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Abstract

Many scientific datasets are of high dimension, and the

analysis usually requires visual manipulation by retaining

the most important structures of data. Principal curve is

a widely used approach for this purpose. However, many

existing methods work only for data with structures that

are not self-intersected, which is quite restrictive for real

applications. To address this issue, we develop a new model,

which captures the local information of the underlying

graph structure based on reversed graph embedding. A

generalization bound is derived that show that the model is

consistent if the number of data points is sufficiently large.

As a special case, a principal tree model is proposed and

a new algorithm is developed that learns a tree structure

automatically from data. The new algorithm is simple and

parameter-free with guaranteed convergence. Experimental

results on synthetic and breast cancer datasets show that

the proposed method compares favorably with baselines and

can discover a breast cancer progression path with multiple

branches.

Keywords: principal graph, reversed graph embedding,

principal curve, cancer progression path

1 Introduction

In many fields of science, one often encounters observa-
tions represented as high-dimensional vectors sampled
from unknown distributions. It is sometimes difficult to
directly analyze data in the original space, and is desir-
able to perform data dimensionality reduction or asso-
ciate data with some structured objects. One example
is the study of human cancer, which is a dynamic dis-
ease that develops over an extended time period through
the accumulation of a series of genetic alterations. The
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delineation of this dynamic process would provide crit-
ical insights into molecular mechanisms underlying the
disease process, and inform the development of diag-
nostics, prognostics and targeted therapeutics. The re-
cently developed high-throughput genomics technology
has made it possible to measure the expression levels
of all genes in tissues from thousands of tumor samples
simultaneously. However, the delineation of the can-
cer progression path embedded in a high-dimensional
genomics space remains a challenging problem [25].

Principal component analysis (PCA) [15] is one of
the most commonly used methods to visualize data in a
low-dimensional space, but its linear assumption limits
its general applications. Several nonlinear approaches
based on the kernel trick have been proposed [23], but
they remain sub-optimal for detecting complex struc-
tures. Alternatively, if data dimensionality is very high,
manifold learning based on the local information of data
can be effective. Examples include locally linear embed-
ding (LLE) [22] and Laplacian eigenmaps [1]. However,
these methods generally require to construct a carefully
tuned neighborhood graph as their performance heavily
depends on the quality of constructed graphs.

Another approach is principal curve, which was ini-
tially proposed as a nonlinear generalization of the first
principal component line [14]. Informally, a principal
curve is an infinitely differentiable curve with a finite
length that passes through the middle of data. Several
principal-curve approaches have been proposed, includ-
ing those that minimize certain types of risk functions
such as the quantization error [14, 17, 24, 21, 12] and
the negative log-likelihood function [26, 3]. To over-
come the over-fitting issue, regularization is generally
required. Kégl et al. [17] bounded the total length of
a principal curve, and proved that the principal curve
with a bounded length always exists if the data dis-
tribution has a finite second moment. Similar results
were obtained by bounding the turns of a principal curve
[21]. More recently, the elastic maps approach [12] was
proposed that regularizes the elastic energy of a mem-
brane. An alternative definition of a principal curve
based on a mixture model was considered in [14], where
the model parameters are learned through maximum
likelihood estimation and the regularization is achieved
using the smoothness of coordinate functions. Genera-



tive topographic mapping (GTM) [3] was proposed to
maximize the posterior probability of the data which
is generated by a low-dimensional discrete grid mapped
into the original space and corrupted by additive Gaus-
sian noise. GTM provides a principled alternative to
the self-organizing map (SOM) [18] for which it is im-
possible to define an optimality criterion [9].

Methods for learning a principal curve have been
widely studied, but they are generally limited to learn
a structure that does not intersect itself [14]. Only
a few methods can handle complex principal objects.
Kégl and Krzyzak [16] extended their polygonal line
method [17] for skeletonization of handwritten digits.
The principal manifold approach [11] extends the elastic
maps approach [12] to learn a graph structure generated
by graph grammar. A major drawback of the two
methods is that they require either a set of predefined
rules (specifically designed for handwritten digits [16])
or grammars with many parameters to be tuned, which
makes their implementations complicated and their
adaptations to new datasets difficult. More importantly,
their convergences are not guaranteed. Recently, a
subspace constrained mean shift (SCMS) method [19]
was proposed that can obtain principal points for any
given second-order differentiable density function, but
it is still not trivial to obtain a predicted structure.

In this paper, we propose a new regularized princi-
pal graph model that addresses some of the aforemen-
tioned limitations. As a showcase, we develop a princi-
pal tree approach to learning a tree structure and prin-
cipal points simultaneously. The main contributions of
this paper are summarized as follows:

• By reversing the intuition of manifold learning, we
define reversed graph embedding for the represen-
tation of a principal graph. The new representa-
tion can be interpreted as the length of a principal
graph. We propose a new principal graph model
by minimizing a relaxed quantization error with a
boundedness constraint on the length of the princi-
pal graph. A generalization bound is also derived.

• To learn the graph structure from data, a principal
tree model is presented. We then propose a simple
algorithm to learn the principal points and the
tree structure simultaneously. Theoretical and
empirical convergence analyses are presented.

• Extensive experiments are conducted on a variety
of synthetic datasets and a high-dimensional breast
cancer gene expression dataset. Experimental re-
sults demonstrate that the proposed principal tree
method performs better than baselines, and can re-
cover the underlying structures of given datasets.

2 Regularized Principal Graph

We propose a new model for principal graph learning.
Motivated by manifold learning, a new regularizer is
presented for capturing the graph structure of a given
dataset. The generalization bound is also derived.

2.1 Reversed Graph Embedding. Let G = (V, E)
be an undirected graph, where V = {V1, . . . , VM} is a set
of vertices and E is a set of edges. Suppose that every
vertex Vm corresponds to a point zm ∈ Z ⊂ Rd, which
lies on a manifold with an intrinsic dimension d. Let
X ⊂ RD be the input space and D = {xi}Ni=1 ⊂ X be a
given dataset. We consider learning a function fG ∈ F
and fG : Z → X over G that maps the intrinsic space Z
to the input space X .

Given a graph G, denote as wi,j the weight of edge
(Vi, Vj), where wi,j represents the similarity value (or
connection indicator) between zi and zj in the intrinsic
space Z. Intuitively, if zi and zj are neighbors on G
with a high degree of similarity, fG(zi) and fG(zj) are
also close to one another. To capture this intuition, we
consider the following optimization problem

min
fG∈F

min
z1,...,zM

∑
(Vi,Vj)∈E

wi,j ||fG(zi)− fG(zj)||2.(2.1)

The above formulation has several interesting proper-
ties. First, problem (2.1) is a reverse thinking of Lapla-
cian eigenmap [1]. If vertices Vi and Vj are close on G,
which means that zi and zj has a high degree of simi-
larity wi,j , data points fG(zi) and fG(zj) in X are also
close. On the contrary, in the Laplacian eigenmap, the
similarity vi,j between xi and xj is computed in X to
capture the local information of the manifold, while the
distance between zi and zj , ||zi − zj ||, are computed in
Z. Specifically, Laplacian eigenmap solves the following
optimization problem,

min
z1,...,zM

∑
i,j

vi,j ||zi − zj ||2.

Weights wi,j and vi,j are computed in different dimen-
sional spaces, so they represent distinct kinds of lo-
cality information. Based on the above discussion, we
thus name the formulation specified in (2.1) as reversed
graph embedding.

Second, the optimal function f∗G ∈ F obtained by
solving (2.1) is related to harmonic or pluriharmonic
functions. This can be further illustrated by the
following observations. Let Nm be the neighbors of a
point zm,∀m. For any given zm, problem (2.1) can be
rewritten as

min
fG(zm)

∑
j∈Nm

wm,j ||fG(zm)− fG(zj)||2,

which has an analytic solution by fixing the rest of



variables {fG(zj)}j 6=m:

fG(zm) =
1∑

j∈Nm
wm,j

∑
j∈Nm

wm,jfG(zj).(2.2)

If (2.2) holds for all m, function fG is a harmoinc
function on G since its value in each nonterminal vertex
is the mean of the values in the closest neighbors
of this vertex [12]. It is easier to incorporate any
neighborhood structure existing in G into the proposed
formulation than plurihamonic graphs defined in [12],
since it imposes penalty only on a subset of k-stars as

||fG(zm)− 1∑
j∈Nm

wm,j

∑
j∈Nm

wm,jfG(zj)||2,(2.3)

where |Nm| = k, ∀m. The connection of fG to harmonic
or pluriharmonic functions enriches the learned function
fG .

Third, reversed graph embedding facilitates the
learning of a graph structure from data. The weight wi,j
encodes the similarity or connection between Vi and Vj
on G. Taking the binary encoding as an example, wi,j =
1 if i ∈ Nj and j ∈ Ni, and 0 otherwise. In most cases,
a dataset is given, but graph G is unknown. Hence,
it is necessary to automatically learn G from data. The
objective function of reversed graph embedding is linear
with respect to the weights {wi,j}Mi.j=1. This linearity
property benefits the learning of the graph structure.
However, principal elastic map [12] is not suitable for
the same purpose since the variables {wi,j}Mi.j=1 are
coupled in the problem of minimizing (2.3).

2.2 Regularized Principal Graph. Given a graph
G with edge weights {wi,j}Mi.j=1, points {zi}Mi=1 and a

dataset D = {xi}Ni=1, we propose to learn a mapping
function by minimizing the empirical quantization error
with a constrained functional class:

min
fG∈FG,`

1

N

N∑
i=1

min
z∈Z

c(xi, fG(z)),(2.4)

where c(x,x′) = ||x − x′||2 is the square loss function.
The constrained functional class FG,` is defined as

FG,` = {fG ∈ F , `(G) ≤ `},(2.5)

where the constraint is defined in terms of the objective
function of the reversed graph embedding (2.1) as

`(G) =
∑

(Vi,Vj)∈E

wi,j ||fG(zi)− fG(zj)||2.(2.6)

It is worth noting that the quantity `(G) can be con-
sidered as the length of a principal graph. In the case
where G is a linear chain structure, `(G) is the same as
the length of a polygonal line defined in [17]. However,

the (2.4) is more flexible than principal curves since the
graph structure allows self-intersection. For principal
graph learning, elastic map [12] also defines a penalty
based on a given graph. However, based on the discus-
sion of the third property of reversed graph embedding,
it is difficult to solve problem (2.4) with respect to both
the function fG and the graph weights {w}Mi.j=1 within
the elastic-maps framework. In contrast, the proposed
constraint based on reversed graph embedding leads to
a simple and efficient algorithm to learn a principal tree
model with guaranteed convergence. This will be clari-
fied in Section 3.

2.3 Uniform Convergence Bound. In this section,
we determine a bound on the sample size sufficient
to ensure that given a graph G and intrinsic points
{zm}Mm=1 we can find an fG ∈ FG,` close to the best
by solving problem (2.4).

Let p(x) be an unknown probability distribution
where x ∈ X . We find a function fG by minimizing
the expected quantization error

R[fG ] =

∫
X

min
z∈Z

c(x, fG(z))dp(x).(2.7)

Given a dataset D, the expected quantization error is
unknown, so we instead minimize its empirical quanti-
zation error estimated from D as

Remp[fG ] =
1

N

N∑
i=1

min
z∈Z

c(xi, fG(z)).(2.8)

Following the work of [24], we define the function as

fG(z) =

M∑
i=1

βiκ(zi, z), zi ∈ Z, βi ∈ X ,(2.9)

where κ : Z × Z → R is a kernel function and {βi}Mi=1

are model parameters to be learned.
For any kernel function κ with a positive integral

operator (Tkf)(z) =
∫
Z f(z′)κ(z′, z)d(z′), one can write

κ(z, z′) =
∑
i λiφi(z)φi(z

′), where (λi, φi) is the eigen-
system of the integral operator Tk. Let FcG,` = {(x, z)→
c(x, fG(z)) : fG ∈ FG,`}. We have the following rates of
convergence for the optimal estimates. The proof of
Theorem 2.1 is given in Appendix A.

Theorem 2.1. Let FcG,` be a class of continuous func-
tions from Z to X ⊆ Uτ and p be a distribution over
RD. Let f∗G,emp = arg minfG∈Fc

G,`
Remp[fG ] and f∗G =

arg minfG∈Fc
G,`

R[fG ]. Suppose that FcG,` is compact. If

N points are drawn i.i.d. from p, then for all η > 0 and
ε ∈ (0, η/2), we have

P{| R[f∗G,emp]− R[f∗G ] | > η}

≤2

(
N
(
ε

lc
,FG,`, L∞(`d2)

)
+ 1

)
exp

(
−2N(η − ε/2)2

ec

)
,



where lc is the Lipschitz constant of cost function c(·),

N
(
ε
2lc
,FG,`, L∞(`d2)

)
is the ε

2lc
covering number of FG,`

given a metric L∞(`d2) defined as

L∞(`d2)(fG , f
′
G) = sup

z∈Rd

||fG(z)− f ′G(z)||2.

Meanwhile, if λj = O(e−αj
p

) with α, p > 0, we have

logN
(
ε,FG,`, L∞(`d2)

)
= O

(
log

p+1
p
(
1
ε

))
. If λj =

O(j−(α+1)) for some α > 0, and for any δ ∈ (0, α/2),
we have logN

(
ε,FG,`, L∞(`d2)

)
= O(ε−2/α+δ).

As shown in Theorem 2.1, the covering number
N (ε,FG,`, L∞(`d2)) is independent of the sample size N .
Therefore, the union bound in Theorem 2.1 vanishes
as the number of samples tends to infinity. Hence, the
proposed model is consistent.

3 A Principal Tree Learning Algorithm

Given a graph G and a set {zm}Mm=1, constructing
a principal graph model by minimizing the empirical
quantization error can find an fG ∈ FcG,` close to the best
possible if the number of data points is sufficiently large.
However, the graph structure of G is generally unknown.
In order to apply the theoretical results of Theorem 2.1
to principal graph learning, we propose to automatically
learn G and {fG(zi)}Mi=1 from data simultaneously. We
below consider learning a tree structure as a showcase.

3.1 Principal Tree Model. According to Section
2.1, a number of variables need to be optimized, in-
cluding the optimal function fG , a set of intrinsic points
{zm}Mm=1 and a graph G. Instead of learning a func-

tion fG and {zm}Mm=1 separately, we can define Z̃ =
{1, . . . ,M} and fG : m → fGm, where fGm ∈ X , and
learn a set of principal points {fG(zm)} for every m.
The canonical distortion error of a vector quantizer can
be written as

R̂[fG ] =

∫
RD

min
m∈{1,...,M}

||x− fGm||
2dp(x).(3.10)

To obtain M centroids {fGm}Mm=1, minimizing the em-
pirical distortion error is equivalent to solving the K-
means problem. The hard partition obtained by K-
means, however, is sensitive to noise, outliers, or some
data points that cannot be thought of as belonging to a
single cluster [10]. Soft partition methods such as Gaus-
sian mixture modeling have also been used in modeling
principal curves [3, 26]. However, the likelihood of a
Gaussian mixture model tends to be infinite when a
singleton is formed [26].

To alleviate the problems suffered by the aforemen-
tioned methods, we propose to minimize a relaxed em-

pirical quantization error given by

R̂emp[fG ] = min
r∈Br

1

N

N∑
i=1

M∑
m=1

ri,m||xi − fGm||
2+σΩ(r) ,(3.11)

where Br = {r :
∑M
m=1 ri,m = 1, ri,m ≥ 0,∀i,∀m},

Ω(r) = 1
N

∑N
i=1

∑M
m=1 ri,m log ri,m is the negative en-

tropy regularization, and σ > 0 is the regularization
parameter. The negative entropy regularization trans-
forms hard assignment used in K-means to soft assign-
ment used in Gaussian mixture models, and is also used
in fuzzy K-means for clustering problems [2].

By replacing Remp[fG ] in (2.4) with R̂emp[fG ] and
considering G as a tree structure, the principal graph
learning (2.4) can be reformulated as the following
optimization problem

min
fG ,b∈Bb

R̂emp[fG ], s.t.
∑

(Vi,Vj)∈E

bi,j ||fG i − fGj ||2 ≤ ` ,

where the convex set of a relaxed minimum spanning
tree is denoted by Bb = {b :

∑
(i,j)∈E bi,j = |V| −

1,
∑
i∈S,j∈S bi,j ≤ |S| − 1,∀S ⊆ V, bi,j ≥ 0,∀(i, j)} [7],

and the bounded length of a principal tree is ` ∈ R+.
The graph structure can then be recovered by the set of
edges {(Vi, Vj) : bi,j 6= 0}.

Instead of directly imposing a length constraint in
problem (3.12), it is equivalent to minimizing the re-
laxed empirical quantization error with a regularization
in the objective function. Hence, problem (3.12) can be
reformulated as follows

min
fG ,b∈Bb

R̂emp[fG ] +
λ

2

∑
(Vi,Vj)∈E

bi,j ||fG i − fGj ||
2 ,(3.12)

where λ > 0 is a parameter. For an appropriately
selected λ, (3.12) and (3.12) are equivalent [24].

Next, we propose a simple algorithm to solve prob-
lem (3.12) and then present a convergence analysis.

3.2 Alternate Convex Search. To solve problem
(3.12), we employ the alternate convex search method,
which is frequently used to solve biconvex optimization
problems [13].

We first show that problem (3.12) is a biconvex
optimization problem. Let BfG = {fGm ∈ RD,∀m}.
Together with Bb and Br, we have three sets of variables,
which are all convex and can be decoupled. We combine
Br and Bb by Cartesian product as Br,b = Br × Bb =
{(r, b) : r ∈ Br, b ∈ Bb}, which is still a convex set [4].
The objective function is jointly convex with respect to
(r, b) ∈ Br,b. By the definition presented in [13], problem
(3.12) is a biconvex problem.

Alternate convex search is a minimization method
to solve a biconvex problem where the variable set



Algorithm 1 Principal Tree Learning Algorithm

1: Input: Data X, parameters λ and σ, M
2: Initialize FG
3: repeat
4: di,j = ||fG i − fGj ||2,∀i,∀j
5: Apply Kruskal’s algorithm to obtain B
6: L = diag(B1)−B
7: Compute R via (3.14)
8: Λ = diag(RT1)
9: FG = XR(λL + Λ)−1

10: until Convergence

can be divided into disjoint blocks [13]. The blocks
of variables defined by convex subproblems are solved
cyclically by optimizing the variables of one block while
fixing the variables of all other blocks. In this way, each
convex subproblem can be solved efficiently by using a
convex minimization method.

Denote X = [x1, . . . ,xN ] ∈ RD×N , FG =
[fG1, . . . , fGM ] ∈ RD×M , R ∈ RN×M with the (i,m)th
entry as ri,m, diagonal matrix Λ = diag(RT1), B ∈
RM×M with the (m,m′)th entry as bm,m′ , the Laplacian
matrix L = diag(B1)−B ∈ RM×M , and 1 is a column
vector with all entries as one. The problem (3.12) can
be solved as follows.

Fix {R,B} and solve FG : Given {R,B}, the opti-
mization problem for solving FG can be reformulated as
an unconstrained quadratic programming problem

min
FG
−2tr(FT

GXR) + tr(ΛFT
GFG) + λtr(FGLF

T
G ) ,

which has an analytic solution given by

FG = XR(λL + Λ)−1.(3.13)

It is worth noting that the principal tree algorithm
can automatically adjust the local information from
data through L constructed in each iteration, while
most existing methods assume that the structure is
predefined, that is, L is fixed in advance. The merit of
avoiding tuning the neighborhood graph comes from the
automatically learned graph structure. This is a major
difference between our method and graph Laplacian
based methods, e.g., Laplacian eigenmap [1].

Fix FG and solve {R,B}: Given FG , the jointly

convex optimization over {R,B} can be decoupled into
two convex optimization problems with respect to B
and R, respectively. To obtain R, we solve the follow-
ing constrained optimization problem

min
R∈Br

N∑
i=1

M∑
m=1

ri,m
(
||xi − fGm||

2 + σ log ri,m
)
.

By applying the Lagrangian duality theorem [4], we can
readily obtain the analytic solution

ri,m =
exp

(
−||xi − fGm||2/σ

)∑M
m=1 exp (−||xi − fGm||2/σ)

,∀i,∀m.(3.14)

To obtain B, we solve an LP relaxation for minimum
spanning tree given by

min
B∈Bb

∑
(Vi,Vj)∈E

bi,jdi,j ,

where di,j = ||fG i − fGj ||2. It can be approximately
solved by Kruskal’s algorithm [7]. The proposed meth-
ods is named as SimplePPT, the pseudo-code of which
is given in Algorithm 1.

3.3 Convergence Analysis. Let g : B → R be the
objective function of problem (3.12), that is,

g(FG ,R,B) =
1

N

N∑
i=1

M∑
m=1

ri,m(||xi − fGm||
2 + σ log ri,m)

+
λ

2

∑
(Vi,Vj)∈E

bi,j ||fG i − fGj ||
2

where B = BFG × Br × Bb. The objective function g is
bounded from below by −σ logM because of the use of
the negative entropy. Moreover, the objective function
is continuous and differentiable on B.

Let y(t) be the vectorized representation of variables
{FG(t),R(t),B(t)}. The following proposition states
that both the objective values and variables converge.
The sketched proof is provided in Appendix B.

Proposition 3.1. The sequence {g(y(t))}t∈N gener-
ated by Algorithm 1 converges monotonically, and the
variable sequence {y(t)}t∈N also converges, that is,
limt→∞ ||y(t+1) − y(t)|| = 0.

By Proposition 3.1, we define the stopping criterion
of Algorithm 1, which is the relative increase of the
objective values (or the relative difference in y) in
two consecutive iterations. The empirical convergence
results are given in Section 4.2.

3.4 Time Complexity. The time complexity of
Algorithm 1 is determined by three individual parts.
The first part is the complexity of running Kruskal’s
algorithm to construct a minimum spanning tree. It re-
quires O(M2D) for computing a fully connected graph
and O(M2 logM) for finding a spanning tree. The sec-
ond part is dominated by computing the soft assign-
ments of samples, which has a complexity of O(NMD).
The third part is dominated by the inverse of a ma-
trix of size M ×M that takes O(M3) operations and
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Figure 1: Convergence analyses and intermediate re-
sults of SimplePPT performed on the Tree dataset using
two different initialization methods.
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Figure 2: Results of sensitivity analysis of SimplePPT
performed on the Zigzag dataset by using different λ.
Two initialization strategies are used.

matrix multiplication that takes DNM + DM2 oper-
ations. Therefore, the total complexity for each itera-
tion is O(M3 + DNM + M2D). For the special case
of M = N , the complexity becomes O(N3 + DN2). If
the number of samples is large, a small number M is
suggested for fast learning.

4 Experiments

We conduct an extensive experiment on both synthetic
and real-world datasets to demonstrate the performance
of the proposed method. We compare with two state-
of-the-art baseline methods, namely the polygonal line
method [17] and the SCMS method [19]. Since the
goal of our method is to construct a principal tree or
a principal curve from a given dataset, we do not apply
our method to datasets with a general graph structure
such as those with loops or disconnected components.

We first give a discussion on some implementation
issues of the algorithm. Then, we present a convergence
and parameter sensitivity analysis using synthetic data.
Finally, we report the experimental results on various
synthetic datasets and a breast cancer dataset.

4.1 Implementation Issues. The proposed algo-
rithm have four parameters that need to be specified:
the number of principal points M , the initialization
matrix FG , and two hyper-parameters σ and λ. In
Appendix C, we establish the equivalence between a
method minimizing the relaxed quantization error and
the mean shift algorithm [6] (i.e., SCMS). This means
that we can set M = N , and the initialization of princi-
pal points can be either the original data points or the
principal points returned by SCMS. To estimate the pa-
rameter σ, we employ the leave-one-out-maximum like-
lihood criterion described in [19]. Alternatively, we can
tune σ in SCMS and use the same σ in SimplePPT. We
use the gap statistic method [27] to automatically tune
parameter λ, which is detailed in Appendix D.

4.2 Convergence and Sensitivity Analysis. We
perform a convergence analysis of Algorithm 1 using a
synthetical tree dataset. Figures 1 shows the empirical
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Figure 3: Results of three principal curve methods performed on six synthetic datasets. The first and second
columns show the result of estimating the optimal λ by using gap statistics and the principal trees generated by
SimplePPT using the optimal λ, respectively. The third and forth columns report the results generated by the
polygonal line method and SCMS, respectively.
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Figure 4: Results of SimplePPT and SCMS applied to a breast cancer dataset.

convergence results obtained by using two initialization
strategies discussed in Section 4.1 as well as the interme-
diate results. We observe that the proposed algorithm
converges in less than 10 iterations, and the relative dif-
ferences of variables between two consecutive iterations
quickly converge to zero. This is consistent with the
result of the theoretical analysis in Section 3.3. From
Figure 1(c), we can see that when Algorithm 1 con-
tinues with more iterations, the tree structure becomes
smoother. This empirically verifies the intuition of the
reverse graph embedding.

We then perform a parameter sensitivity analysis by
using the Zigzag data to demonstrate how the algorithm
behaves with respect to different λ. Figure 2 shows
the principal trees constructed by using ten different λ
ranging from 10−8 to 102. It is clear that the larger λ is,
the shorter the length of a principal tree is. Therefore,
λ is an important parameter that controls the tradeoff
between the curve fitting error and the length of a
principal tree.

4.3 Synthetic Data. We evaluate the performance
of SimplePPT by comparing with the polygonal line
method [17] and SCMS [19] on six synthetic datasets.
Among them, the first four datasets are also used in
[17, 19]. The experiments are conducted in two settings.
The first setting is to evaluate the three methods for
principal curve learning, while the second setting is
to construct tree structures of the datasets. In all
experiments, we employ gap statistic to automatically
tune the parameter λ. In the convergence analysis,
we showed that the final results returned by using
two initialization methods do not differ significantly,
but using the result from SCMS as the initialization
generally converges faster. Therefore, in the following
experiments, we use the principal points returned by
SCMS to initialize SimplePPT.

The first four rows of Figure 3 show the results

from the principal curve learning setting. We have the
following observations: 1) Gap statistic can effectively
find parameter λ leading to reasonably good results on
all four datasets. 2) The proposed method can obtain
more smoothing curves than the other tested methods.
3) The polygonal line method fails on the Spiral data.
We also see that SCMS cannot obtain a curve structure
because many projected points do not have ordering
information, and some points are scattered as shown
in the Spiral data. This leaves a non-trivial problem
to learn the underlying structure by using SCMS. Our
proposed method does not have these problems. The
last two rows of Figure 3 show the results obtained from
the datasets containing tree structures. The polygonal
line method fails on two datasets due to the principal
curve assumption. The results are consistent with those
obtained in the first setting.

The above results suggest that 1) our method can
tune parameters automatically and obtain results at
least as good as the baselines, and outperforms the
polygonal line method that may fail on some datasets.
2) Our method can handle more complicated data
structures than the polygonal line method, and provides
detailed tree structures that cannot be trivially obtained
by SCMS.

4.4 Breast Cancer Data. We finally apply our
method to a breast cancer dataset to demonstrate its
utility for solving real-world problems. The dataset is
downloaded from [8] and contains the expression levels
of over 25, 000 genes and the copy numbers of over
30, 000 genes from 144 normal and 1, 989 breast tumor
samples. By using a non-linear regression method and
clustering analysis, a total of 1, 140 genes were found to
be associated with breast cancer progression [25]. We
apply the principal tree methods to the data represented
by the selected genes to recover the underlying data
structure, which in this case represents the progression



path of breast cancer towards malignancy. For the
purpose of visualization, the original data points and
the learned principal points are projected onto a three-
dimensional space spanning by the first three principal
components of the data and are shown in Figure 4(a).
For ease of discussion, each tumor sample is color-
coded with its corresponding PAM50 subtype label,
including normal-like, luminal A, luminal B, HER2+,
and basal [20]. The learned data manifold suggests
a linear bifurcating progression path for breast cancer
progression, starting from the normal tissue samples,
gradually transiting to luminal subtypes and finally
forming a bifurcating structure leading to either HER2+
or basal subtypes. The latter two subtypes are known to
be the most aggressive breast tumor types. This result
is consistent with the result in a previous study [25]. In
contrast, the principal points returned by SCMS does
not have a clear progression structure (Figure 4(b)).

5 Conclusion

In this paper, we proposed a simple principal tree learn-
ing method, which can be used to obtain a set of prin-
cipal points and a tree structure simultaneously. The
experimental results demonstrated the effectiveness of
the proposed method. Since our principal graph model
are formulated from a general graph, the development
of principal graph methods for other specific structure
is also possible. In the future, we will explore principal
graph learning on other graphs such as K-nearest neigh-
bor graphs and apply it to other real-world datasets.
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