensitive hashing for finding nearest
neighbors. IEEE Signal Process. Mag., 25, 128-131.

Sun,Y. et al. (2011) A large-scale benchmark study of existing algorithms for
taxonomy-independent microbial community analysis. Brief. Bioinform., 13,
107-121.

Sun,Y. et al. (2009) ESPRIT: estimating species richness using large collections of
16S rRNA pyrosequences. Nucleic Acids Res., 37, e76.

Sun,Y. et al. (2010) Advanced computational algorithms for microbial community
analysis using massive 16S rRNA sequence data. Nucleic Acids Res., 38, e205.

Voevodski,K. et al. (2012) Active clustering of biological sequences. J. Mach. Learn.
Res., 13, 203-225.

Von Luxburg, U. (2007) A tutorial on spectral clustering. Stat. Comput., 17, 395-416.
Ye,Y. (2010) Identification and quantification of abundant species from

pyrosequences of 16S rRNA by consensus alignment. Proc. 2010 IEEE
International Conference on Bioinfomatics and Biomedicine, 153-157.

A Parallel Computational Framework for

Ultra-large-scale Sequence Clustering Analysis

Supplementary Data

Wei Zheng, Qi Mao, Robert J. Genco, Jean Wactawski-Wende

Michael Buck, Yunpeng Cai, Yijun Sun∗

1 Implementation Details

1.1 Apache Spark

We implemented the proposed method on Apache Spark V2.0.2 by using the Scala programming

language V2.11.8. Apache Spark is a fast and general engine for large-scale data processing, which

provides an interface for programming entire clusters with implicit data parallelism and fault-tolerance.

It can run on Hadoop, Mesos, standalone, or in the cloud, and can access diverse data sources including

HDFS, Cassandra, HBase and S3. Most existing parallel de novo OTU picking methods utilized mes-

sage passing interface (MPI) for speed-up in a distributed computing environment [1,5,8]. While MPI

enables the message communication between computational nodes via network, it lacks job schedul-

ing and fault recovery. Since our method can be easily fit into the MapReduce model, the low-level

flexibility offered by MPI becomes less appealing. By using high-level and portable Apache Spark,

our method is scalable, fault-tolerant, and compatible with different file systems. In addition, Apache

Spark supports several programming languages, including Python, R and Scala. We chose Scala since

Apache Spark focuses on data transformation and mapping concepts, which are flawlessly supported

by functional programming languages including Scala. Moreover, Scala is a JVM native language and

thus is much more efficient than Python and R in Spark.

Apache Spark also provides users with a programming interface centered on a data structure called

resilient distributed dataset (RDD), a read-only multi-set of data items distributed over a cluster of

machines and maintained in a fault-tolerant way. It addresses the limitation of the MapReduce cluster

computing paradigm, which always forces a program to read input data from disk. In our method,

landmarks are selected in an iterative fashion. The frequent access to the data stored in memory rather

than disk can save a huge amount of computational time by avoiding unnecessary I/O operations.

∗Please address all correspondence to Dr. Yijun Sun (yijunsun@buffalo.edu)

1

mailto:yijunsun@buffalo.edu

1.2 Duplication Removal and Abundance Filtering

A sequence may appear multiple times in an input sequence collection. Identifying duplicated se-

quences is a necessary pre-processing step to reduce unnecessary distance calculations. After dupli-

cation removal, we kept only unique sequences and their abundance information, which records the

frequencies of unique sequences in raw data. Abundance filtering that removes sequences with abun-

dance lower than a pre-defined threshold can further speed up the OTU picking process. By default,

we set the threshold parameter to 2, which is equivalent to singleton removal. Since the sequence

abundances have a power-law distribution [9], sequences that pass abundance filtering account for the

overwhelming majority of all input sequences. To avoid potential clustering accuracy loss, we only

applied abundance filtering in the landmark selection step. At the final assignment step, all sequences

were clustered based on their average distances to selected landmarks.

1.3 Distance Calculation

Distance calculation is a core component in OTU picking analysis. It determines clustering structure

to be detected and consumes the majority of the computation time. The optimal method to measure

pairwise sequence distances is through sequence alignment [10]. However, sequence alignment usually

exhibits quadratic computational complexity with respect to the sequence length, and thus is com-

putationally intractable to process large sequence datasets. To reduce computational complexity, the

k-mer distance shown below is widely used to approximate the alignment distance [2, 4]:

d(x, y) = 1−
|K|∑
i=1

min(cx(i), cy(i))/(min(lx, ly)− k + 1) . (1)

Given two sequences x, y and a pre-defined parameter k, each sequence is converted to a set of k-mers

by sliding a window of size k over the entire sequence. Denote as K the union of the k-mer sets

generated from the two sequences, cx(i) and cy(i) as the occurrences of the ith k-mer in sequences x

and y, respectively, and lx and ly as the lengths of sequences x and y, respectively. The k-mer distance

is essentially the fraction of non-shared k-mers between two sequences, and can be calculated in linear

time with respect to the sequence length. Note that every sequence has to be converted into a list of

k-mer counting numbers before distance calculation. We thus stored the RDD of k-mer counting lists

instead of that of raw sequences in the memory. In this way, we can save a huge amount of time spent

on data conversion at the cost of extra memory consumption. However, since landmarks are selected

only from abundant sequences, we can do so in the landmark selection phase without running out of

memory.

1.4 Median of Medians

In every landmark selection loop, we need to select a landmark from the farthest n/2 points, where

n is the number of sequences in a cluster to be partitioned. A trivial solution is to sort all non-

landmark sequences based on their distances to a landmark set, and then randomly select a sequence

from the farthest n/2 sequences. However, global sorting is a very expensive operation in a distributed

computing environment. Inspired by the median of medians algorithm [3], which finds an approximate

2

median in linear time, we used the median of medians as a pivot sequence. Specifically, in Apache

Spark, the data within an RDD is split into several partitions. A partition never spans multiple

machines, and the default number of partitions equals to the total number of cores on all executor

nodes. To avoid global sorting, we performed sorting on each partition, collected their medians, and

used the median of collected medians as a pivot sequence to select a landmark.

1.5 Spark MLlib

Another advantage of using Apache Spark is that it is equipped with a bunch of built-in libraries, which

can significantly simplify the construction of large-scale computational pipelines. For this study, we

used Spark MLlib [7], which is a distributed framework built on top of Spark Core and provides a library

of commonly used machine learning and statistical algorithms. Due in large part to the distributed

memory-based Spark architecture, the implementations provided by Spark MLlib run much faster

than disk-based counterparts. In our method, we used Power Iteration Clustering (PIC) to perform

spectral clustering on selected landmarks. PIC [6] is a scalable and efficient algorithm for clustering

vertices of a graph given pairwise similarities as edge properties. It computes the pseudo-eigenvectors

of the normalized affinity matrix of a graph via power iteration, and has a much lower computational

complexity compared to other methods for similar tasks.

References
[1] Y. Cai, W. Zheng, J. Yao, Y. Yang, V. Mai, Q. Mao, and Y. Sun. ESPRIT-Forest: Parallel

clustering of massive amplicon sequence data in subquadratic time. PLoS Computational Biology,

13(4):e1005518, 2017.

[2] J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello,

N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, et al. QIIME allows analysis of high-

throughput community sequencing data. Nature Methods, 7(5):335–336, 2010.

[3] T. H. Cormen. Introduction to Algorithms. MIT Press, Cambridge, MA, 2009.

[4] R. C. Edgar. Search and clustering orders of magnitude faster than BLAST. Bioinformatics,

26(19):2460–2461, 2010.

[5] L. Jiang, Y. Dong, N. Chen, and T. Chen. DACE: a scalable DP-means algorithm for clustering

extremely large sequence data. Bioinformatics, 33(6):834–842, 2016.

[6] F. Lin and W. W. Cohen. Power iteration clustering. In Proceedings of the 27th International

Conference on Machine Learning, pages 655–662, 2010.

[7] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen, et al. MLlib: Machine learning in Apache Spark. Journal of Machine

Learning Research, 17(34):1–7, 2016.

[8] J. F. M. Rodrigues and C. von Mering. HPC-CLUST: distributed hierarchical clustering for large

sets of nucleotide sequences. Bioinformatics, 30(2):287–288, 2013.

3

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Distance Level

0.9

0.92

0.94

0.96

0.98

1

N
M

I
S

c
o

re

(a) UCLUST

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Distance Level

0.9

0.92

0.94

0.96

0.98

1

N
M

I
S

c
o

re

(b) Cd-hit

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Distance Level

0.85

0.9

0.95

1

N
M

I
S

c
o

re

(c) Abundant OTU

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Distance Level

0.9

0.92

0.94

0.96

0.98

1

N
M

I
S

c
o

re

(d) ESPRIT-Tree

.01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Distance Level

0.9

0.92

0.94

0.96

0.98

1

N
M

I
S

c
o

re

(e) UCLUST applied to Greengenes

Figure 1: Averaged NMI scores obtained by comparing the clustering results generated by an OTU

picking method with and without SLAD performed on (a-d) the plaque and (e) Greengenes datasets.

For the experiments performed on the Greengenes dataset, only UCLUST finished in 72 hours, which

is the wall-time limit of our computing cluster, so only UCLUST results are presented. At the 0.03 and

0.05 distance levels (the two commonly used thresholds for defining species- and genus-level OTUs,

respectively, the NMI scores stay at a very high level (0.97 ∼ 0.99) across all datasets and all tested

methods. 4

[9] Y. Sun, Y. Cai, S. M. Huse, R. Knight, W. G. Farmerie, X. Wang, and V. Mai. A large-scale

benchmark study of existing algorithms for taxonomy-independent microbial community analysis.

Briefings in Bioinformatics, 13(1):107–121, 2011.

[10] Y. Sun, Y. Cai, L. Liu, F. Yu, M. L. Farrell, W. McKendree, and W. Farmerie. ESPRIT:

estimating species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids

Research, 37(10):e76, 2009.

5

	slad

